Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles

Farid Kameche, Wajdi Heni, Siham Telitel, Dandan Ge, Loïc Vidal, Frederic Dumur, Didier Gigmes, Jacques Lalevee, Sylvie Marguet, Ludovic Douillard, et al.

To cite this version:

HAL Id: cea-02874092
https://hal-cea.archives-ouvertes.fr/cea-02874092
Submitted on 10 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the 'Q' link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact r.sanden@elsevier.com immediately prior to returning your corrections.</td>
</tr>
</tbody>
</table>

Please check this box if you have no corrections to make to the PDF file

Thank you for your assistance.
Graphical abstract

Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles

Farid Kameche, Wajdi Heni, Siham Telitel, Dandan Ge, Loic Vidal, Frédéric Dumur, Didier Gigmes, Jacques Lalevée, Sylvie Marguet, Ludovic Douillard, Céline Fiorini-Debuisschert, Renaud Bachelot, Olivier Soppera
Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles

Farid Kameche¹, Wajdi Heni¹, Siham Telitel¹, Dandan Ge², Loïc Vidal¹, Frédéric Dumur³, Didier Gignes³, Jacques Lalévé¹, Sylvie Marguet⁴, Ludovic Douillard⁵, Céline Fiorini-Debuisschert⁵, Renaud Bachelot²,⁶, Olivier Soppera¹,*

¹Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Université de Haute-Alsace, Mulhouse, France
²Light, nanomaterials, nanotechnologies (L2n) Laboratory, ICD CNRS, Université de Technologie de Troyes, 10004 Troyes, France
³Aix Marseille Univ, CNRS, ICR UMR 7273, Marseille F-13397, France
⁴Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif-sur-Yvette, France
⁵Université Paris-Saclay, CEA, CNRS, SPEC, F-91191 Gif-sur-Yvette, France
⁶Sino-European School of Technology, Shanghai University, 200444 Shanghai, China

Surface plasmon resonance can be used to manipulate light at the nanoscale. It was used here to trigger photopolymerization of an atom transfer radical polymerization (ATRP) molecular system, leading to a thin polymer shell at the surface of the metal nanostructure. The polymerization can be reactivated from the first polymer shell to covalently graft a second monomer layer with precise control over the thickness at the nanometric scale, depending on the photonic parameters. This route can be applied to different nanoobjects and allows an anisotropic surface modification in agreement with the spatial localization of the enhanced electromagnetic field near the nanostructure. This new route opens the door towards the preparation of multifunctional hybrid metal/polymer nanostructures.

Introduction
Reversible deactivation radical polymerization (RDRP) has proved to be a powerful tool for preparing polymers, with high control over the structure at the molecular scale. Using RDRP, it is possible to precisely control the architecture of polymers and their average molar masses with narrow molecular weight distributions. Several strategies for RDRP have been developed, such as nitroxide mediated polymerization (NMP) [1–3], reversible addition–fragmentation chain transfer polymerization (RAFT) [4,5] or atom transfer radical polymerization (ATRP) [6–11], which can be applied to many different families of monomers. Recently, new approaches have been developed to trigger RDRP reactions by light to achieve photoinduced polymerization [12,13]. Main attainments were reported in review papers [12–16]. In this case, a light source (LED, laser, lamp, etc.) is used to provide the energy to excite the photoactive catalyst to the state necessary to start the polymerization process. Most RDRP techniques have been adapted to photoactivation; examples such as PhotoATRP [6,8,11,17], PhotoNMP (NMP2) [1,18,19], and PhotoRAFT [5] can be found in recent literature. These reactions usually rely on organometallic catalysts or metal ions where the metal can be copper [6,20–22], zirconium [7], ruthenium [23], iron [8,24], cobalt [25], gold [9], manganese [10,26] or iridium [11,27–30]. One of the interests of this photoactivation pathway is linked to the possibility of spatially and temporally controlling the polymerization reaction. The polymerization starts upon irradiation in irradiated areas, stops when irradiation is stopped and can be reactivated to start the cycle many times. In addition, phototriggered RDRP has opened new possibilities in the field of micro- and nanofabrication, using the spatial control of a photoactivated reaction. Several examples have shown...
the possibility of restarting the polymerization from a first poly-
mer surface [19,20,28,31–33], leading to the in situ synthesis of a
copolymer structure on the first polymer surface. For example,
Wang et al. [33] demonstrated the grafting of copolymer brushes
on silicon. They photopolymerized a first layer of a methyl-
methacrylate polymer brush on the substrate in the presence of
an initiator and a catalyst. Then, using a mask, a second pho-
topolymerization of a hydrophobic fluorinated monomer was
triggered onto the previously generated polymer brushes. Using
an iridium complex as a photoinitiator catalyst, Telitel et al.
[28] polymerized via ATRP a photopolymer film on a substrate
followed by a local polymerization of a monomer onto the film
using direct laser writing. By adding a drop of a monomer and
using a light source, the polymerization was easily triggered
because of the presence of the iridium complex, which is re-
generated through a catalytic cycle.

