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Abstract. A heterogeneous offload version of Monte Carlo neutron trans-
port has been developed in the framework of PATMOS prototype via
several programming models (OpenMP thread, OpenMP offload, Ope-
nACC and CUDA). Two algorithms are implemented, including both
history-based method and pseudo event-based method. A performance
evaluation has been carried out with a representative benchmark, sla-
bAllNuclides. Numerical results illustrate the promising gain in perfor-
mance for our heterogeneous offload MC code. These results demon-
strate that pseudo event-based approach outperforms history-based ap-
proach significantly. Furthermore, by using pseudo event-based method,
the OpenACC version is competitive enough, obtaining at least 71% per-
formance comparing to the CUDA version, wherein the OpenMP offload
version renders low performance for both approaches.

Keywords: Monte Carlo transport, history-based method, pseudo event-
based method, OpenMP thread, OpenMP offload, OpenACC, CUDA

1 Introduction

Monte Carlo (MC) neutron transport simulation is a stochastic method that is
widely used in the nuclear field to perform reference calculations. Instead of solv-
ing the radiation transport equation by introducing discretizations and physical
approximations, the MC method simulates the life of a large number of particles
from their birth to their death. Their life consists in a succession of random
flights and collisions. From the caracheristics of these events, physical quantities
can be computed such as the density of particles, the reaction rates, the heat
power. The very few approximations introduced make the MC method a precise
approach of neutron transport simulation under complex conditions. However it
incurs a much higher computational cost comparing to the deterministic method
used in the industry.

For this reason, researchers and developers of many MC transport solvers
have turned to solutions by porting MC codes to modern architectures. In order
to achieve performance, the vectorization of MC codes comes to be a major
aspect to dig into. However, the conventional MC algorithm, also known as
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the history-based method is considered as an embarassingly parallel algorithm
wherein particles are being simulated independently during their lifetime. This
main feature makes it an unsatisfactory candidate for data-level parallelism.

As an alternative solution, the event-based method was proposed by regroup-
ing particles according to their different event types (absorption, collision, mi-
gration, scattering) and undertaking the simulation of banked particles in par-
allel [1]. This approach is better suited for vectorization on modern computers,
while it introduces extra workload of consolidating surviving particles during the
simulation. Furthermore, event-based method requires restructuring the control
flow and redesigning data structure, making it difficult to implement with full-
physics capabilities.

Recently, a number of studies have explored using Intel MIC and Nvidia
GPU for MC transport solvers and micro-benchmarks [2–5]. Both history-based
method and event-based method are implemented and the results are quite in-
formative and promising. They have proved that history-based method is far
more straightforward to implement than event-based method and event-based
method may outperform history-based method with specific tuning strategies
such as remapping data references, use of intrinsic functions and design of triv-
ial kernel. However, all these work did not take into account the portability and
the performance portability of MC codes, which are two significant factors to
consider for software development. To our knowledge, the only work related to
the implementation of MC solver with concern of portability is carried on by
Bleile and his group [6] where they developed a portable event-based MC solver
relying on the Nvidia Thrust library and discovered that Thrust version can
only obtain a maximum of 36% performance comparing to CUDA version and
this percentage keeps decreasing while increasing the number of particles. The
investigation highlights the trade-off between portability and performance for
MC solvers and shows the lack of optimizations for portable codes.

The objective of this paper is indeed to address the challenge above by per-
forming a performance evaluation of exisiting programming models in the frame-
work of MC neutron transport codes on modern architectures (CPU + GPU).
The rest of the paper is organized as follows. Section 2 gives a brief introduction
of MC neutron transport application, benchmark as well as programming models
that we use for experiments. In Section 3, MC implementations are described
in detail in terms of algorithms and programming languages. Section 4 covers
the comparison of performance based on different algorithms and architectures.
Several concluding remarks are drawn in Section 5, as well as certain plans for
future development.

2 Background

2.1 The PATMOS Monte Carlo Prototype

PATMOS is a prototype of Monte Carlo neutron transport under development
at CEA dedicated to the testing of algorithms for high-performance computa-
tions on modern architectures. It relies on a hybrid parallelism based on MPI
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for distributed memory and OpenMP or C++ native threads for shared mem-
ory. One of the goals is to perform pin-by-pin full core depletion calculations
for large nuclear power reactors with realistic temperature fields. PATMOS is
entirely written in C++, with a heavy use of polymorphism in order to always
allow the choice between competing algorithms such as the mix of nuclides with
pre-computed Doppler-broadened cross sections and on-the-fly Doppler broad-
ening [7].

The physics of PATMOS is simplified with two types of particles (mono-
kinetic pseudo-particles and neutrons). Four types of physical interactions in-
cluding elastic scattering, discrete inelastic scattering, absorptions and fission
have been implemented. The scoring part is encapsulated into a scorer class
which deals with tally computation during the simulation and gathers statistical
results afterwards.

