S. H. Shahmoradian, A. J. Lewis, C. Genoud, J. Hench, T. E. Moors et al., Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes, Nat Neurosci, vol.22, pp.1099-109, 2019.

C. Trétiakoff, Contribution à l'étude de l'anatomie pathologique du locus niger de Soemmering avec quelques déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson, 1919.

F. Lewy, Paralysis agitans. I. Pathologische Anatomie, Handbuch der Neurologie, 3, pp.920-933, 1912.

B. Nuscher, F. Kamp, T. Mehnert, S. Odoy, C. Haass et al., Alpha-synuclein has a high affinity for packing defects in a bilayer membrane--a thermodynamics study, J Biol Chem, vol.279, pp.21966-75, 2004.

M. M. Ouberai, J. Wang, M. J. Swann, C. Galvagnion, T. Guilliams et al., alpha-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling, J Biol Chem, vol.288, pp.20883-95, 2013.

A. R. Braun, E. Sevcsik, P. Chin, E. Rhoades, S. Tristram-nagle et al., alpha-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes, J Am Chem Soc, vol.134, pp.2613-2633, 2012.

A. R. Braun, M. M. Lacy, V. C. Ducas, E. Rhoades, and J. N. Sachs, alpha-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry, J Am Chem Soc, vol.136, pp.9962-72, 2014.

N. Mizuno, J. Varkey, N. C. Kegulian, B. G. Hegde, N. Q. Cheng et al., Remodeling of lipid vesicles into cylindrical micelles by alpha-synuclein in an extended alpha-helical conformation, J Biol Chem, vol.287, pp.29301-29312, 2012.

I. M. Pranke, V. Morello, J. Bigay, K. Gibson, J. M. Verbavatz et al., alpha-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding, J Cell Biol, vol.194, pp.89-103, 2011.

J. Varkey, J. M. Isas, N. Mizuno, M. B. Jensen, V. K. Bhatia et al., Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins, J Biol Chem, vol.285, pp.32486-93, 2010.

J. Burre, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton et al., Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro, Science, vol.329, pp.1663-1670, 2010.

M. Huang, B. Wang, X. Li, C. Fu, C. Wang et al., ?-synuclein: a multifunctional player in exocytosis, endocytosis, and vesicle recycling, Front Neurosci, vol.13, p.28, 2019.

C. A. Ross and M. A. Poirier, Protein aggregation and neurodegenerative disease, Nat Med, vol.10, pp.10-17, 2014.

A. Yu, Y. Shibata, B. Shah, B. Calamini, D. C. Lo et al., Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition, Proc Natl Acad Sci, vol.111, pp.1481-90, 2014.

P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, L. Jr et al., NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded, Biochemistry, vol.35, pp.13709-13724, 1996.

V. N. Uversky, A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders, J Biomol Struct Dyn, vol.21, pp.211-245, 2003.

R. Melki,

A. R. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W. H. Freeman ISBN, p.9780716732686, 1999.

F. Oosawa, A. S. In, B. Horecker, N. O. Kaplan, J. Matmur et al., Thermodynamics of the Polymerization of Protein, 1975.

G. G. Tartaglia, S. Pechmann, C. M. Dobson, and M. Vendruscolo, Life on the edge: a link between gene expression levels and aggregation rates of human proteins, Trends Biochem Sci, vol.32, pp.204-210, 2007.

R. I. Morimoto, The heat shock response: systems biology of proteotoxic stress in aging and disease, Cold Spring Harb Symp Quant Biol, vol.76, pp.91-100, 2011.

M. Brehme, C. Voisine, T. Rolland, S. Wachi, J. H. Soper et al., A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease, Cell Rep, vol.9, pp.1135-50, 2014.

S. B. Prusiner, Cell biology. A unifying role for prions in neurodegenerative diseases, Science, vol.336, pp.1511-1514, 2012.

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat Rev Mol Cell Biol, vol.11, pp.301-308, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183206

M. Jucker and L. C. Walker, Self-propagation of pathogenic protein aggregates in neurodegenerative diseases, Nature, vol.501, pp.45-51, 2013.

H. Braak, D. Tredici, K. Rüb, U. De-vos, R. A. et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

H. Braak, U. Rub, W. P. Gai, D. Tredici, and K. , Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, J Neural Transm, vol.110, pp.517-553, 2003.

H. Braak, D. Tredici, and K. , Neuroanatomy and pathology of sporadic Parkinson's disease, Adv Anat Embryol Cell Biol, vol.201, pp.1-119, 2009.

D. Tredici, K. Braak, and H. , Spinal cord lesions in sporadic Parkinson's disease, Acta Neuropathol, vol.124, pp.643-64, 2012.

J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease, Nat Med, vol.14, pp.504-510, 2008.

J. Y. Li, E. Englund, J. L. Holton, D. Soulet, P. Hagell et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation, Nat Med, vol.14, pp.501-504, 2008.

A. L. Mougenot, S. Nicot, A. Bencsik, E. Morignat, J. Verchere et al., Prion-like acceleration of a-synucleinopathy in a transgenic mouse model, Neurobiol Aging, vol.33, pp.2225-2233, 2012.

K. C. Luk, V. Kehm, J. Carroll, B. Zhang, P. O'brien et al., Pathological a-synuclein transmission initiates Parkinson-like neurodegeneration in non transgenic mice, Science, vol.338, pp.949-53, 2012.

K. C. Luk, V. M. Kehm, B. Zhang, P. O'brien, J. Q. Trojanowski et al., Intracerebral inoculation of pathological a-synuclein initiates a rapidly progressive neurodegenerative a-synucleinopathy in mice, J Exp Med, vol.209, pp.975-86, 2012.

A. Recasens, B. Dehay, J. Bove, I. Carballo-carbajal, S. Dovero et al., Lewy body extracts from Parkinson disease brains trigger a-synuclein pathology and neurodegeneration in mice and monkeys, Ann Neurol, vol.75, pp.351-62, 2014.

J. C. Watts, K. Giles, A. Oehler, L. Middleton, D. T. Dexter et al., Transmission of multiple system atrophy prions to transgenic mice, Proc Natl Acad Sci U S A, vol.110, pp.19555-60, 2013.

S. B. Prusiner, A. L. Woerman, D. A. Mordes, J. C. Watts, R. Rampersaud et al., Evidence for a-synuclein prions causing multiple system atrophy in humans with Parkinsonism, Proc Natl Acad Sci U S A, vol.112, pp.5308-5325, 2015.

A. Shimozawa, M. Ono, D. Takahara, A. Tarutani, S. Imura et al., Propagation of pathological a-synuclein in marmoset brain, Acta Neuropathol Commun, vol.5, p.12, 2017.

M. Masuda-suzukake, T. Nonaka, M. Hosokawa, T. Oikawa, T. Arai et al., Prion-like spreading of pathological alphasynuclein in brain, Brain, vol.136, pp.1128-1166, 2013.

P. Desplats, H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein, Proc Natl Acad Sci U S A, vol.106, pp.13010-13015, 2009.

O. M. El-agnaf, R. Jakes, M. D. Curran, D. Middleton, R. Ingenito et al., Aggregates from mutant and wild-type a-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of b-sheet and amyloid-like filaments, FEBS Lett, vol.440, pp.71-76, 1998.

L. Bousset, L. Pieri, G. Ruiz-arlandis, J. Gath, P. H. Jensen et al., Structural and functional characterization of two alpha-synuclein strains, Nat Commun, vol.4, p.2575, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183047

C. Hansen, E. Angot, A. L. Bergstrom, J. A. Steiner, L. Pieri et al., a-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, J Clin Invest, vol.121, pp.715-740, 2011.

K. M. Danzer, S. K. Krebs, M. Wolff, G. Birk, and B. Hengerer, Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alphasynuclein pathology, J Neurochem, vol.111, pp.192-203, 2009.

K. C. Luk, C. Song, P. O'brien, A. Stieber, J. R. Branch et al., Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells, Proc Natl Acad Sci U S A, vol.106, pp.20051-20057, 2009.

L. A. Volpicelli-daley, K. C. Luk, T. P. Patel, S. A. Tanik, D. M. Riddle et al., Exogenous a-synuclein fibrils induce Lewy Body pathology leading to synaptic dysfunction and neuron death, Neuron, vol.72, pp.57-71, 2011.

N. L. Rey, J. A. Steiner, N. Maroof, K. C. Luk, Z. Madaj et al., Widespread transneuronal propagation of a-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease, J Exp Med, vol.213, pp.1759-78, 2016.

N. L. Rey, G. H. Petit, L. Bousset, R. Melki, and P. Brundin, Transfer of human a-synuclein from the olfactory bulb to interconnected brain regions in mice, Acta Neuropathol, vol.126, pp.555-73, 2013.

W. Peelaerts, L. Bousset, A. Van-der-perren, A. Moskalyuk, R. Pulizzi et al., a-Synuclein strains cause distinct synucleinopathies after local and systemic administration, Nature, vol.522, pp.340-344, 2015.

S. Holmqvist, O. Chutna, L. Bousset, P. Aldrin-kirk, W. Li et al., Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats, Acta Neuropathol, vol.128, pp.805-825, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155404

A. N. Sacino, M. Brooks, M. A. Thomas, A. B. Mckinney, S. Lee et al., Intramuscular injection of a-synuclein induces CNS a-synuclein pathology and a rapid-onset motor phenotype in transgenic mice, Proc Natl Acad Sci U S A, vol.111, pp.10732-10739, 2014.

A. Fenyi, L. Leclair-visonneau, T. Clairembault, E. Coron, M. Neunlist et al., Detection of alpha-synuclein aggregates in gastrointestinal biopsies by protein misfolding cyclic amplification, Neurobiol Dis, vol.129, pp.38-43, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02279266

J. H. Kordower, H. B. Dodiya, A. M. Kordower, B. Terpstra, K. Paumier et al., Transfer of host derived alpha synuclein to grafted dopaminergic neurons in rat, Neurobiol Dis, vol.43, pp.552-559, 2011.

E. Angot, J. A. Steiner, L. Tome, C. M. Ekstrom, P. Mattsson et al., Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo, PLoS One, vol.7, p.39465, 2012.

S. Haïk and J. P. Brandel, Biochemical and strain properties of CJD prions: complexity versus simplicity, J Neurochem, vol.119, pp.251-61, 2011.

A. N. Shrivastava, V. Redeker, N. Fritz, L. Pieri, L. G. Almeida et al., a-synuclein assemblies sequester neuronal ?3-Na+/K+-ATPase and impair Na+ gradient, EMBO J, vol.34, pp.2408-2431, 2015.

X. Mao, M. T. Ou, S. S. Karuppagounder, T. I. Kam, X. Yin et al., Pathological ?-synuclein transmission initiated by binding lymphocyte-activation gene 3, Science, vol.353, p.6307, 2016.

S. Bellani, A. Mescola, G. Ronzitti, H. Tsushima, S. Tilve et al., GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein, Cell Death Differ, vol.21, pp.1971-83, 2014.

A. N. Shrivastava, A. Aperia, R. Melki, and A. Triller, Physico-pathologic mechanisms involved in neurodegeneration: misfolded proteinplasma membrane interactions, Neuron, vol.95, pp.33-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571234

H. J. Lee, J. E. Suk, E. J. Bae, J. H. Lee, S. R. Paik et al., Assembly dependent endocytosis and clearance of extracellular alphasynuclein, Int J Biochem Cell Biol, vol.40, pp.1835-1884, 2008.

D. Freeman, R. Cedillos, S. Choyke, Z. Lukic, K. Mcguire et al., Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis, PLoS One, vol.8, p.62143, 2013.

W. P. Flavin, L. Bousset, Z. C. Green, Y. Chu, S. Skarpathiotis et al., Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins, Acta Neuropathol, vol.134, issue.4, pp.629-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571238

W. E. Balch, R. I. Morimoto, A. Dillin, and J. W. Kelly, Adapting proteostasis for disease intervention, Science, vol.319, pp.916-925, 2008.

S. Wolff, J. S. Weissman, and A. Dillin, Differential scales of protein quality control, Cell, vol.157, pp.52-64, 2014.

V. Lindstrom, G. Gustafsson, L. H. Sanders, E. H. Howlett, J. Sigvardson et al., Extensive uptake of alpha-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage, Mol Cell Neurosci, vol.82, pp.143-56, 2017.

K. Nakamura, V. M. Nemani, F. Azarbal, G. Skibinski, J. M. Levy et al., Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein, J Biol Chem, vol.286, pp.20710-20736, 2011.

A. D. Gitler, B. J. Bevis, J. Shorter, K. E. Strathearn, S. Hamamichi et al., The Parkinson's disease protein alphasynuclein disrupts cellular Rab homeostasis, Proc Natl Acad Sci U S A, vol.105, pp.145-50, 2008.

F. Kamp, N. Exner, A. K. Lutz, N. Wender, J. Hegermann et al., Inhibition of mitochondrial fusion by alphasynuclein is rescued by PINK1, Parkin and DJ-1, EMBO J, vol.29, pp.3571-89, 2010.

N. Braidy, W. P. Gai, Y. H. Xu, P. Sachdev, G. J. Guillemin et al., Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts, Transl Neurodegener, vol.2, p.20, 2013.

A. A. Cooper, A. D. Gitler, A. Cashikar, C. M. Haynes, K. J. Hill et al., Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models, Science, vol.313, pp.324-332, 2006.

S. Moussaud, D. R. Jones, E. L. Moussaud-lamodière, M. Delenclos, O. A. Ross et al., Alpha-synuclein and tau: teammates in neurodegeneration?, Mol Neurodegener, vol.9, p.43, 2014.

W. R. Galpern and A. E. Lang, Interface between tauopathies and synucleinopathies: a tale of two proteins, Ann Neurol, vol.59, pp.449-58, 2006.

P. R. Angelova and A. Y. Abramov, Alpha-synuclein and beta-amyloid -different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration, Biochem Biophys Res Commun, vol.483, pp.1110-1115, 2017.

R. Melki, How the shape of seeds can influence pathology, Neurobiol Dis, vol.109, pp.201-209, 2018.

A. N. Shrivastava, V. Redeker, L. Pieri, L. Bousset, M. Renner et al., Clustering of Tau fibrils impairs the synaptic composition of ?3-Na + /K + -ATPase and AMPA receptors, EMBO J, vol.38, 2019.

A. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-90, 2017.

B. Falcon, W. Zhang, A. G. Murzin, G. Murshudov, H. J. Garringer et al., Structures of filaments from Pick's disease reveal a novel tau protein fold, Nature, vol.561, pp.137-177, 2018.

B. Falcon, W. Zhang, M. Schweighauser, A. G. Murzin, R. Vidal et al., Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold, Acta Neuropathol, vol.136, pp.699-708, 2018.

B. A. Killinger, R. Melki, P. Brundin, and J. H. Kordower, Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room, NPJ Parkinsons Dis, vol.5, p.23, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02367549

A. N. Shrivastava, V. Redeker, L. Pieri, L. Bousset, M. Renner et al., Clustering of Tau fibrils impairs the synaptic composition of ?3-Na + /K + -ATPase and AMPA receptors, EMBO J, vol.38, p.99871, 2019.

A. N. Shrivastava, A. Triller, and R. Melki, Cell biology and dynamics of Neuronal Na+/K+-ATPase in health and diseases, Neuropharmacology, vol.11, p.107461, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02279814

A. N. Shrivastava, A. Aperia, R. Melki, and A. Triller, Physico-pathologic mechanisms involved in neurodegeneration: misfolded protein-plasma membrane interactions, Neuron, vol.95, pp.33-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571234

A. N. Shrivastava, V. Redeker, N. Fritz, L. Pieri, L. G. Almeida et al., ?-synuclein assemblies sequester neuronal ?3-Na+/K + -ATPase and impair Na+ gradient, EMBO J, vol.34, pp.2408-2431, 2015.

M. ?-garten, C. Prévost, C. Cadart, R. Gautier, L. Bousset et al., Nous ne nous sommes pas encore intéressés au cytosquelette, objet de mon travail de thèse, mais je n'exclue pas de le faire, à la suite de vos remarques judicieuses, d'une part, par ma conviction que le cytosquelette joue un rôle essentiel à la fois dans la signalisation pathologique initiée par les agrégats des protéines alpha-synucleine, Phys Chem Chem Phys, vol.17, pp.15589-97, 2015.

, Déclaration de liens d'intérêts L'auteur déclare ne pas avoir de liens d'intérêts

R. Melki-institut-de-biologie-françois-jacob, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) et Laboratoire des maladies neurodégénératives, Centre national de la recherche scientifique (CNRS), MIRCen), vol.18, p.92265

I. Disponible-sur, , vol.16