In both cases, control of the polymer thickness was achieved
by tuning the photonic parameters, such as light power or irradi-
ation time, but high-resolution patterning has not yet been
explored. One of the fundamental interests of the work pre-
sented in this paper is to investigate the possibility of using
PhotoRDRP to reach nanoscale resolution.

For this purpose, we used an optical near-field (ONF) photo-
topolymerization approach. ONF is intrinsically a
nondiffraction-limited technique and is thus compatible with
nanoscale photofabrication. The idea behind ONF is to benefit
from the local enhancement of the electromagnetic field in the
vicinity of metal nanostructures excited by light. Indeed, upon
plasmonic excitation, metal nanostructures exhibit highly con-
fined near-fields close to their surfaces. In this context, the use
of a suitable photopolymer in well-controlled conditions opens
the way to confine the polymerization to this nanoscale volume
under the condition that the diffusion of reactive species is
controlled.

The proof of concept was proposed by several teams, includ-
ing our consortium [34–38]. Using atomic force microscopy
(AFM), the photopolymerization of a triacylate monomer
around silver nanoparticles (NPs) was demonstrated. Ueno
et al. used gold nanoblocks to trigger photopolymerization
between them according to a certain polarization direction
[39]. In all those cases, the formed photopolymer had a nanome-
ter volume. One of the practical motivations of this approach is
to provide access to a convenient process to produce hybrid poly-
mer-metal nanostructures with original optical properties. From
a more fundamental point of view, this configuration is also a
unique method for investigating photoinduced polymerization
at the nanoscale, which brings information on specific
physico-chemical phenomena occurring with extreme confine-
ment [37].

Although the feasibility has been proved, the application of
this concept has been limited to only a few photopolymer sys-
tems. Coupling ONF photopolymerization and PhotoRDRP
opens new perspectives, which motivated us to carry out this
work.

We first demonstrate that PhotoATRP can be used in the ONF
configuration, leading to nanoscale photopolymerization. Com-
pared to previous works, we have used an iridium complex
(namely, Ir(i-piq)2(tmd)) [28,29,40] that is interesting for its absor-

Experimental methods
Preparation of the formulation.
The iridium complex is \(\text{Ir}((1\text{-phenylisoquinolinato-N,C2})\text{iri-
dium}(2,2,6,6\text{-tetramethyl}-3,5\text{-heptanedionate}) \), denoted as \(\text{Ir} \)
(piq)_2(tmd) (Fig. 1a). Its synthesis is described in the paper of Tian et al. [40]. The photopolymerizable formulation was prepared by mixing (piq)_2(tmd), 2-bromoacetophenone (denoted as PBr), and N-methyldiethanolamine (MDEA) in pentaerythritol triacrylate (PETA), without the use of a solvent. These products were obtained from Sigma-Aldrich and were used as received. The composition was set to 1 wt. % (piq)_2(tmd), 3 wt. % PBr and 4 wt. % MDEA. Trimethylolpropane triacrylate (TMPTA) and 2,2,3,4,4,4-hexafluorobutyryl acrylate (HFBA) were purchased from Sigma-Aldrich. The formulas of acrylate monomers can be found in Fig. 1a. Other compounds are depicted in Fig. S1 in the supporting information (SI).

Spherical (43 nm diameter) and cubic (57 nm edge) gold NPs were prepared by colloidal chemistry using cetyltrimethylammonium bromide (CTAB) as the capping agent [41–44]. The cubes were obtained, in a first step, according to an already published protocol [41,42]. They were converted to highly spherical nanoparticles in a second step by chemical etching in the presence of HAuCl₄ and CTAB. The oxidation of Au nanocrystals with Au (III)–CTAB complexes was indeed shown to occur preferentially at surface sites with high curvatures [43,44]. The surfactant was removed from the surfaces of the NP by centrifugation in an aqueous solution and UV-ozone treatment after drop deposition onto the substrate. TEM was used to characterize the NP size distribution and confirm the elimination of the surfactant (Fig. S2).

