. Sci, , vol.17, pp.761-781

J. P. Minella, G. H. Merten, J. M. Reichert, D. R. Santos, and . Dos, Identificação e implicações para a 596 conservação do solo das fontes de sedimentos em bacias hidrográficas, Rev. Bras. Ciência do Solo, vol.597, pp.1637-1646, 2007.

J. P. Minella, D. E. Walling, and G. H. Merten, Combining sediment source tracing techniques with 599 traditional monitoring to assess the impact of improved land management on catchment sediment 600 yields, J. Hydrol, vol.348, pp.546-563, 2008.

J. A. Motha, P. J. Wallbrink, P. B. Hairsine, and R. B. Grayson, Unsealed roads as suspended sediment 602 sources in an agricultural catchment in south-eastern Australia, J. Hydrol, vol.286, pp.1-18, 2004.

J. A. Motha, P. J. Wallbrink, P. B. Hairsine, and R. B. Grayson, Determining the sources of suspended 605 sediment in a forested catchment in southeastern Australia, Water Resour. Res, vol.39, 2003.

R. Mukundan, D. E. Radcliffe, J. C. Ritchie, L. M. Risse, and R. A. Mckinley, Sediment Fingerprinting to 608 Determine the Source of Suspended Sediment in a Southern Piedmont Stream, J. Environ. Qual, vol.609, p.1328, 2010.

J. Murphy and J. P. Riley, A modified single solution method for the determination of phosphate in 611 natural waters, Anal. Chim. Acta, vol.27, pp.31-36, 1962.

K. Nosrati, G. Govers, H. Ahmadii, F. Sharifi, M. A. Amoozegar et al., An 613 exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? 614, Int. J. Sediment Res, vol.26, issue.11, pp.60082-60088, 2011.

K. Nosrati, G. Govers, B. X. Semmens, and E. J. Ward, A mixing model to incorporate uncertainty in 616 sediment fingerprinting, Geoderma, vol.217, pp.173-180, 2014.

S. R. Olsen, L. E. Sommers, A. L. Page, and R. H. Miller, Phosphorus Methods of Soil Analysis, p.618, 1982.

, Chemical and Microbiological Properties, p.619

. Madison, , pp.403-430

M. L. Ostrofsky, Determination of total phosphorus in lake sediments, Hydrobiologia, vol.696, p.203, 2012.

P. N. Owens, D. E. Walling, and G. J. Leeks, Use of floodplain sediment cores to investigate recent historical 623 changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, p.624

U. K. Yorkshire and . Catena, , vol.36, pp.21-47

P. N. Owens and D. E. Walling, The phosphorus content of fluvial sediment in rural and industrialized 626 river basins, Water Res, vol.36, pp.685-701, 2002.

P. N. Owens and Z. Xu, Recent advances and future directions in soils and sediments research, J. Soils, vol.628, pp.875-888, 2011.

L. Palazón, B. Latorre, L. Gaspar, W. H. Blake, H. G. Smith et al., Combining catchment 630 modelling and sediment fingerprinting to assess sediment dynamics in a Spanish Pyrenean river 631 system, Sci. Total Environ, pp.1136-1148, 2016.

L. Palazón, B. Latorre, L. Gaspar, W. H. Blake, H. G. Smith et al., Comparing catchment 633 sediment fingerprinting procedures using an auto-evaluation approach with virtual sample 634 mixtures, Sci. Total Environ, vol.532, pp.456-466, 2015.

L. Palazón and A. Navas, Variability in source sediment contributions by applying different statistic 636 test for a Pyrenean catchment, J. Environ. Manage, vol.194, pp.42-53, 2017.

P. S. Pavinato, A. Merlin, and C. A. Rosolem, Phosphorus fractions in Brazilian Cerrado soils as affected 639 by tillage, Soil Tillage Res, vol.105, pp.149-155, 2009.

S. Pulley, I. Foster, and P. Antunes, The uncertainties associated with sediment fingerprinting 641 suspended and recently deposited fluvial sediment in the Nene river basin, Geomorphology, vol.228, pp.642-303, 2015.

S. Pulley, I. Foster, and P. Antunes, The application of sediment fingerprinting to floodplain and lake 644 sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, 645 UK, J. Soils Sediments, vol.15, pp.2132-2154, 2015.

R. Ramon, Kinetic energy measurement of rainfall and defining a pluvial index to estimate 647 erosivity in Arvorezinha/RS, 2017.

M. Rodrigues, P. S. Pavinato, P. J. Withers, A. P. Teles, and W. F. Herrera, Legacy phosphorus 649 and no tillage agriculture in tropical oxisols of the Brazilian savanna, Sci. Total Environ, vol.542, p.1061, 2016.

J. S. Rowan, S. Black, and S. W. Franks, Sediment fingerprinting as an environmental forensics tool 652 explaining cyanobacteria blooms in lakes, Appl. Geogr, vol.32, pp.832-843, 2012.

M. A. Russell, D. E. Walling, and R. A. Hodgkinson, Suspended sediment sources in two small lowland 655 agricultural catchments in the UK, J. Hydrol, vol.252, pp.1-24, 2001.

C. Saavedra and A. Delgado, Iron-related phosphorus in eroded sediments from agricultural soils of 657 Mediterranean areas, Geoderma, vol.125, pp.1-9, 2005.

