M. Tourasse, M. Boidron, and B. Pasquet, Fission product behaviour in phenix fuel pins at high burnup, J. Nucl. Mater, vol.188, p.49, 1992.

M. Inoue, K. Maeda, K. Katsuyama, K. Tanaka, K. Mondo et al., Fuel-to-cladding gap evolution and its impact on thermal performance of high burnup fast reactor type uranium-plutonium oxide fuel pins, J. Nucl. Mater, vol.326, p.59, 2004.

K. Maeda, 16 -ceramic fuel-cladding interaction, Compr. Nucl. Mater, vol.3, p.443, 2012.

, Atomic Energy Agency, Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies-Operational Behaviour, number NF-T-4.3 in Nuclear Energy Series, 2012.

Y. Guerin, Fuel performance of fast spectrum oxide fuel, Comprehensive Nuclear Materials, pp.547-578, 2012.

M. Lainet, B. Michel, J. Dumas, M. Pelletier, and I. Ramière, Germinal, a fuel performance code of the pleiades platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater, vol.516, p.30, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02339742

V. Marelle, Validation of PLEIADES/ALCYONE 2.0 fuel performance code, Water Reactor Fuel Performance Meeting, 2017.

J. Melis, J. Piron, and L. Roche, Fuel modeling at high burn-up: recent development of the germinal code, J. Nucl. Mater, vol.204, p.188, 1993.

B. Baurens, J. Sercombe, C. Riglet-martial, L. Desgranges, L. Trotignon et al., 3D thermo-chemical-mechanical simulation of power ramps with alcyone fuel code, J. Nucl. Mater, vol.452, p.578, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02509262

P. Konarski, J. Sercombe, C. Riglet-martial, L. Noirot, I. Zacharie-aubrun et al., 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion, J. Nucl. Mater, vol.519, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02405439

S. Simunovic, J. W. Mcmurray, T. M. Besmann, E. Moore, and M. H. Piro, Coupled Mass and Heat Transport Models for Nuclear Fuels using Thermodynamic Calculations, 2018.

M. Piro, S. Simunovic, T. Besmann, B. Lewis, and W. Thompson, The thermochemistry library thermochimica, Comput. Mater. Sci, vol.67, p.266, 2013.

R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston et al., Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater, vol.423, p.149, 2012.

T. Uwaba, J. Nemoto, I. Ishitani, and M. Ito, Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior, Nucl. Eng. Des, vol.331, p.186, 2018.

M. Ishida, Proceedings of the fall meeting of the atomic energy society of Japan, p.77, 1987.

Y. Saito, Proceedings of the fall meeting of the atomic energy society of Japan, p.14, 1988.

T. Uwaba, T. Mizuno, J. Nemoto, I. Ishitani, and M. Ito, Development of a mixed oxide fuel pin performance analysis code "CEDAR": Models and analyses of fuel pin irradiation behavior, Nucl. Eng. Des, vol.280, p.27, 2014.

P. Spencer, A brief history of CALPHAD, vol.32, p.1, 2008.

U. R. Kattner, The Calphad method and its role in material and process development, Tecnol. Metal. Mater. Min, vol.13, p.3, 2016.

P. Garcia, J. P. Piron, and D. Baron, A model for the oxygen potential of oxide fuels at high burnup, International Atomic Energy Agency (IAEA, p.28068403, 1997.

B. Sundman, U. R. Kattner, M. Palumbo, and S. G. Fries, Opencalphad -a free thermodynamic software, Integr. Mater. Manuf. Innov, vol.4, p.1, 2015.

B. Sundman, X. Lu, and H. Ohtani, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Comput. Mater. Sci, vol.101, p.127, 2015.

T. Besmann, SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems (Oak Ridge National Lab, 1977.

G. Eriksson, Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium composition in multiphase systems, Chem. Scr, vol.8, p.100, 1975.

C. Weber, Convergence of the equilibrium code solgasmix, J. Comput. Phys, vol.145, p.655, 1998.

. Taf-id-homepage, , 2019.

C. Guéneau, S. Gossé, A. Quaini, N. Dupin, B. Sundman et al., Advanced computational tools to perform thermodynamic calcu-lations on nuclear fuel materials, Proceedings of the 7th European Review Meeting on Severe Accident Research, 2015.

M. Hillert, The compound energy formalism, J. Alloys Compd, vol.320, p.161, 2001.

C. Guéneau, N. Dupin, B. Sundman, C. Martial, and J. ,

S. Dumas, S. Gossé, F. D. Chatain, D. Bruycker, R. J. Manara et al., Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, J. Nucl. Mater, vol.419, p.145, 2011.

M. Hillert, B. Jansson, B. Sundman, and J. Ågren, A twosublattice model for molten solutions with different tendency for ionization, Metall. Trans. A, vol.16, p.261, 1985.

B. Sundman, Modification of the two-sublattice model for liquids, Calphad, vol.15, p.109, 1991.

H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater, vol.131, p.221, 1985.

J. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo?Calc & DICTRA, computational tools for materials science, Calphad, vol.26, p.273, 2002.