Characterization of samples

TEM characterization was conducted on 2 microscopes. A PHILIPS CM200 TEM was used to characterize NPs after each step of the near-field photopolymerization process. An ARM200F JEOL High-Resolution transmission electron microscope equipped with a double tilt sample holder (tilting angle tunable from +60° to −60°) was used to perform tilt experiments. In all cases, silicon TEM grids with two rectangular slits (1500 μm × 100 μm) covered on one face with a 50 nm-thick Si₃N₄ membrane were used (TEDPELLA). ImageJ v.1.8 software was used to adjust the brightness and contrast levels of the TEM images and evaluate the thickness of the polymer shell from the TEM images.

Simulations

The experiment is complemented by numerical simulations based on the boundary element method (BEM) via its implementation in the multiple nanoparticles BEM MNPBEM toolbox [45,46]. The BEM approach provides solutions of Maxwell’s equations in the case of arbitrarily shaped dielectric interfaces. The solutions are expressed in terms of surface charges and currents.
so that only surfaces between the different materials have to be discretized providing fast simulations. For more details, see [47,48]. A Au sphere 43 nm in diameter is modeled on an infinite Si₃N₄ substrate. The distance between the Au NP and the substrate is fixed at 1 nm. The NP is covered by a monomer formulation with a refractive index n = 1.48. The refractive index of Au is taken from Johnson and Christy [49], that of the Si₃N₄ substrate is fixed at n_{Si₃N₄} = 2.056 [50]. Illumination is carried out from the wide band gap semiconductor substrate side under normal incidence with a circular polarized 532 nm light source. Simulations carried out in quasistatic and retarded field approximations give similar results. Maps of the squared modulus of the optical near electric field |E_{nl}|² around one Au NP are determined. Note that incident field amplitude is normalized to unity within the substrate. Equivalent numerical simulations have been conducted on 57 nm edge Au cubes. In addition to field maps, extinction spectra have also been calculated.

Optical near-field photopolymerization process

Before the deposition of NPs onto the TEM grids, the TEM grids were functionalized by a self-assembled APTES monolayer ((3-Aminopropyl)triethoxysilane from Sigma-Aldrich) to promote the anchoring of the NPs onto the substrate surface. UV-ozone treatment was then used to remove the surfactant at the surface of the NP. The TEM grid with gold NPs deposited on its surface (Fig. 1b–i) was put in the pathway of a frequency-doubled Nd-YAG laser (532 nm, 6 W, VERDI model from Coherent). The details of the optical setup are given in Fig. S3. The setup was designed to generate a collimated illumination, with a homogeneous power density over the area of interest (typ. a few mW/cm² on 1 cm²) and with circular polarization. Once properly placed, a drop of the formulation (4 µL) was deposited onto the TEM grid. The laser beam irradiated the photopolymer through the Si₃N₄ substrate (wide band gap semiconductor) so that there was no attenuation of the laser beam by the photopolymer on the plane of the NPs. The photomerization threshold time (t₄) was determined in a separate experiment. This corresponds to the minimum time needed to start the photomerization at the substrate surface for a given light power density [37]. To determine it experimentally, the liquid photopolymer was deposited onto the TEM membrane (without NPs), irradiated, rinsed in ethanol and observed by optical microscopy. When polymer parts are observed on the TEM grid, the threshold time of polymerization is reached. In the presence of the NPs, the sample was typically irradiated at 90% t₄ (Fig. 1b–ii). Under such conditions, far-field photopolymerization is avoided, while plasmonic intensity enhancement in the near-field of NPs (typically by a factor of 28, see below) provokes the start of photopolymerization in this nanovolume. After irradiation, the sample was rinsed by immersion for 10 min in an ethanol bath. Then, the sample was dried in air and characterized by TEM (Fig. 1b–iii). The entire process was carried out under inac-
tinic red light to avoid any degradation of the photocatalyst. In a second step, repolymerization from the surface was tested by placing the grid in the same optical setup. It was irradiated after being covered by a monomer (generally TMPTA). For this step, no photoinitiator was added to the monomer (Fig. 1b–iv). The development step was performed in exactly the same way as for the first step, and the NPs studied after the first exposure were characterized once again (Fig. 1b–v). Several examples are given in the SI to show that the same NPs could be found after different steps of the process.