2.2 Benchmark

To evaluate performance of different programming models in the framework of
PATMOS, a benchmark named slabAllNuclides was implemented to perform
a fixed source MC simulation with SIGMA1 Doppler Broadening method [9]
using a slab geometry with an arbitrary number of heterogeneous regions (10000
volumes). Each material contains 388 nuclides of the ENDFBVIIr0 library at
900K. The main components of the mixture are H1 and U238 so as to obtain a
representative Pressurized Water Reactor (PWR) spectrum.

On one hand, Doppler Broadening introduces compute-intensive FLOP work
between frequent memory loads to mitigate the latency-bound bottleneck mainly
induced by the binary search in the pre-tabulated cross section approach [10]. On
the other hand, temperature dependent cross section data are computed on-the-
fly whenever they are requested, which saves significantly the memory footprint
of program. Previous work done by Y. Wang [11] has also proved that there are
few opportunities to exploit vectorization for Monte Carlo algorithms based on
pre-tabulated cross section. All these facts make us choosing on-the-fly Doppler
Broadening to fully explore performance on “memory-limited” architectures.

2.3 Programming Models

PATMOS allows two levels of parallelism via MPI + Multi-thread Libraries. In
order to address architectures where multiple accelerators are associated with
single node, we can use either “Multiple Threads, Single Accelerator (MTSA)”
or “Multiple Threads, Multiple Accelerators (MTMA)” strategies. The main
difference between them is that MTSA requires one MPI process using only
one accelerator while MTMA allows multiple shared memory threads to target
multiple accelerators. MTMA avoids extra launch latency, which makes it a
better strategy for Monte Carlo simulations on heterogeneous systems. Thus,
we carried out a set of intra-node experiments using test cases mentioned above
with a simple hybrid programming model OpenMP thread + {X }, where {X }
can be any languages which are capable of parallel programming on modern
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accelerators. The programming languages that we have used for implementation
are listed below:

1. CUDA: A low-level programming language created by Nvidia that leverages
Nvidia GPUs to solve complex computational problems [12]. It allows de-
velopers to interoperate with C, C++, Fortran, Python or other languages,
which provides an efficient interface to manipulate Nvidia GPUs in parallel
programming. To explore maximal computing power of Nvidia GPU archi-
tectures, one shall take advantage of CUDA thread and memory hierarchies.

2. OpenACC : A user-driven performance-portable accelerator programming
language supporting implicit offload computing by directives [13]. The direc-
tives can be used to accomplish data transfer, kernel execution and stream
synchronization.

3. OpenMP offload : From OpenMP 4.0, the specification starts to provide a set
of directives to instruct the compiler and runtime to do offload computing
targeting to devices such as GPUs, FPGAs, Intel MIC, etc.

CUDA provides three key abstractions to explore maximal computing power
of GPU architectures (thread hierarchy, memory hierarchy and barrier synchro-
nization). From the thread hierarchy perspective, CUDA makes use of three lev-
els of work units to describe a block-warp-thread parallelism. From the mem-
ory hierarchy point of view, CUDA exposes a group of programmable memory
types such as registers, shared memory, constant memory, and global memory.
Concerning barrier synchronization, CUDA provides system-level and block-level
of barrier synchronization.

As a comparision, OpenACC and OpenMP offload both offer a set of direc-
tives to express thread hierarchy (OpenACC: gang-worker-vector, OpenMP
offload: team-parallel-simd) whereas they do not offer programming inter-
face to on-chip memory and thread synchronization. The lack of access to entire
CUDA’s feature set may lead to a considerable penalty of performance for Ope-
nACC and OpenMP offload [14]. The key difference between OpenACC and
OpenMP offload is that OpenACC supports CUDA asynchronous multistream-
ing with the directive async(stream id) while OpenMP offload offers nowait
clause which poorly performs this functionality.

3 Implementations

We begin the discussion of implementations in PATMOS by performing a CPU-
based slabAllNuclides test in terms of runtime percentage. All results were re-
trieved by C++ native clock and perf.

In Table 1, binary search, compute integral and buildMedium are user-
defined functions for the calculation of cross section and the initialization of
simulation. erfc and exp are the most consuming mathematical functions to
calculate the complementary error and the base e exponential which are needed
for SIGMA1 Doppler Broadening.
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Table 1. slabAllNuclides runtime percentage

Processing Step Runtime Percentage (%)

Total Cross Section 95.4
exp 17.6
erfc 49.4
binary search 2.4
compute integral 79.2

Partial Cross Section 1.7
erfc 0.6
compute integral 1.4

Initialization 1.8
buildMedium 1.5

Because the total cross section calculations account for up to 95% of total
runtime, we decided to offload GPU version which only caculates microscopic
total cross sections on device. All other parts of MC simulations are executed on
host, which significantly reduces the workflow of device codes and increases the
possiblity for performance of OpenACC and OpenMP offload versions to match
up to the performance of CUDA version.

