J. Xie, S. Lee, and X. Chen, Nanoparticle-based theranostic agents, Adv. Drug Deliv. Rev, vol.62, pp.1064-1079, 2010.

S. Klein, A. Sommer, L. V. Distel, J. Hazemann, W. Kröner et al., Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy, J. Phys. Chem. B, vol.118, pp.6159-6166, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01335035

J. Marill, N. M. Anesary, P. Zhang, S. Vivet, E. Borghi et al., Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect?, Radiat. Oncol, vol.9, p.150, 2014.

J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, Radiotherapy enhancement with gold nanoparticles, J. Pharm. Pharmacol, vol.60, pp.977-985, 2008.

, Int. J. Mol. Sci, vol.2020, p.4673

K. T. Butterworth, S. J. Mcmahon, F. J. Currell, and K. M. Prise, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale, vol.4, pp.4830-4838, 2012.

E. Porcel, K. Kobayashi, N. Usami, H. Remita, C. Le-sech et al., Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays, J. Phys. Conf. Ser, 2011.

E. Porcel, S. Liehn, H. Remitta, N. Usami, K. Kobayashi et al., Platinum Nanoparticles: A Promising Material for Future Cancer Therapy? Nanothechnology, vol.21, 2010.

I. Miladi, M. Aloy, E. Armandy, P. Mowat, D. Kryza et al., Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomed. Nanotechnol. Biol. Med, vol.11, pp.247-257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01053787

C. Verry, L. Sancey, S. Dufort, G. Le-duc, C. Mendoza et al., Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol, BMJ Open, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381987

K. Zarschler, L. Rocks, N. Licciardello, L. Boselli, E. Polo et al., Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications, Nanomed. Nanotechnol. Biol. Med, vol.12, pp.1663-1701, 2016.

E. Phillips, O. Penate-medina, P. B. Zanzonico, R. D. Carvajal, P. Mohan et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe, Sci. Transl. Med, vol.6, 2014.

L. Sancey, F. Lux, S. Kotb, S. Roux, S. Dufort et al., The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy, Br. J. Radiol, vol.87, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01286747

L. ?tefan?íková, E. Porcel, P. Eustache, S. Li, D. Salado et al., Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnol, vol.5, p.6, 2014.

A. Wozny, M. Aloy, G. Alphonse, N. Magné, M. Janier et al., Gadolinium-based nanoparticles as sensitizing agents to carbon ions in head and neck tumor cells, Nanomed. Nanotechnol. Biol. Med, vol.13, pp.2655-2660, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01610099

Z. Kuncic and S. Lacombe, Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment, Phys. Med. Biol, vol.63, pp.2-3, 2018.

S. Lacombe, E. Porcel, and E. Scifoni, Particle therapy and nanomedicine: State of art and research perspectives, Cancer Nanotechnol, vol.8, pp.1-17, 2017.

S. J. Mcmahon, W. B. Hyland, M. F. Muir, J. A. Coulter, S. Jain et al., Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles

F. Lux, V. L. Tran, E. Thomas, S. Dufort, F. Rossetti et al., AGuIX ® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine, Br. J. Radiol, vol.92, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01935540

F. Lux, L. Sancey, A. Bianchi, Y. Crémillieux, S. Roux et al., Gadolinium-based nanoparticles for theranostic MRI-radiosensitization, Nanomedicine, vol.10, pp.1801-1815, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275075

C. Verry, S. Dufort, E. L. Barbier, O. Montigon, M. Peoc'h et al., MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection, Nanomedicine, vol.11, pp.2405-2417, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405486

S. Kotb, J. Piraquive, F. Lamberton, F. Lux, M. Verset et al., Safety evaluation and imaging properties of gadolinium-based nanoparticles in nonhuman primates, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400103

L. Sancey, S. Kotb, C. Truillet, F. Appaix, A. Marais et al., Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection, ACS Nano, vol.9, pp.2477-2488, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207383

C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux et al., The biodistribution of gold nanoparticles designed for renal clearance, Nanoscale, vol.5, pp.5930-5939, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843843

, Int. J. Mol. Sci, vol.2020, p.4673

M. A. Dobrovolskaia, A. K. Patri, J. Zheng, J. D. Clogston, N. Ayub et al., Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles, Nanomed. Nanotechnol. Biol. Med, vol.5, pp.106-117, 2009.

