C. Schülke, F. Caltagirone, F. Krzakala, and L. Zdeborová, Blind Calibration in Compressed Sensing using Message Passing Algorithms, Advances in Neural Information Processing Systems 26, pp.1-9, 2013.

C. Schülke, F. Caltagirone, and L. Zdeborová, Blind sensor calibration using approximate message passing, Journal of Statistical Mechanics: Theory and Experiment, issue.11, p.11013, 2015.

E. J. Candès and T. Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006.

M. Lustig, D. L. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, vol.58, issue.6, pp.1182-1195, 2007.

R. Otazo, D. Kim, L. Axel, and D. K. Sodickson, Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI, Magnetic Resonance in Medicine, vol.64, issue.3, pp.767-776, 2010.

J. Romberg, M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska et al., Single-pixel imaging via compressive sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.83-91, 2008.

R. Gribonval, G. Chardon, and L. Daudet, Blind calibration for compressed sensing by convex optimization, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2713-2716, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658579

H. Shen, M. Kleinsteuber, C. Bilen, and R. Gribonval, A conjugate gradient algorithm for blind sensor calibration in sparse recovery, 2013 IEEE International Workshop on Machine Learning for Signal Processing, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871323

D. L. Donoho, A. Maleki, and A. Montanari, Message-passing algorithms for compressed sensing, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.18914-18919, 2009.

Y. Kabashima and S. Uda, A BP-based algorithm for performing Bayesian inference in large perceptron-type networks, 2004.

. Sundeep-rangan, Generalized Approximate Message Passing for Estimation with Random Linear Mixing, 2011 IEEE International Symposium on Information Theory Proceedings, pp.2168-2172, 2011.

L. Bottou, F. E. Curtis, and J. Nocedal, Optimization Methods for Large-Scale Machine Learning, SIAM Review, vol.60, issue.2, pp.223-311, 2018.

C. Wang and Y. M. Lu, Online learning for sparse PCA in high dimensions: Exact dynamics and phase transitions, IEEE Information Theory Workshop, vol.2016, pp.186-190, 2016.

I. Mitliagkas, C. Caramanis, and P. Jain, Memory Limited, Streaming PCA, Neural Information Processing Systems, 2013.

C. Wang, J. Mattingly, and Y. M. Lu, Scaling Limit: Exact and Tractable Analysis of Online Learning Algorithms with Applications to Regularized Regression and PCA, 2017.

B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris et al., The committee machine: Computational to statistical gaps in learning a two-layers neural network, Neural Information Processing Systems, pp.1-44, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01933130

A. Manoel, F. Krzakala, E. W. Tramel, and L. Zdeborová, Streaming Bayesian inference: Theoretical limits and mini-batch approximate message-passing, 55th Annual Allerton Conference on Communication, Control, and Computing, pp.1048-1055, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01553517

L. H. Timothy, A. Watkin, M. Rau, and . Biehl, The statistical mechanics of learning a rule, Reviews of Modern Physics, vol.65, issue.2, pp.499-556, 1993.

M. Gabrié, Mean-field inference methods for neural networks, Journal of Physics A: Mathematical and Theoretical, 1911.

P. Sundeep-rangan, A. K. Schniter, and . Fletcher, Vector approximate message passing, 2017 IEEE International Symposium on Information Theory (ISIT), vol.1, pp.1588-1592, 2017.

P. Schniter, A. K. Sundeep-rangan, and . Fletcher, Vector approximate message passing for the generalized linear model, 50th Asilomar Conference on Signals, Systems and Computers, pp.1525-1529, 2016.

M. Opper and O. Winther, Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling, Physical Review E, vol.64, issue.5, p.56131, 2001.

M. Opper and O. Winther, Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach, Physical Review Letters, vol.86, issue.17, pp.3695-3699, 2001.

Y. Kabashima, Inference from correlated patterns: A unified theory for perceptron learning and linear vector channels, Journal of Physics: Conference Series, vol.95, issue.1, p.12001, 2008.

T. Shinzato and Y. Kabashima, Learning from correlated patterns by simple perceptrons, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.1, p.15005, 2009.

Y. Kabashima and M. Vehkapera, Signal recovery using expectation consistent approximation for linear observations, IEEE International Symposium on Information Theory -Proceedings, pp.226-230, 2014.

P. Thomas and . Minka, A family of algorithms for approximate Bayesian inference, 2001.

M. Opper and O. Winther, Expectation consistent free energies for approximate inference, Advances in Neural Information Processing Systems, vol.17, pp.1001-1008, 2005.

L. Zdeborová and F. Krzakala, Statistical physics of inference: Thresholds and algorithms, Advances in Physics, vol.65, issue.5, pp.453-552, 2016.

M. Opper and D. Haussler, Calculation of the learning curve of Bayes optimal classification algorithm for learning a perceptron with noise, COLT '91 Proceedings of the fourth annual workshop on Computational learning theory, pp.75-87, 1991.

Y. Iba, The Nishimori line and Bayesian statistics, Journal of Physics A: Mathematical and General, vol.32, issue.21, pp.3875-3888, 1999.

H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction, 2001.

Y. Kabashima, F. Krzakala, M. Mézard, A. Sakata, and L. Zdeborová, Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization, IEEE Transactions on Information Theory, vol.62, issue.7, pp.4228-4265, 2016.

M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics. WORLD SCIENTIFIC, vol.9, 1986.

J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová, Optimal errors and phase transitions in high-dimensional generalized linear models, Proceedings of the National Academy of Sciences, vol.116, pp.5451-5460, 2019.

J. Barbier and N. Macris, The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference. Probability Theory and Related Fields, vol.174, pp.1133-1185, 2019.

M. Opper and O. Winther, A Bayesian approach to on-line learning, On-line learning in neural networks, pp.363-378, 1999.

O. Kinouchi and . Caticha, Optimal generalization in perceptions, Journal of Physics A: Mathematical and General, vol.25, issue.23, pp.6243-6250, 1992.

M. Biehl and P. Riegler, On-Line Learning with a Perceptron, Europhysics Letters (EPL), vol.28, issue.7, pp.525-530, 1994.

S. Solla and O. Winther, Optimal Perceptron Learning: an On-line Bayesian Approach, On-Line Learning in Neural Networks, pp.379-398, 1999.

D. Saad, On-Line Learning in Neural Networks, 1999.

P. V. Rossi, Y. Kabashima, and J. Inoue, Bayesian online compressed sensing, Physical Review E, vol.94, issue.2, p.22137, 2016.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan, Streaming Variational Bayes. Neural Information Processing Systems, pp.1-9, 2013.

F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices, J. Stat. Mech, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00764645

A. Manoel, F. Krzakala, M. Mézard, and L. Zdeborová, Multi-layer generalized linear estimation, 2017 IEEE International Symposium on Information Theory (ISIT), pp.2098-2102, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01447203