Results and discussion

Photopolymerizable formulation

The molecular process for light-induced controlled photopolymer-
merization can be described as proposed by Hawker et al. (Fig. 1d) [31]. At the molecular scale, the scheme is basically an oxidative catalytic cycle involving the iridium complex. After light absorption, the complex in its excited state reduces an alkyl bromide to generate the alkyl radical that initiates the polymer-
ization of the acrylate monomers. The oxidizing state (IrIVBr) can then react with a propagating radical, which regenerates the initial IrIII in its ground state and a dormant polymer chain with a bromo end group. Photopolymerization triggered by the Ir(piq)2(tmtd) complex was confirmed in previous studies [27–29]. The behavior of Ir complexes in oxidative catalytic cycles has been established by Telitel et al. [51]. It has also been shown that additional amines can be used as reductive agents to regenerate IrIII from IrIV, significantly improving the polymerization kinetics. Therefore, the three-component IrIII/PBr/amine system combines fast initiation and polymerization rates with good control of the chain end. Due to this livingness property, we expect that the first polymer shell on gold NPs contains reactive Ir complexes (Fig. 1d–i) that can start a second photopolymeriza-

Photopolymerization initiated by the Ir complex in the far-field configuration

The photopolymerization at 532 nm in the far-field configuration (e.g., via irradiation by a propagative plane wave in a thin film, without the presence of the NP) was first checked to confirm the negative tone behavior of the photopolymer. In particular, we characterized the polymerization threshold energy for several light power densities. This value is not only important from a practical point of view to determine the exposure condi-
tions but also brings additional information on the photochemical phenomena involved in the material. The t₄ irradiation time was determined for different power densities (0.8 mW/cm², 2.5 mW/cm², 4.8 mW/cm², 7.2 mW/cm² and 9.9 mW/cm²) and plotted in Fig. 2a (black segments). For each power density, the times above and below the threshold dose are represented by blue and red crosses, respectively. These values give good precision regarding the t₄ values. As expected, the higher the power density is, the lower the threshold time. The threshold energy (E₄) was then calculated by multiplying t₄ by the power density.
and plotted on the same figure (green triangles). Interestingly, the threshold energy for this system decreases when the power density increases. This effect is significant within the narrow range of laser power used, which means that this system is sensitive to a side reaction. This behavior is characteristic of a photopolymerizable formulation sensitive to oxygen quenching. Indeed, for this system, when the power is decreased, the continuous replenishment of oxygen by diffusion from the nonirradiated area and surrounding area increasingly affects the polymerization. This behavior was frequently observed in free radical polymerization [52,53]. Here, it is more pronounced due to the relatively low photoreactivity of the initiating system. However, the polymerization is achievable in the entire range of tested powers.

Optical near-field photopolymerization

The objective of this section is to demonstrate that this photopolymer is compatible with near-field photopolymerization. Fig. 2b shows the experimental extinction spectrum of the gold NPs in a solution (water $\mathrm{n} = 1.33$) and the corresponding calculated spectrum of particles with the same size (43 nm) deposited on a Si_3N_4 substrate and surrounded by PETA (dielectric medium with a refractive index equal to 1.48). The extinction spectrum of the photoinitiating system, given by the iridium complex, is also plotted. It can be observed that there is an overlap of the NPs and the iridium complex spectra at 532 nm (emission wavelength of the laser).

The enhancement and spatial extend distribution of the optical near field around one Au NP are determined from the BEM simulations. In more details, maps of the squared modulus of the optical near electric field enhancement $|\text{EF}|^2$ around one Au NP are determined. Incident field amplitude is normalized to unity within the substrate. Two views are considered, an equatorial top view (Fig. 2c) and a polar side view (Fig. 2d). In the equatorial plane (xy) of the NP, the electromagnetic field shows a circular symmetry in agreement with the circular character of the light excitation. At a distance $r = R + 0.5 \text{ nm}$ where $2R = 43 \text{ nm}$, the square of the enhancement factor EF amounts to 28.3 (e.g. EF = 5.3). Field map in the polar plane (xz) exhibits maxima close to the equatorial plane of the NP and minima along its polar axis. Field enhancement is minimal (EF = 2.8) at the top of the particle. The presence of a high refractive index substrate (Si_3N_4) results in an additional field enhancement below the NP (asymetric distribution). Within these near-field volumes with enhanced optical intensities, an acceleration of the polymerization kinetics is expected, and thus, gelification should be reached at lower doses. A dose close to the threshold (90%) was chosen in the following near-field photopolymerization experiments by adjusting the irradiation time according to the light power used.
The effect of power density on the polymerized volume during the first irradiation was studied to define the most suitable condition for near-field photopolymerization (Fig. 2c). Indeed, the intensity of the laser is known to be an important parameter for controlling the shell thickness [37]. Powers were chosen according to Fig. 2a. For each power density, irradiation of the gold NPs with the photopolymerizable formulation at 90% of the threshold dose was performed, and samples were characterized by TEM (Fig. 2c–iv). These images are typical images shown in Figs. S4–S6. In each case, the images reveal a thin shell of polymer surrounding the NPs. It turns out that the impact of the power density on the polymer shell thickness is weak. The limited polymer thickness is in agreement with the low photoactivity of the system, the high sensitivity to the inhibitor, the limited number of photoinitiator molecules in the near-field volume (ca. 80 molecules) and the high confinement of the electromagnetic field around the NPs. In the TEM images (top view), the repartition of the polymer follows the expected circular intensity distribution around the equator of the particle, in agreement with the numerical simulations (Fig. 2c).

