R. J. Moreno, Uso da terra, vegetação original e atual do Rio Grande do Sul, Boletim Geográfico, vol.595, pp.45-51, 1972.

R. P. Morgan, Soil erosion and conservation

A. J. Parsons and I. D. Foster, What can we learn about soil erosion from the use of 137Cs? 599, Earth-Science Reviews, vol.108, pp.101-113, 2011.

J. D. Phillips, M. C. Slattery, and Z. A. Musselman, Dam-to-delta sediment inputs and 601 storage in the lower trinity river, Texas. Geomorphology, vol.62, pp.17-34, 2004.

P. Porto, D. E. Walling, C. Alewell, G. Callegari, L. Mabit et al., , p.603

M. Zehringer, Use of 137 Cs re-sampling technique to investigate temporal changes in 604 soil erosion and sediment mobilisation for a small forested catchment in southern Italy, J, p.605, 2014.


J. M. Reichert, V. T. Da-rosa, E. S. Vogelmann, D. P. Da-rosa, R. Horn et al., , 2016.

, Conceptual framework for capacity and intensity physical soil properties affected by short 608 and long-term (14 years) continuous no-tillage and controlled traffic, Soil Tillage Res, vol.609, pp.123-136

D. C. Reicosky, Conservation tillage is not conservation agriculture, J. Soil Water, p.611, 2015.

. Conserv, , vol.70, pp.103-108

J. C. Ritchie and J. R. Mchenry, Application of radioactive fallout 137 Cs for measuring 613 soil erosion and sediment accumulation rates and patterns: a review, Journal of Environ, 1990.

. Qual, , vol.19, pp.215-233

J. C. Ritchie and C. A. Ritchie, Bibliography of publications of 137 Cs studies related to erosion 616 and sediment deposition, 2007.

P. Schuller, . Walling, A. De;-sepúlveda, . Castillo, and I. Pino, Changes in soil erosion 618 associated with the shift from conventional tillage to a no-tillage system, documented using 619 137 Cs measurements, Soil & Tillage Research, vol.94, pp.183-192, 2007.


P. Schuller, . Walling, A. De;-sepúlveda, . Trumper, . Re;-rouanet et al., , 2004.

, Use of 137 Cs measurements to estimate changes in soil erosion rates associated with changes 623 in soil management practices on cultivated land, Applied Radiation and Isotopes, vol.60, pp.759-624

L. A. Schuch, D. J. Nordemann, W. O. Barreto, A. Cardoso, and A. Zago, Natural and 626 artificial radionuclides in soils from Parana State, Brazil, J. Radioanal. Nucl. Chem, vol.177, issue.1, pp.627-666, 1994.

L. A. Schuch, D. J. Nordemann, A. Zago, D. L. Dallpai, J. M. Godoy et al., , 1994.

, Correlation of natural and artificial radionuclides in soils with pedological, climatological 630 and geographic parameters, J. Radioanal. Nucl. Chem, vol.177, issue.1, pp.101-106


M. Soler, J. Latron, and F. Gallart, Relationships between suspended sediment 633 concentrations and discharge in two small research basins in a mountainous Mediterranean 634 area, Geomorphology, vol.98, pp.143-152, 2008.

M. Sommer, H. H. Gerke, and D. Deumlich, Modelling soil landscape genesis -A "time 636 split" approach for hummocky agricultural landscapes, Geoderma, vol.145, pp.480-493, 2008.

T. Tiecher, J. P. Minella, O. Evrard, L. Caner, G. H. Merten et al., Fingerprinting sediment sources in a large agricultural catchment 639 under no-tillage in Southern Brazil, vol.638, pp.939-951, 2018.


T. Tiecher, J. P. Minella, P. Miguel, J. W. Alvarez, A. Pellegrini et al., , p.642

L. H. Schaefer, G. L. Santos, and D. R. Dos, Contribuição das fontes de sedimentos em uma bacia hidrográfica agrícola sob plantio direto, Rev. Bras. Ciência do Solo, vol.38, pp.639-649, 2014.