T. Besmann, J. Mcmurray, B. Gaston, S. Simunovic, and M. Piro, Modeling thermochemistry of fuel and coupling to fuel performance codes, Proceedings of Top Fuel, 2016.

E. H. Cordfunke and R. J. Konings, Thermochemical data for reactor materials and fission products: The ECN database, J. Phase Equilib, vol.14, p.457, 1993.

R. Schram, R. Konings, and W. Rijnsburger, , 2002.

E. Cordfunke and R. Konings, Thermochemical Data for Reactor Materials and Fission Products, 1990.

T. B. Lindemer and T. M. Besmann, Chemical thermodynamic representation of UO2±x, J. Nucl. Mater, vol.130, p.473, 1985.

T. M. Besmann and T. B. Lindemer, Chemical thermodynamic representation of PuO2?x and U1?zPuzOw, J. Nucl. Mater, vol.130, p.489, 1985.

T. B. Lindemer and J. Brynestad, Review and chemical thermodynamic representation of U1?z CezO2±x and U1?z LnzO2±x

=. Ln, . La, . Nd, and J. Gd, Am. Ceram. Soc, vol.69, p.867, 1986.

G. Rimpault, The ERANOS code and data system for fast reactor neutronic analyses, Proceedings of the PHYSOR2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High Performance Computing, 2002.

A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson et al., The JEFF-3.1 Nuclear Data Library, vol.21, 2006.

P. Verpeaux, T. Charras, and A. Millard, CASTEM 2000: une approche moderne du calcul des structures, p.261, 1988.

V. Bouineau, M. Lainet, N. Chauvin, M. Pelletier, V. D. Marcello et al., Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

L. Park, , p.2013

B. Lewis, W. Thompson, and F. , Iglesias, Fission Product Chemistry in Oxide Fuels, Comprehensive Nuclear Materials, pp.515-546, 2012.

J. Adams and M. Carboneau, National low-level waste management program radionuclide report series, vol.2, p.94, 1995.

T. B. Massalski, Binary alloy phase diagrams, 1990.

C. Guéneau, A. Chartier, and L. V. Brutzel, Thermodynamic and thermophysical properties of the actinide oxides, Comprehensive Nuclear Materials, pp.21-59, 2012.

K. Naito, T. Tsuji, T. Matsui, and A. Date, Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel, J. Nucl. Mater, vol.154, p.3, 1988.

K. Bagnall and . Selenium, The Chemistry of Sulphur, Selenium, Tellurium and Polonium, Pergamon Texts in Inorganic Chemistry, pp.935-1008, 1973.

J. Mcfarlane and J. C. Leblanc, Fission-product tellurium and cesium telluride chemistry revisited, p.29054591, 1996.

E. Aitken, Thermal diffusion in closed oxide fuel systems, J. Nucl. Mater, vol.30, p.62, 1969.

A. Karahan and J. Buongiorno, Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors, J. Nucl. Mater, vol.396, p.272, 2010.

J. Rouault, P. Chellapandi, B. Raj, P. Dufour, C. Latge et al.,

M. Fiorini, D. Pelletier, S. Gosset, G. Bourganel, F. Mignot et al.,

D. Queval, N. Broc, and . Devictor, Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety, pp.2321-2710, 2010.

T. Ishii and T. Mizuno, Thermal conductivity of cesium molybdate Cs2MoO4, J. Nucl. Mater, vol.231, p.242, 1996.

T. Ishii and T. Mizuno, An investigation of the thermal conductivity of Cs2MoO4, J. Nucl. Mater, vol.247, p.82, 1997.

M. Takano, K. Minato, K. Fukuda, S. Sato, and H. Ohashi, Thermal expansion and thermal conductivity of cesium uranates, J. Nucl. Sci. Technol, vol.35, p.485, 1998.

I. Schewe-miller and P. Böttcher, Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te, vol.196, p.137, 1991.

T. B. Rymer and P. G. Hambling, The lattice constant of caesium iodide, Acta Crystallograph, vol.4, p.565, 1951.

F. X. Kools, A. S. Koster, and G. D. Rieck, The structures of potassium, rubidium and caesium molybdate and tungstate, Acta Crystallograph. Sect. B, vol.26, p.1974, 1970.

A. Reis, H. Hoekstra, E. Gebert, and S. Peterson, Redetermination of the crystal structure of barium uranate, J. Inorg. Nucl. Chem, vol.38, p.1481, 1976.

C. Sari and G. Schumacher, Oxygen redistribution in fast reactor oxide fuel, J. Nucl. Mater, vol.61, p.192, 1976.

C. Shuang-lin, C. Kuo-chih, and Y. Chang, On a new strategy for phase diagram calculation 1. Basic principles, Calphad, vol.17, p.237, 1993.

C. Shuang-lin, C. Kuo-chih, and Y. Chang, On a new strategy for phase diagram calculation 2. Binary systems, Calphad, vol.17, p.287, 1993.

L. Noirot, Margaret: A comprehensive code for the description of fission gas behavior, Nucl. Eng. Des, vol.241, p.2099, 2011.