C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials, vol.31, pp.3657-3666, 2010.

A. Gatti, S. Montanari, E. Monari, A. Gambarelli, F. Capitani et al., Detection of micro-and nano-sized biocompatible particles in the blood, J. Mater. Sci. Mater. Med, vol.15, pp.469-472, 2004.

Z. J. Deng, M. Liang, M. Monteiro, I. Toth, and R. F. Minchin, Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation, Nature Nanotechnol, vol.6, pp.39-44, 2011.

I. F. Suffian, M. Garcia-maya, P. Brown, T. Bui, Y. Nishimura et al., Yield optimisation of Hepatitis B virus core particles in E. coli expression system for drug delivery applications

J. T. Tildon and J. W. Ogilvie, The Esterase Activity of Bovine Mercaptalbumin The Reaction of the Protein with p-Nitrophenyl Acetate, J. Biol. Chem, vol.247, pp.1265-1271, 1972.

S. Devineau, L. Kiger, F. Galacteros, V. Baudin-creuza, M. Marden et al., Manipulating hemoglobin oxygenation using silica nanoparticles: A novel prospect for artificial oxygen carriers, Blood Adv, vol.2, pp.90-94, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01695665

J. Teichroeb, J. Forrest, and L. Jones, Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres, Eur. Phys. J. E, vol.26, pp.411-415, 2008.

S. Laera, G. Ceccone, F. Rossi, D. Gilliland, R. Hussain et al., Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism, Nano Lett, vol.11, pp.4480-4484, 2011.

M. Yin, W. Chen, Y. Lu, J. Han, Y. Liu et al., A model beyond protein corona: Thermodynamics and binding stoichiometries of the interactions between ultrasmall gold nanoclusters and proteins, Nanoscale, vol.12, pp.4573-4585, 2020.

S. H. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker et al., Interaction of gold nanoparticles with common human blood proteins, ACS Nano, vol.4, pp.365-379, 2009.

G. Rabbani and S. N. Ahn, Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo, Int. J. Biol. Macromol, vol.123, pp.979-990, 2019.

G. J. Quinlan, G. S. Martin, and T. W. Evans, Albumin: Biochemical properties and therapeutic potential, Hepatology, vol.41, pp.1211-1219, 2005.

R. M. Murphy, Static and dynamic light scattering of biological macromolecules: What can we learn?, Curr. Opin. Biotechnol, vol.8, pp.25-30, 1997.

N. Samanta, D. D. Mahanta, S. Hazra, G. S. Kumar, and R. K. Mitra, Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin, Biochimie, vol.104, pp.81-89, 2014.

C. D. Woody, Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals, Med Biol. Eng, vol.5, pp.539-554, 1967.

M. Réfrégiers, F. Wien, H. Ta, L. Premvardhan, S. Bac et al., DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL, J. Synchrotron Radiat, vol.19, pp.831-835, 2012.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong et al., BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra, Nucleic Acids Res, vol.46, pp.315-322, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01824353

A. Micsonai, F. Wien, L. Kernya, Y. Lee, Y. Goto et al., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc. Natl. Acad. Sci, vol.112, pp.3095-3103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01485547

L. Yuan, B. Guo, W. Zhong, Y. Nie, X. Yao et al., Interaction of Mitoxantrone-Loaded Cholesterol Modified Pullulan Nanoparticles with Human Serum Albumin and Effect on Drug Release, J. Nanomater, 2019.

P. Kandagal, S. Ashoka, J. Seetharamappa, S. Shaikh, Y. Jadegoud et al., Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach, J. Pharm. Biomed. Anal, vol.41, pp.393-399, 2006.