D. E. Walling, Y. Zhang, and Q. He, Conversion models and related software. In: 646 Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil 647, 2014.

, Conservation Strategies. International Atomic Energy Agency Publication, pp.125-148

. Iaea-tecdoc-cd-1741,

D. E. Walling, Y. Zhang, and Q. He, Models for deriving estimates of erosion and 650 deposition rates from fallout radionuclide (caesium-137, excess lead-210, and beryllium-7) 651 measurements and the development of user friendly software for model implementation, 652 Impact of Soil Conservation Measures on Erosion Control and Soil Quality, pp.11-33, 2011.

D. E. Walling, Y. Zhang, and Q. He, Models for Converting Measurements of 655, 2007.

, Excess 210 Pb and 7 Be to Estimates of Soil 656 Erosion and Deposition Rates (Including Software for Model Implementation). Department 657 of Geography, Environmental Radionuclide Inventories ( 137 Cs

D. E. Walling and Q. He, Models for converting 137 Cs measurements to estimating of 659 soil redistribution rates on cultivates and uncultivated soils, p.661, 1997.

D. E. Walling and T. A. Quine, Use of fallout radionuclide measurements in soil erosion 663 investigations, Nuclear Techniques in Soil-Plant Studies for Sustainable Agriculture and, p.664

, IAEA Publication STI/PUB/947 665, Environmental Preservation (Proc. Symp. Vienna, pp.597-619, 1994.

D. E. Walling and T. A. Quine, The use of caesium-137 measurements in soil erosion 667 surveys. In: Erosion and sediment transport monitoring programmers in river basins, 1992.

D. E. Walling, The sediment delivery problem, J. Hydrol, vol.65, pp.209-237, 1983.

J. P. Wilson and J. C. Gallant, EROS: A grid-based program for estimating spatially-671 distributed erosion indices, Computers and Geosciences, vol.22, pp.707-712, 1996.

W. D. Wischmeier and D. D. Smith, Predicting rainfall erosion losses: a guide to conservation 673 planning, vol.537, p.58, 1978.

W. Van-muysen, K. Van-oost, and G. Govers, Soil translocation resulting from multiple 675 passes of tillage under normal field operating conditions, Soil and Tillage Research, vol.676, pp.218-230, 2006.

K. Van-oost, T. A. Quine, G. Govers, S. D. Gryze, J. Six et al., , p.678

G. Heckrath, C. Kosmas, J. V. Giraldez, M. Da-silva, J. R. Merckx et al., The impact of 679 agricultural soil erosion on the global carbon cycle, Science, vol.318, issue.5850, pp.626-629, 2007.


K. Van-oost, G. Govers, S. De-alba, and T. A. Quine, Tillage erosion: a review of 682 controlling factors and implications for soil quality, Prog. Phys. Geogr, vol.30, issue.4, pp.443-466, 2006.


M. J. Vieira, N. P. Cogo, and E. A. Cassol, Perdas por erosão em diferentes sistemas de 685 preparo do solo para a cultura da soja (Glycine max (L.) Merr.) em condições de chuva 686 simulada. Revista Brasileira de Ciência do Solo, pp.209-214, 1978.

F. Zapata, Handbook for the assessment of soil erosion and sedimentation using 688 environmental radionuclides, vol.689, pp.978-978, 2002.

J. J. Zheng, X. B. He, D. Walling, X. B. Zhang, D. Flanagan et al., Assessing soil erosion 691 rates on manually-tilled hillslopes in the Sichuan hilly basin using Cs-137 and Pb-210(ex) 692 measurements, Pedosphere, vol.17, pp.273-283, 2007.

R. A. Young and C. K. Mutchler, Soil Movement on Irregular Slopes, Water Resources 694 Research, vol.5, pp.1084-1089, 1969.

, *Quality of soil management during the 1st period, 2nd period and 3rd period (B: Bad with high erosion

, M: Average with medium erosion and G: Good with low erosion)