D. E. Schmitt, G. Brunetto, E. Santos, W. Wagner, L. De et al., , p.659

M. A. Santos, T. Tiecher, J. J. Comin, R. Couto, R. Da et al., 660 Phosphorus fractions in apple orchards in southern Brazil, Bragantia, vol.76, pp.422-432, 2017.

S. C. Sherriff, S. W. Franks, J. S. Rowan, O. Fenton, and D. Ó'huallacháin, Uncertainty-based 663 assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment 664 fingerprinting using synthetic and field data, J. Soils Sediments, vol.15, pp.2101-2116, 2015.

H. G. Smith and W. H. Blake, Sediment fingerprinting in agricultural catchments: A critical re-667 examination of source discrimination and data corrections, Geomorphology, vol.204, pp.177-191, 2014.

A. P. Teles, M. Rodrigues, W. F. Herrera, A. Soltangheisi, L. R. Sartor et al., Do cover crops change the lability of phosphorus in a clayey subtropical soil under different 671 phosphate fertilizers ? Soil Use Manag. 1-11, vol.670, 2017.

J. Thompson, R. Cassidy, D. G. Doody, and R. Flynn, Predicting critical source areas of sediment in 673 headwater catchments, Agric. Ecosyst. Environ, vol.179, pp.41-52, 2013.

T. Tiecher, L. Caner, J. P. Minella, M. A. Bender, and D. R. Santos, Tracing sediment sources in 675 a subtropical rural catchment of southern Brazil by using geochemical tracers and near-infrared 676 spectroscopy, Soil Tillage Res, vol.155, pp.478-491, 2016.

T. Tiecher, L. Caner, J. P. Minella, A. Pellegrini, V. Capoane et al., , p.678

D. Rheinheimer and S. , Tracing sediment sources in two paired agricultural catchments with 679 different riparian forest and wetland proportion in southern Brazil, Geoderma, vol.285, pp.225-239, 2017.

T. Tiecher, L. Caner, J. P. Minella, D. R. Santos, and . Dos, Combining visible-based-color parameters 682 and geochemical tracers to improve sediment source discrimination and apportionment. Sci. Total 683 Environ, pp.135-149, 2015.

T. Tiecher, M. V. Gomes, V. G. Ambrosini, M. B. Amorim, and C. Bayer, Assessing linkage between soil 685 phosphorus forms in contrasting tillage systems by path analysis, Soil Tillage Res. 175, vol.686, 2018.

T. Tiecher, J. P. Minella, L. Caner, O. Evrard, M. Zafar et al., Quantifying land use contributions to suspended sediment in a large cultivated catchment 689 of Southern Brazil, Agric. Ecosyst. Environ, vol.688, pp.95-108, 2017.

T. Tiecher, J. P. Minella, P. Miguel, J. W. Alvarez, A. Pellegrini et al., , p.692

G. L. Santos and D. R. , Contribuição das fontes de sedimentos em uma bacia hidrográfica 693 agrícola sob plantio direto, Rev. Bras. Cienc. do Solo, vol.38, pp.639-649, 2014.

T. Tiecher, R. B. Schenato, M. A. Santanna, L. Caner, D. R. Santos et al., Phosphorus Forms in 696 Sediments as Indicators of Anthropic Pressures in an Agricultural Catchment in Southern Brazil, 2017.

, Rev. Bras. Ciência do Solo, vol.41, pp.1-17

, Methods of chemical analysis for water and wastes. United States Environmental 699 Protection Agency, 1971.

D. E. Walling, The evolution of sediment source fingerprinting investigations in fluvial systems, J. 701 Soils Sediments, vol.13, pp.1658-1675, 2013.

D. E. Walling, A. L. Collins, P. A. Jones, G. J. Leeks, and G. Old, Establishing fine-grained sediment 703 budgets for the Pang and Lambourn LOCAR catchments, UK. J. Hydrol, vol.330, pp.126-141, 2006.

D. E. Walling, A. L. Collins, and R. W. Stroud, Tracing suspended sediment and particulate phosphorus 706 sources in catchments, J. Hydrol, vol.350, pp.274-289, 2008.

D. E. Walling, P. N. Owens, and G. J. Leeks, Fingerprinting suspended sediment sources in the 708 catchment of the River, Process, vol.13, pp.955-975, 1999.

C. Wang, Y. Zhang, H. Li, and R. J. Morrison, Sequential extraction procedures for the determination 711 of phosphorus forms in sediment 14, pp.147-157, 2013.

S. N. Wilkinson, G. J. Hancock, R. Bartley, A. A. Hawdon, and R. J. Keen, Using sediment tracing to 713 assess processes and spatial patterns of erosion in grazed rangelands, p.714, 2013.

. Australia, Agric. Ecosyst. Environ, vol.180, pp.90-102

X. Yang and W. M. Post, Phosphorus transformations as a function of pedogenesis: A synthesis of soil 716 phosphorus data using Hedley fractionation method, Biogeosciences, vol.8, pp.2907-2916, 2011.

X. C. Zhang and B. L. Liu, Using multiple composite fingerprints to quantify fine sediment source 719 contributions: A new direction, Geoderma, vol.268, pp.108-118, 2016.

Y. S. Zhang, A. L. Collins, and A. J. Horowitz, A preliminary assessment of the spatial sources of 721 contemporary suspended sediment in the Ohio River basin , United States , using water quality 722 data from the NASQAN, vol.334, pp.326-334, 2012.