, Int. J. Mol. Sci, vol.2020, p.4673

N. K. Das, N. Ghosh, A. P. Kale, R. Mondal, U. Anand et al., Temperature induced morphological transitions from native to unfolded aggregated states of human serum albumin, J. Phys. Chem. B, vol.118, pp.7267-7276, 2014.

R. Wetzel, M. Becker, J. Behlke, H. Billwitz, S. Böhm et al., Temperature behaviour of human serum albumin, Eur. J. Biochem, vol.104, pp.469-478, 1980.

S. Sen, S. Konar, A. Pathak, S. Dasgupta, and S. Dasgupta, Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin, J. Phys. Chem. B, vol.118, pp.11667-11676, 2014.

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, pp.884-890, 2003.

S. Mirsadeghi, R. Dinarvand, M. H. Ghahremani, M. R. Hormozi-nezhad, Z. Mahmoudi et al., Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale, vol.7, pp.5004-5013, 2015.

M. Ghavami, M. Rezaei, R. Ejtehadi, M. Lotfi, M. A. Shokrgozar et al., Physiological temperature has a crucial role in amyloid beta in the absence and presence of hydrophobic and hydrophilic nanoparticles, ACS Chem. Neurosci, vol.4, pp.375-378, 2013.

G. Thakur, M. Micic, Y. Yang, W. Li, D. Movia et al., Conjugated quantum dots inhibit the amyloid ? (1-42) fibrillation process, Int. J, pp.1-7, 2011.

S. Bag, R. Mitra, S. Dasgupta, and S. Dasgupta, Inhibition of human serum albumin fibrillation by two-dimensional nanoparticles, J. Phys. Chem. B, vol.121, pp.5474-5482, 2017.

G. Sekar, N. P. Kumar, A. Mukherjee, and N. Chandrasekaran, Cerium oxide nanoparticles promote HSA fibrillation in vitro, Int. J. Biol. Macromol, vol.103, pp.1138-1145, 2017.

P. Chen, S. A. Seabrook, V. C. Epa, K. Kurabayashi, A. S. Barnard et al., Contrasting effects of nanoparticle binding on protein denaturation, J. Phys. Chem. C, vol.118, pp.22069-22078, 2014.

M. Pelliccia, P. Andreozzi, J. Paulose, M. D'alicarnasso, V. Cagno et al., Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months, Nat. Commun, 2016.

C. Alfano, D. Sanfelice, S. R. Martin, A. Pastore, and P. A. Temussi, An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states, Nat. Commun, vol.8, 2017.

A. C. Miklos, C. Li, N. G. Sharaf, and G. J. Pielak, Volume exclusion and soft interaction effects on protein stability under crowded conditions, Biochemistry, vol.49, pp.6984-6991, 2010.

M. Perham and L. Stagg, Wittung-Stafshede, P. Macromolecular crowding increases structural content of folded proteins, FEBS Lett, vol.581, pp.5065-5069, 2007.

I. M. Kuznetsova, K. K. Turoverov, and V. N. Uversky, What macromolecular crowding can do to a protein, Int. J. Mol. Sci, vol.15, pp.23090-23140, 2014.

G. Rabbani, M. H. Baig, A. T. Jan, E. J. Lee, M. V. Khan et al., Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study, Int. J. Biol. Macromol, vol.105, pp.1572-1580, 2017.

M. Senske, L. Törk, B. Born, M. Havenith, C. Herrmann et al., Protein stabilization by macromolecular crowding through enthalpy rather than entropy, J. Am. Chem. Soc, vol.136, pp.9036-9041, 2014.