Algorithm 1 shows the procedure of slabAllNuclides benchmark using history-
based method. Miscroscopic cross section lookup is the only part offloaded to
device. Once the required data for cross section lookups are transfered from host
to device, calculations on device begin and the host summarizes macroscopic
total cross section after the results being transfered back. It is obvious that our
design brings in too many back-and-forth data transfers between host and de-
vice. The size of data movement for each calculation (a group of nuclides in one
material) is quite small but the large number of memcpy calls induces many
launch overheads which may degrade performance in an overwhelming way.

Algorithm 1: History-based algorithm

1 foreach particle generated from source do

2 while particle is alive do

3 calculation of macroscopic cross section:
4 • do microscopic cross section lookups =⇒ offloaded;
5 • sum up total cross section;
6 sample distance to collision in material;
7 if new position is still inside material then
8 move particle to new position, and do collision;
9 else

10 move particle across boundary;
11 end

12 end

13 end
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Algorithm 2: Pseudo event-based algorithm

1 foreach bank of N particles generated from source do

2 while particles remain in bank do

3 foreach remaining particle in bank do

4 bank required data for microscopic cross section lookups;
5 end

6 do microscopic cross section lookups =⇒ offloaded;
7 foreach remaining particle in bank do

8 sum up total cross section;
9 sample distance to collision in material;

10 move particle and do collision;

11 end

12 end

13 end

Algorithm 3: Microscopic cross section lookup

Input: randomly sampled a group of N tuples of materials, energies and
temperatures, {(mi, Ei, Ti)}i∈N

Result: caculated microscopic cross sections for N materials, {σik}i∈N,k∈|mi|

1 block - gang - team level

2 for (nik, Ei, Ti) where nik ∈ mi do

3 σik = pre calcul();
4 thread - vector level

5 foreach thread in warp do

6 σik += compute integral();
7 end

8 end

We managed to use zero-copy pinned memory to mitigate this bottleneck for
the CUDA version, whereas the OpenACC and OpenMP offload versions have
no support for such technique. As an alternative solution, we also tried to merge
multiple small kernels into a big one by grouping a set of calculations for different
particles together. This is achieved by banking multiple particles into one group
and offloading microscopic cross section lookups for all these particles. In this
way, the number of data transfers can be reduced and the amount of work for
each kernel is increased.

To fulfill this tuning strategy, our history-based method is redesigned to a new
“pseudo event-based” approach. The details of this new method are explicitly
described in Algorithm 2. The overall procedure of history tracking is reorganized
into two for loops, where the first loop stores all required data for calculation
of microscopic cross sections of all alive particles and the second loop takes the
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responsibility to do particle movement and interaction. Between two loops, the
microscopic cross section lookups are executed host or device.

Algorithm 3 shows the algorithm of microscopic cross section lookup using
CUDA thread hierarchy. In contrast to the pre-tabulated offloading version,
which usually uses 1 thread to calculating microscopic cross section of 1 nuclide,
we decided to use 32 threads (a warp) consuming 1 nuclide because the on-the-fly
Doppler Broadening computation injects an inner-loop for integral calculation.

4 Results

To evaluate performance of programming models, we carried out a series of
intra-node tests on two architectures listed as follows:

• Ouessant: 2× 10-core IBM Power8, SMT8 + 4× Nvidia P100
• Cobalt-hybrid: 2× 14-core Intel Xeon E5-2680 v4, HT + 2× Nvidia P100

On Ouessant, PATMOS was compiled with GCC 7.1, CLANG 3.8.0, PGI
18.10, and XLC 16.1.1 combined with CUDA 9.2. On Cobalt-hybrid, GCC 7.1,
CLANG 5.0, PGI 18.7 and Intel compiler 17.0 were used with CUDA 9.0. The
input parameters of slabAllNuclides are fixed to 2 × 104 particles, 10 cycles for
the following tests. The bank size of pseudo event-based method is set to 100.

We firstly performed a CPU test to obtain the baseline performance on each
architecture. We find that history-based method and pseudo event-based method
make no difference on CPU. It turns out that the peak performances of slabAll-
Nuclides are 4.7×102 particles/s (PGI, 20 cores, SMT8) and 12.1×102 particles/s
(Intel compiler, 28 cores, HT2) on Ouessant and Cobalt-hybrid.

The performance gap between two machines is produced by different level of
vectorization achieved by compilers. Intel compiler automatically takes advan-
tage of processing power of Intel architecture and leads to performance improve-
ment comparing to other compilers (2.6× speedup).