Considering the very low thickness of the polymer layer, control experiments were conducted to exclude any misinterpretation of these results. In the first control experiment, we verified that the polymer shell is indeed related to the polymer and not to the monomer adsorbed at the surface of the NP, without polymerization. To do so, a drop of the formulation was deposited onto a TEM grid with gold NPs and was not irradiated. The sample was developed in the same way as described above in the experimental part. TEM images were taken before and after the drop deposition and revealed that no formulation remained on the surface of the NPs (see Fig. S2B in the SI). This experiment validates the development process. We also excluded, in our experimental conditions, a direct polymerization of the acrylic monomer as described by Wang et al. [54,55]. In their study, the authors explained that the polymerization on the NP surface is triggered by the ejection of hot electrons, without the need of a photoinitiator. In this case, the control experiment consisted of covering the NP with the raw monomer (without the photoinitiating system) and carrying the irradiation under the conditions described before. The TEM analysis after irradiation did not show any polymer at the surface of the NP, which is consistent with a photoinduced polymerization process following the pathway described in Fig. 1c. In our model, the NP contribution enables modification of the spatial distribution of the electromagnetic near-field, accelerating the photopolymerization in the near-field region.

Repolymerization from the polymer surface

The main objective of this work is to demonstrate the living character of the polymer chains grafted in the first step, i.e., that these chains can be reactivated by irradiation, without an initiator, at the same wavelength to covalently attach another polymer chain.
at the surface. Here, the power density for the first irradiation was chosen to be 7.2 mW/cm². The corresponding irradiation time to reach 90% of the threshold dose is 0.9 s. After the first step described above, different areas on the sample were characterized by TEM, and representative NPs are shown in Fig. 3ai and bi. A thin polymer shell is visible around the NPs, which indicates that photopolymerization was triggered, confirming the results shown in Fig. 2.

To start the second polymerization, the NPs were covered with pure TMPTA monomer and irradiated with the same configuration, with the same power density as for the first step. The irradiation time was set to 3000 s. For this step, a long irradiation time can be used without far-field polymerization since there is no photoinitiating system in the TMPTA monomer. After irradiation, the sample was rinsed by immersion in ethanol, under conditions identical to those used after the first irradiation. Samples were then characterized by TEM. TEM imaging was carried out on the same NPs that can be found on the TEM grid after each step (Fig. 3aii–bi; see Fig. S7 for TEM images at lower magnifications).

Images aii and bii in Fig. 3 clearly show an increase in the polymerized shell thickness. Fig. 3c presents the statistical analysis of the thickness of the polymer layer around the NPs determined by TEM. Since the thickness is not always homogeneous around the NP, we evaluated the mean thickness as follows: the diameters of the NPs with and without the photopolymer were measured for 85 NPs to evaluate the polymer thickness after the different steps. It appeared that the mean NP shell thicknesses resulting from the first and the second irradiation were 1.24 nm ± 0.55 nm and 2.16 nm ± 0.70 nm, respectively. The increase in thickness after the second irradiation is confirmed by the histogram, where a global shift to higher thicknesses is observed.

To verify that the increase in the polymer layer was indeed induced by laser irradiation, the following control experiment was conducted: after the first step, a drop of TMPTA was deposited onto the sample, and development was done without any irradiation using our standard procedure (Fig. 3bii). The characterization of the control sample by TEM did not reveal any change in the polymer thickness, demonstrating that the increase in the diameter of the hybrid NP does not result from the adsorption of a thin monomer layer.

Effect of the irradiation conditions on the second polymerization

In the previous experiment, the same power density as for the first polymerization was used, and repolymerization is shown after 3000 s of irradiation. Higher energy is thus required for a second photopolymerization, which we confirmed by using different conditions, as shown in Fig. 3d–i. Previous works on repolymerization at micro- or millimeter scales indeed showed a direct dependence of the polymer layer on the photonic parameters (power density and time) [19,28]. For completeness, additional samples were prepared by performing the first irradiation at 7.2 mW/cm² at 90% of the threshold dose and by changing the photonic parameters of the second irradiation.