N. J. Greenfield, Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions, Nat. Protoc, 2006.

C. Truillet, F. O. Lux, O. Tillement, P. Dugourd, and R. Antoine, Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based silica nanoparticles, Anal. Chem, vol.85, pp.10440-10447, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00914866

L. Duc, G. Roux, S. Paruta-tuarez, A. Dufort, S. Brauer et al., Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment, Cancer Nanotechnol, vol.5, pp.1-14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115650

J. L. Paris, M. Colilla, I. Izquierdo-barba, M. Manzano, and M. Vallet-regí, Tuning mesoporous silica dissolution in physiological environments: A review, Journal of Materials Science, vol.52, pp.8761-8771, 2017.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy

V. D. Suryawanshi, L. S. Walekar, A. H. Gore, P. V. Anbhule, and G. Kolekar, Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin, J. Pharm. Anal, vol.6, pp.56-63, 2016.

E. Burstein, N. Vedenkina, and M. Ivkova, Fluorescence and the location of tryptophan residues in protein molecules, Photochem. Photobiol, vol.18, pp.263-279, 1973.

G. Rabbani, E. J. Lee, K. Ahmad, M. H. Baig, and I. Choi, Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA, Mol. Pharm, vol.15, pp.1445-1456, 2018.

G. Zhang, A. Wang, T. Jiang, and J. Guo, Interaction of the irisflorentin with bovine serum albumin: A fluorescence quenching study, J. Mol. Struct, vol.891, pp.93-97, 2008.

O. Hamdi, S. Feroz, J. Shilpi, E. Anouar, A. Mukarram et al., Spectrofluorometric and molecular docking studies on the binding of curcumenol and curcumenone to human serum albumin, Int. J. Mol. Sci, vol.16, pp.5180-5193, 2015.

O. K. Abou-zied and O. I. Al-shihi, Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes, J. Am. Chem. Soc, vol.130, pp.10793-10801, 2008.

S. Tayyab, M. M. Izzudin, M. Z. Kabir, S. R. Feroz, W. Tee et al., Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study, J. Photochem. Photobiol. B Biol, vol.162, pp.386-394, 2016.

Y. Y. Foo, M. Z. Kabir, V. Periasamy, S. N. Malek, and S. Tayyab, Spectroscopic studies on the interaction of green synthesized-gold nanoparticles with human serum albumin, J. Mol. Liq, vol.265, pp.105-113, 2018.

M. Yin, P. Dong, W. Chen, S. Xu, L. Yang et al., Thermodynamics and mechanisms of the interactions between ultrasmall fluorescent gold nanoclusters and human serum albumin, ?-globulins, and transferrin: A spectroscopic approach, Langmuir, vol.33, pp.5108-5116, 2017.

S. N. Timasheff, Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components, Proc. Natl. Acad. Sci, vol.99, pp.9721-9726, 2002.

B. Halamoda-kenzaoui, Bremer-Hoffmann, S. Main trends of immune effects triggered by nanomedicines in preclinical studies, Int. J. Nanomed, vol.13, 2018.

F. Lux, A. Mignot, P. Mowat, C. Louis, S. Dufort et al., Ultrasmall rigid particles as multimodal probes for medical applications, Angew. Chem. Int. Ed, vol.50, pp.12299-12303, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00658275

A. Mignot, C. Truillet, F. Lux, L. Sancey, C. Louis et al., A Top-Down synthesis route to ultrasmall multifunctional Gd-Based silica nanoparticles for theranostic applications, Chem. Eur. J, vol.19, pp.6122-6136, 2013.

F. Wien and B. Wallace, Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy, Appl. Spectrosc, vol.59, pp.1109-1113, 2005.

B. Wallace, Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures, J. Synchrotron Radiat, vol.7, pp.289-295, 2000.

J. Lees and B. Wallace, Synchrotron radiation circular dichroism and conventional circular dichroism spectroscopy: A comparison, J. Spectrosc, vol.16, pp.121-125, 2002.

J. Lees, B. Smith, F. Wien, A. Miles, and B. Wallace, CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving, Anal. Biochem, vol.332, pp.285-289, 2004.

L. Whitmore, A. J. Miles, L. Mavridis, R. W. Janes, B. A. Wallace et al., New developments at the protein circular dichroism data bank, Nucleic Acids Res, vol.45, pp.303-307, 2017.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI