J. Labbadia and R. I. Morimoto, The biology of proteostasis in aging and disease, Annual review of biochemistry, vol.84, pp.435-464, 2015.

F. Chiti and C. M. Dobson, Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade, Annual review of biochemistry, vol.86, pp.27-68, 2017.

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nature reviews. Molecular cell biology, vol.11, pp.301-307, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183206

M. G. Spillantini and M. Goedert, Tau pathology and neurodegeneration, Lancet Neurol, vol.12, pp.609-622, 2013.

M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, pp.519-526, 1989.

E. M. Mandelkow and E. Mandelkow, Biochemistry and cell biology of tau protein in neurofibrillary degeneration, Cold Spring Harb Perspect Med, vol.2, p.6247, 2012.

J. Biernat, N. Gustke, G. Drewes, E. M. Mandelkow, and E. Mandelkow, Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding, Neuron, vol.11, pp.153-163, 1993.

C. Ballatore, V. M. Lee, and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nat Rev Neurosci, vol.8, pp.663-672, 2007.

T. Katsinelos, M. Zeitler, E. Dimou, A. Karakatsani, H. M. Muller et al., Unconventional Secretion Mediates the Trans-cellular Spreading of Tau. Cell reports, vol.23, pp.2039-2055, 2018.

A. Wentink, C. Nussbaum-krammer, and B. Bukau, Modulation of Amyloid States by Molecular Chaperones, Cold Spring Harb Perspect Biol, vol.11, 2019.

C. L. Klaips, G. G. Jayaraj, and F. U. Hartl, Pathways of cellular proteostasis in aging and disease, The Journal of cell biology, vol.217, pp.51-63, 2018.

H. Saibil, Chaperone machines for protein folding, unfolding and disaggregation, Nature reviews. Molecular cell biology, vol.14, pp.630-642, 2013.

H. H. Kampinga and E. A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nature reviews. Molecular cell biology, vol.11, pp.579-592, 2010.

D. Balchin, M. Hayer-hartl, and F. U. Hartl, In vivo aspects of protein folding and quality control, Science, vol.353, p.4354, 2016.

R. Rosenzweig, N. B. Nillegoda, M. P. Mayer, and B. Bukau, The Hsp70 chaperone network, Nature Reviews Molecular Cell Biology, vol.20, pp.665-680, 2019.

J. F. Abisambra, L. J. Blair, S. E. Hill, J. R. Jones, C. Kraft et al., Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal plasticity deficits in tau transgenic mice, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, pp.15374-15382, 2010.

S. A. Mok, C. Condello, R. Freilich, A. Gillies, T. Arhar et al., Mapping interactions with the chaperone network reveals factors that protect against tau aggregation, Nat Struct Mol Biol, vol.25, pp.384-393, 2018.

K. R. Patterson, S. M. Ward, B. Combs, K. Voss, N. M. Kanaan et al., Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport, Biochemistry, vol.50, pp.10300-10310, 2011.

K. Voss, B. Combs, K. R. Patterson, L. I. Binder, and T. C. Gamblin, Hsp70 alters tau function and aggregation in an isoform specific manner, Biochemistry, vol.51, pp.888-898, 2012.

A. Bracher and J. Verghese, The nucleotide exchange factors of Hsp70 molecular chaperones, Front Mol Biosci, vol.2, 2015.

X. Gao, M. Carroni, C. Nussbaum-krammer, A. Mogk, N. B. Nillegoda et al., Human Hsp70 Disaggregase Reverses Parkinson's-Linked alpha-Synuclein Amyloid Fibrils, Molecular cell, vol.59, pp.781-793, 2015.

Y. Fichou, Y. K. Al-hilaly, F. Devred, C. Smet-nocca, P. O. Tsvetkov et al., The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?, Acta Neuropathol Commun, vol.7, p.31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055894

W. A. Mcewan, B. Falcon, M. Vaysburd, D. Clift, A. L. Oblak et al., Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation, Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.574-579, 2017.

J. L. Guo, S. Narasimhan, L. Changolkar, Z. He, A. Stieber et al., Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice, The Journal of experimental medicine, vol.213, pp.2635-2654, 2016.

M. Brehme, C. Voisine, T. Rolland, S. Wachi, J. H. Soper et al., A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease, Cell reports, vol.9, pp.1135-1150, 2014.

A. J. Baldwin, T. P. Knowles, G. G. Tartaglia, A. W. Fitzpatrick, G. L. Devlin et al., Metastability of native proteins and the phenomenon of amyloid formation, J Am Chem Soc, vol.133, pp.14160-14163, 2011.

A. Scior, A. Buntru, K. Arnsburg, A. Ast, M. Iburg et al., Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex, The EMBO journal, vol.37, pp.282-299, 2018.

A. C. Mckee, R. A. Stern, C. J. Nowinski, T. D. Stein, V. E. Alvarez et al., The spectrum of disease in chronic traumatic encephalopathy, Brain, vol.136, pp.43-64, 2013.

T. R. Jahn, O. S. Makin, K. L. Morris, K. E. Marshall, P. Tian et al., The common architecture of cross-beta amyloid, Journal of molecular biology, vol.395, pp.717-727, 2010.

R. Tycko, Amyloid polymorphism: structural basis and neurobiological relevance, Neuron, vol.86, pp.632-645, 2015.

T. P. Knowles, M. Vendruscolo, and C. M. Dobson, The amyloid state and its association with protein misfolding diseases, Nature reviews. Molecular cell biology, vol.15, pp.384-396, 2014.

R. Melki, How the shapes of seeds can influence pathology, Neurobiol Dis, vol.109, pp.201-208, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01571236

W. Zhang, B. Falcon, A. G. Murzin, J. Fan, R. A. Crowther et al., Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases, 2019.

M. Sarkar, J. Kuret, and G. Lee, Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone, Journal of neuroscience research, vol.86, pp.2763-2773, 2008.

A. W. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-190, 2017.

W. Zhang, A. Tarutani, K. L. Newell, A. G. Murzin, T. Matsubara et al., Novel tau filament fold in corticobasal degeneration, Nature, vol.37, 2020.

T. Arakhamia, C. E. Lee, Y. Carlomagno, D. M. Duong, S. R. Kundinger et al., Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains, Cell, vol.180, pp.633-644, 2020.

A. I. Sulatskaya, I. M. Kuznetsova, and K. K. Turoverov, Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye, J Phys Chem B, vol.115, pp.11519-11524, 2011.

A. I. Sulatskaya, N. P. Rodina, M. I. Sulatsky, O. I. Povarova, I. A. Antifeeva et al., Investigation of alpha-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T, International journal of molecular sciences, p.19, 2018.

H. Mirbaha, D. Chen, O. A. Morazova, K. M. Ruff, A. M. Sharma et al., Inert and seedcompetent tau monomers suggest structural origins of aggregation, Annu Rev Neurosci, vol.40, pp.189-210, 2017.

J. Tittelmeier, C. A. Sandhof, H. M. Ries, S. Druffel-augustin, A. Mogk et al., The HSP110/HSP70 disaggregation system generates spreadingcompetent toxic ?-synuclein species, The EMBO journal, p.103954, 2020.

J. D. Baker, L. B. Shelton, D. Zheng, F. Favretto, B. A. Nordhues et al., Human cyclophilin 40 unravels neurotoxic amyloids, PLoS biology, vol.15, p.2001336, 2017.

R. Cliffe, J. C. Sang, F. Kundel, D. Finley, D. Klenerman et al., Filamentous Aggregates Are Fragmented by the Proteasome Holoenzyme, Cell reports, vol.26, pp.2140-2149, 2019.

N. C. Berchtold, D. H. Cribbs, P. D. Coleman, J. Rogers, E. Head et al., Gene expression changes in the course of normal brain aging are sexually dimorphic, Proceedings of the National Academy of Sciences of the United States of America 105, pp.15605-15610, 2008.

P. M. Loerch, T. Lu, K. A. Dakin, J. M. Vann, A. Isaacs et al., Evolution of the aging brain transcriptome and synaptic regulation, PloS one, vol.3, p.3329, 2008.

W. S. Liang, E. M. Reiman, J. Valla, T. Dunckley, T. G. Beach et al., Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.4441-4446, 2008.

A. Hodges, A. D. Strand, A. K. Aragaki, A. Kuhn, T. Sengstag et al., Regional and cellular gene expression changes in human Huntington's disease brain, Human molecular genetics, vol.15, pp.965-977, 2006.

L. B. Moran, D. C. Duke, M. Deprez, D. T. Dexter, R. K. Pearce et al., Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease, Neurogenetics, vol.7, pp.1-11, 2006.

M. Tardivel, S. Begard, L. Bousset, S. Dujardin, A. Coens et al., Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies, Acta Neuropathol Commun, vol.4, p.117, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01391925

Z. Li, F. U. Hartl, and A. Bracher, Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle, Nat Struct Mol Biol, vol.20, pp.929-935, 2013.

T. K. Barthel, J. Zhang, and G. C. Walker, ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release, J Bacteriol, vol.183, pp.5482-5490, 2001.

H. Rampelt, J. Kirstein-miles, N. B. Nillegoda, K. Chi, S. R. Scholz et al., Metazoan Hsp70 machines use Hsp110 to power protein disaggregation, The EMBO journal, vol.31, pp.4221-4235, 2012.

C. Andreasson, J. Fiaux, H. Rampelt, M. P. Mayer, and B. Bukau, The ORFeome Collaboration: a genome-scale human ORF-clone resource, The Journal of biological chemistry, vol.283, pp.191-192, 2008.

C. T. Ho, T. Grousl, O. Shatz, A. Jawed, C. Ruger-herreros et al., Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis, Nature communications, vol.10, p.4851, 2019.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

, Quantification of cells containing TauP301S-Venus foci. n = 3 replicates with 288 -460 cells per condition in each replicate, mean ± SD. Statistical analysis was performed using a one-way ANOVA with Bonferroni's multiple comparison test, p.1