As observed in the former experiment, a thin polymer shell was observed after the first irradiation (Fig. 3d–ii). In Fig. 3di–ii, the second irradiation time was 600 s, and the power density was maintained at 7.2 mW/cm². For the second irradiation, there is no clear evidence of a second polymerization. The histogram shown in Fig. 3f confirms this trend for a large number of NPs (63 NPs). We investigated whether the second irradiation efficiency can be improved with higher laser power. In another experiment, the second irradiation was carried out for 600 s with a power density of 35 mW/cm², i.e., the total energy was the same as that in the first experiment (cf. Fig. 3gii and hii) but with a higher power density. TEM images of the gold NPs are shown after the first irradiation (Fig. 3gii and hi) and the second irradiation (Fig. 3giv and hv; see supporting information, Fig. S9). As depicted in the polymer thickness histogram shown in Fig. 3g, these irradiation conditions significantly favor the growth of the second polymer layer since a clear increase in the polymer thickness can be observed. For a given energy, a higher power density favors the growth of the second polymer layer. We conclude from this set of experiments that although the first irradiation is not very efficient, with suitable irradiation conditions, most of the NPs can be functionalized with a polymer shell (at least 90%). We show in these experiments that this thin layer contains enough reactive species to restart the photopolymerization. In particular, the photosensitive compounds are not washed out during the development steps, and despite the loss of mobility expected in the polymer matrix compared to the photopolymerizable solution in the first step, they are accessible to the second monomer and can still be activated when embedded in the polymer layer.

Moreover, despite the low reactivity of the nanohybrid system during the second irradiation, we demonstrate that the polymerization can be started again as long as the energy delivered is high enough. A low yield can be explained by the inhibition quenching of radical species in the presence of oxygen in the surrounding medium. The impact of the power confirms this assumption since higher power provides a higher rate of radical production and a more efficient competitive pathway against oxygen inhibition. Quenching of the excited states of the iridium complex by the metal nanostructure could also be involved, as it is well known that non-radiative de-excitation occurs in the vicinity of metal NPs [56]. Although this effect may be present, it does not completely inhibit the polymerization in both steps.

3D repartition of the photopolymer

The question of the spatial distribution of the photopolymer around the NPs has been scarcely discussed in previous studies dealing with ONF photopolymerization. The discussion has been indeed limited to observation in 2D due to the limits of the employed imaging techniques (AFM and SEM).

Here, we propose using the tomographic mode of TEM to investigate the spatial distribution of the polymer layer around the NPs. Indeed, the transmission electron microscope used in this study is equipped with a rotation sample holder that makes it possible to record images of the NPs with tilt angles ranging from +60° to −60°.

As shown in the simulations (Fig. 2c and d), the field distribution is not spatially homogeneous around the NP. In the circular polarization and normal irradiation configuration, the near-field enhancement is indeed higher (i) at the equator of the NP and (ii)
in the interstice between the NP and the substrate. Case (i) is related to the boundary condition of the field component perpendicular to the metal/dielectric interface: this component is not continuous through the interface and leads to an important polarization charge density at the metal surface. Since the incident field is an in-plane field, this perpendicular component, and the resulting charge density, is maximum along the equator and decreases at locations closer to the poles along the vertical direction. Field enhancement in case (ii) is due to the high refractive index of the substrate (Si$_3$N$_4$ membrane) used in these experiments. On the other hand, the near-field is almost null at the other pole of the particle. Based on this last analysis, a representation of a hybrid NP was considered (Fig. 4a), and a tilt experiment was performed to validate it.

