Validation of Dose Calculations with PENFAST (a Fast Monte Carlo Code for TPS in Radiotherapy) Using a Beam Energy Spectrum Reconstructed by a Least Squares Method

Bouchra Habib, François Tola, Jean-Marc Bordy, Bénédicte Poumarède

To cite this version:

HAL Id: cea-02557601
https://hal-cea.archives-ouvertes.fr/cea-02557601
Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Validation of dose calculations with PENFAST (a fast MC code for TPS in radiotherapy) using a beam energy spectrum reconstructed by a least squares method

B HABIB, B POUMAREDE, JM BORDY, F TOLA, J BARTHE

CEA, LIST, Department of Technology for Sensors and Signal Processing, F-91191 Gif-sur-Yvette, France. bouchra.habib@cea.fr

Context and objectives
- Conventional TPS are fast but generally not enough accurate especially in presence of heterogeneities where the electron transport effects cannot be accurately handled with conventional deterministic dose algorithms.
- Implementation of Monte-Carlo (MC) methods allows better accuracy.
- Recently, a fast MC dose calculation code, named PENFAST (a private code) has been developed by Salvat et al (2008). PENFAST is an optimized version of the conventional MC PENELLOPE code, adapted to CT voxelized geometries.
- In this work, PENFAST calculations of dose distributions in homogeneous and heterogeneous phantoms were compared with PENELLOPE (version 2006) calculations as well as experimental data.

Materials and Methods
- PENELLOPE simulation of the accelerator head
 - Detailed modeling of the LINAC Saturne 43 (located at the French National Metrological Laboratory for ionizing radiations).
 - Primary electrons characterization using a least squares method with no negativity constraints (NLS) coupled with PENELLOPE dose simulations in water.
- Phase Space File calculation
- PENFAST simulation of dose distributions in voxelized heterogeneous phantoms

Results and Discussion
- Homogeneous phantom comparisons
- Heterogeneous phantom comparisons
 - PENELLOPE and PENFAST dose distributions in water are within ± (1%, 1 mm) relative difference with measurements.
 - PENFAST calculations are within ± 2% relative difference with measurements in the heterogeneous phantoms.

Conclusions
- The homogeneous phantom study allows us to validate the PSF calculations and illustrates that the NLS method provides an accurate description of the radiation source energy spectrum.
- The overall excellent agreement between PENFAST and PENELLOPE codes, as well as measurements, validates the accuracy of the fast MC code PENFAST for photon and electron dose calculations in clinically relevant heterogeneous phantoms and under metrological conditions.
- Complementary tests will be performed before using PENFAST in a clinical environment: small field conditions, complex compositions.