4.1 Programming Model Performance Evaluation

A series of tests were carried out either on CPU or on GPU so as to evaluate
the performance of the different programming models. Numerical results of peak
performance are illustrated in Table 2.

We find that among the implemented programming models, the CUDA and
OpenACC versions allow to obtain better performance (at maximal 66×102 and
52 × 102 particles/s on Ouessant, 63 × 104 and 45× 104 particles/s on Cobalt-
hybrid). The OpenMP offload version is not competitive with the OpenACC
version, merely leading to a tracking rate of 12× 102 particles/s on Ouessant.

Figure 1 provides a straightforward view for comparision of performance
speedup among different programming models and architectures. They reflect
that (1) the performance of slabAllNuclides running on Cobalt-hybrid is better
than the performance running on Ouessant. (2) Pseudo event-based method
(PEB) outperforms history-based method (HB) with a factor of 3− 6 speedup.
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Table 2. Particle tracking rate via different programming models

Machine Programming Model
slabAllNuclides

(×102 particles/s)
HB PEB(100)

Ouessant CPU (20 cores, SMT8) OMPth 4.7 4.7
OMPth+ACC 4.6 4.5
OMPth+offload 3.7 3.7

4P100 OMPth+CUDA 23.7 65.8
OMPth+ACC 9.4 52.4
OMPth+offload 5.0 12.2

Cobalt-hybrid CPU (28 cores, HT2) OMPth 12.1 12.1
OMPth+ACC 5.6 5.0

2P100 OMPth+CUDA 17.0 62.5
OMPth+ACC 7.7 44.6

where OMPth refers to OpenMP thread, OMPth+offload means OpenMP host and offload functionali-

ties, ACC is equal to OpenACC.

(3) The OpenMP offload version cannot be compiled on Cobalt-hybrid, it renders
much lower performance comparing to the CUDA and OpenACC versions.

Fig. 1. slabAllNuclides performance speedup - Baseline for the performance is obtained
on Ouessant with 20 cores, SMT8

Overall, it is obvious that on GPU, pseudo event-based method is more suit-
able than history-based method. The OpenACC version is competitive with
CUDA version via pseudo event-based method. The OpenMP offload version
provokes a huge performance degradation via either history-based method or
pseudo event-based method. This performance penalty is caused by underde-
veloped support of CUDA streams. As for CPU, on Power architecture the
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performances of OpenACC and OpenMP offload versions are close to that of
OpenMP thread version because all compilers achieve the same level of vector-
ization for SIGMA1 Doppler broadening algorithm with 128-bit vector register
(VSX). However, on x86 architecture, the best performance is obtained by Intel
C++ compiler which manages to vectorize the loop with 256-bit vector register
(AVX2). The OpenACC version introduces a performance penalty because it is
compiled with PGI that does not vectorize the main loop of SIGMA1 algorithm.

5 Conclusion

This paper depicts the implementation of a PATMOS benchmark slabAllNu-
clides in the framework of MC neutron transport via different programming
languages (OpenMP threads, OpenMP offload, OpenACC). The total micro-
scopic cross section lookup is the unique part which is offloaded to accelerators.
This implementation is the first study to use OpenACC and OpenMP offloading
functionality for MC simulation and to offer comparisons between programming
models in terms of performance. We describe an alternative algorithm “pseudo
event-based method” for the purpose of mitigating performance bottleneck in-
cited by conventional “history-based” method.

Performance results are provided across two computing architectures (Oues-
sant and Cobalt-hybrid). It is clear that the GPU performance via pseudo
event-based method surpasses significantly history-based method. The Ope-
nACC version can obtain at least 71% CUDA performance with pseudo event-
based method. In contrast, the one with history-based method is limited to only
45% of the CUDA version. With respect to the OpenMP offload version, both
history-based method and pseudo event-based method can only exploit around
20% CUDA performance which is completely unsatisfactory. We can conclude
that (1) OpenACC is a good choice for the development of portable pseudo
event-based MC simulation in the context of our heterogeneous offload strategy.
(2) OpenMP offload is not suitable for CPU threads + GPU model since the
underdeveloped support of CUDA asynchronous stream restrains the parallelism
on GPU side.

There are several capabilities that we intend to implement for future develop-
ment. From MC simulation side, since we have demonstrated that porting total
microscopic cross section lookup with Doppler Broadening techniques to accel-
erators may contribute to a significant performance improvement, we can offload
partial cross section lookup as well in order to make our implementation more
adaptive to other complex cases. From programming model side, we also have
interest to use other high-level programming languages such as Kokkos [15] and
SYCL [16]. From performance evaluation side, more tests need to be done so as
to cover a wider range of architectures. We intend to adopt several metrics [17]
for the evaluation of portability and performance portability.
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