After the second polymerization (under the same conditions described in Fig. 3giv and hiw), hybrid NPs were observed along several angles. TEM images for one NP are shown in Fig. 4bihi. To acquire an easier view of the results obtained from this experiment, the polymer sections are highlighted in blue (Fig. 4bihiihi). Below, for every angle, a representation of the hybrid NP is shown in Fig. 4bihiihiii and compared to the TEM images. The observation normal to the substrate plane (0°) shows the typical polymer layer around the NP (Fig. 4b). From this image, it is deduced that the polymer shell is present at the equator of the NP, but the electron absorption cross section of the metal being much higher than that of the polymer, it is not possible to confirm the presence of the polymer in other areas of the NP. When the particle is tilted, it is observed that the polymer thickness decreases on one side (top left in Fig. 4ciihi). The polymer layer disappears after a tilt angle of 30°. The 3D representation in Fig. 4a confirms the absence of polymer at the top (Fig. 4ciii, north pole). On the opposite side (bottom right), the polymer is still visible at 30°, which means that there is polymer below the particle. However, the polymer layer thickness decreases, indicating that the quantity of the polymer below the NP is less than at the equator. These results confirm that the polymer is not distributed homogeneously around the particle but follows the spatial distribution of the calculated electromagnetic field in 3D. From this observation, several conclusions can be made. We first confirm the photochemical nature of the polymerization. Indeed, thermal polymerization would result in a loss of spatial control, leading to a homogeneous polymer layer all over the NP. The second polymerization preserves the spatial distribution, which means that the spatial extent of the repolymerization is well controlled at the nanoscale. Remarkably, this result was obtained despite a small volume corresponding to a very limited number of photoinitiator molecules. Considering a homogeneous distribution of the photoinitiator within the photopolymer, we can indeed estimate an average concentration of one molecule of Ir(piq)$_2$(tmd) per 100 nm2, which corresponds roughly to 80 Ir complex molecules in a 2 nm-thick polymer shell. As a consequence, this basic calculation illustrates the small number of reactive functions within the polymer shell. However, we prove that polymerization can be reactivated, and this is also consistent with the relatively high irradiation conditions needed to obtain a significant repolymerization.

Effect of the shape of NPs on near-field photopolymerization

PhotoATRP can be applied to several nanoojeb topology different from the sphere. In practice, we used dimers, trimers and nanocubes and demonstrated that the ONF photopolymerization principle also applies to these objects. It should be stressed that such nanostructures permit a spatial symmetry breaking of the problem: despite the circular incident polarization, local field enhancement presenting azimuthal anisotropy can be achieved.

PhotoATRP was first applied to dimers. The results are shown in Fig. 5a. In the case of dimers, we expect a maximum enhanced field in the gap between both NPs [57]. Fig. 5aiii shows the polymer repartition around the dimer after the first polymerization. Polymer can be distinguished all around the dimer, with a thicker layer at the gap position, as expected. The increase in the polymer shell layer is the most important in the gap, in agreement with a higher field intensity in this region (Fig. 5aii). These observations confirm the photoinduced character of the repolymerization step.

FIGURE 4

(a) Schematic representation of an NP with the second photopolymer shell: the blue arrow represents the rotation axis, and the red arrow indicates the tilt direction: (i) TEM images of the same gold NP (two irradiations under standard conditions) after tilting by (b) 0°, (c) 10°, (d) 20°, (e) 30°, (f) 40°, (g) 50° and (h) 60°. The scale bar represents a length of 15 nm. (ii) TEM images, with the polymer highlighted in blue. (iii) Schematic representation of the tilted NP for the corresponding tilt angle.
The two polymerizations were performed with two different monomers but with similar structures and properties. Therefore, the second polymerization allowed for the modification of the thickness of the locally grafted polymer but with similar chemical properties. This is interesting, as it demonstrates that the extension was confined to the enhanced field area. Here, we show that other acrylate monomers with very different properties can be used.

HFBA monomer was employed as a substitute for TMPTA in the second polymerization. The objective here is to show that our process can be used to graft a hydrophobic monomer at the surface of the NP and thus change its surface property. Indeed, the contact angles with water of polymer films prepared with PETA, TMPTA or HFBA are quite different (Fig. S12). For the polymer prepared with PETA or TMPTA, the contact angle was found to be close to 55°, but it drastically increased to 106° when it was prepared with HFBA.

The objective here is to show that HFBA can be grafted in the second step. TEM images of NPs after the first irradiation at 7.2 mW/cm² at 90% of the threshold dose are shown in Fig. 5a and b (see Fig. S13 for more examples of the NPs studied). A thin polymer layer of poly-PETA was obtained, as described in the previous section. For the second polymerization, the irradiation conditions used were 35 mW/cm² for 600 s in the presence of HFBA (Fig. 5c and d). We observe a thicker polymer layer and conclude that repolymerization from the first polymer is possible with a fluorinated monomer (HFBA, Fig. 5e), as schematically depicted in Fig. 5f. A copolymer is created since the developed step performed after irradiation would easily remove the second polymer layer if no covalent bond was created. Interestingly, we noticed that the second polymerization was less efficient than that for TMPTA, as revealed by a thinner polymer layer. A possible reason may be the higher diffusion rate of the oxygen in the low-viscosity fluorinated monomer. Inhibition by oxygen may thus be more pronounced under these conditions [58].

Conclusions
We have demonstrated that PhotoATRP can be triggered by plasmon resonance excitation to generate multilayer covalent polymer parts with spatial control at the nanoscale. From a fundamental point of view this shows that PhotoATRP systems can be used with nanometer-scale spatial resolution. Despite the very limited number of photoactivable molecules embedded in the polymer shell, these species are accessible for further reaction and still reactive to graft a second layer. This route provides a new degree of freedom for the fine tuning of the geometry and surface chemistry of nanoobjects, with the unique feature to realize this in a nonisotropic way. It also shows that fine surface functionalization of metal nanostructures can be realized with very precise control over the spatial distribution of the functional material. The achievements described in this work thus represent a major milestone in the development of advanced functional hybrid nanoparticles.

Tuning the surface chemistry through the choice of the second monomer
Finally, we would like to show the great versatility of the process for tuning the surface chemistry of metal nanoobjects. Indeed, so far, the two polymerizations were performed with two different monomers but with similar structures and properties. Therefore, the second polymerization allowed for the modification of the thickness of the locally grafted polymer but with similar chemical properties. This is interesting, as it demonstrates that the extension was confined to the enhanced field area. Here, we show that other acrylate monomers with very different properties can be used.

HFBA monomer was employed as a substitute for TMPTA in the second polymerization. The objective here is to show that our process can be used to graft a hydrophobic monomer at the surface of the NP and thus change its surface property. Indeed, the contact angles with water of polymer films prepared with PETA, TMPTA or HFBA are quite different (Fig. S12). For the polymer prepared with PETA or TMPTA, the contact angle was found to be close to 55°, but it drastically increased to 106° when it was prepared with HFBA.

The objective here is to show that HFBA can be grafted in the second step. TEM images of NPs after the first irradiation at 7.2 mW/cm² at 90% of the threshold dose are shown in Fig. 5a and b (see Fig. S13 for more examples of the NPs studied). A thin polymer layer of poly-PETA was obtained, as described in the previous section. For the second polymerization, the irradiation conditions used were 35 mW/cm² for 600 s in the presence of HFBA (Fig. 5c and d). We observe a thicker polymer layer and conclude that repolymerization from the first polymer is possible with a fluorinated monomer (HFBA, Fig. 5e), as schematically depicted in Fig. 5f. A copolymer is created since the developed step performed after irradiation would easily remove the second polymer layer if no covalent bond was created. Interestingly, we noticed that the second polymerization was less efficient than that for TMPTA, as revealed by a thinner polymer layer. A possible reason may be the higher diffusion rate of the oxygen in the low-viscosity fluorinated monomer. Inhibition by oxygen may thus be more pronounced under these conditions [58].

Conclusions
We have demonstrated that PhotoATRP can be triggered by plasmon resonance excitation to generate multilayer covalent polymer parts with spatial control at the nanoscale. From a fundamental point of view this shows that PhotoATRP systems can be used with nanometer-scale spatial resolution. Despite the very limited number of photoactivable molecules embedded in the polymer shell, these species are accessible for further reaction and still reactive to graft a second layer. This route provides a new degree of freedom for the fine tuning of the geometry and surface chemistry of nanoobjects, with the unique feature to realize this in a nonisotropic way. It also shows that fine surface functionalization of metal nanostructures can be realized with very precise control over the spatial distribution of the functional material. The achievements described in this work thus represent a major milestone in the development of advanced functional hybrid nanoparticles.
Wajdi Heni: Investigation, Methodology. Siham Telitel: Investigation, Methodology. Dandan Ge: Resources, Software. Loïc Vidal: Resources. Frédéric Dumur: Resources, Writing - review & editing. Didier Gigmes: Writing - review & editing. Jacques Lalévé: Writing - review & editing. Sylvie Marguet: Resources, Writing - review & editing. Ludovic Douilard: Resources, Software, Writing - review & editing. Céline Fiorini-Debuischert: Writing - review & editing. Renaud Bachelot: Conceptualization, Writing - review & editing. Oliver Soppera: Conceptualization, Methodology, Visualization, Writing - original draft, Writing - review & editing, Supervision.

Acknowledgements

The authors gratefully thank the funding agency Agence Française pour la Recherche (ANR) for their financial support of this project under grants IMPACT: ANR2011BS08016, HAPPLE: ANR-12-BS10-016 and SAMIRE: ANR-13-NANO-0002.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical limitations.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mattod.2020.03.023.

References