M. Dejesus-hernandez, I. R. Mackenzie, B. F. Boeve, A. L. Boxer, M. Baker et al., Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS, Neuron, 2011.

A. E. Renton, E. Majounie, A. Waite, J. Simón-sánchez, S. Rollinson et al., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, 2011.

C. Marogianni, D. Rikos, A. Provatas, K. Dadouli, P. Ntellas et al., The role of C9orf72 in neurodegenerative disorders: a systematic review, an updated metaanalysis, and the creation of an online database, Neurobiol Aging, 2019.

T. P. Levine, R. D. Daniels, A. T. Gatta, L. H. Wong, and M. J. Hayes, The product of C9orf72, a gene strongly implicated in neurodegeneration

, Bioinformatics, 2013.

S. Ciura, S. Lattante, L. Ber, I. Latouche, M. Tostivint et al., Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis, Ann Neurol, 2013.

M. Therrien, G. A. Rouleau, P. A. Dion, and J. A. Parker, Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One, 2013.

A. R. Haeusler, C. J. Donnelly, G. Periz, E. Simko, P. G. Shaw et al., C9orf72 nucleotide repeat structures initiate molecular cascades of disease, Nature, 2014.

C. J. Donnelly, P. W. Zhang, J. T. Pham, A. R. Heusler, N. A. Mistry et al., RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention, Neuron, 2013.

Y. B. Lee, H. J. Chen, J. N. Peres, J. Gomez-deza, J. Attig et al., Hexanucleotide repeats in ALS/FTD form length-dependent RNA Foci, sequester RNA binding proteins, and are neurotoxic, Cell Rep, 2013.

J. Cooper-knock, M. J. Walsh, A. Higginbottom, J. R. Highley, M. J. Dickman et al., Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions, Brain, 2014.

T. F. Gendron, K. F. Bieniek, Y. J. Zhang, K. Jansen-west, P. Ash et al.,

, Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS, Acta Neuropathol, 2013.

K. Mori, T. Arzberger, F. A. Grässer, I. Gijselinck, S. May et al., Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins, Acta Neuropathol, 2013.

K. Mori, S. M. Weng, T. Arzberger, S. May, K. Rentzsch et al., The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science (80-), 2013.

T. Zu, Y. Liu, M. Bañez-coronel, T. Reid, O. Pletnikova et al., RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia

, Proc Natl Acad Sci U S A, 2013.

P. Ash, K. F. Bieniek, T. F. Gendron, T. Caulfield, W. L. Lin et al., Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS, Neuron, 2013.

D. Mann, S. Rollinson, A. Robinson, B. Callister, J. Thompson et al., Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration, Acta Neuropathol Commun, 2014.

Y. S. Davidson, H. Barker, A. C. Robinson, J. C. Thompson, J. Harris et al., Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72, Acta Neuropathol Commun, 2014.

J. Chew, T. F. Gendron, M. Prudencio, H. Sasaguri, Y. J. Zhang et al., C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits, Science, issue.80, 2015.

B. Khosravi, H. Hartmann, S. May, C. Möhl, H. Ederle et al., Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD, Hum Mol Genet, 2017.

D. A. Solomon, A. Stepto, W. H. Au, Y. Adachi, D. C. Diaper et al., A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-? mediates C9orf72-related neurodegeneration, Brain, 2018.

A. Baborie, T. D. Griffiths, E. Jaros, R. Perry, I. G. Mckeith et al., Accumulation of dipeptide repeat proteins predates that of TDP-43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene, Neuropathol Appl Neurobiol, 2015.

T. Nonaka, M. Masuda-suzukake, M. Hosokawa, A. Shimozawa, S. Hirai et al., C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43, Hum Mol Genet, 2018.

B. N. Flores, M. E. Dulchavsky, A. Krans, M. R. Sawaya, H. L. Paulson et al., Distinct c9orf72-associated dipeptide repeat structures correlate with neuronal toxicity, PLoS One, 2016.

Y. J. Chang, U. S. Jeng, Y. L. Chiang, I. S. Hwang, and Y. R. Chen, The glycine-alanine dipeptide repeat from C9 or f72 hexanucleotide expansions forms toxic amyloids possessing cellto-cell transmission properties, J Biol Chem, 2016.

Q. Guo, C. Lehmer, A. Martínez-sánchez, T. Rudack, F. Beck et al., Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell, 2018.

A. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, 2017.

B. Falcon, W. Zhang, M. Schweighauser, A. G. Murzin, R. Vidal et al., Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold, Acta Neuropathol, 2018.

W. Zhang, B. Falcon, A. G. Murzin, J. Fan, R. A. Crowther et al., Heparin-induced tau filaments are polymorphic and differ from those in alzheimer's and pick's diseases

. Elife, , 2019.

R. Guerrero-ferreira, N. Taylor, D. Mona, P. Ringler, M. E. Lauer et al., Cryo-EM structure of alpha-synuclein fibrils. Elife, 2018.

B. Li, P. Ge, K. A. Murray, P. Sheth, M. Zhang et al., Cryo-EM of full-length ?synuclein reveals fibril polymorphs with a common structural kernel, Nat Commun, 2018.

R. Sabaté, I. Lascu, and S. J. Saupe, On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2, J Struct Biol, 2008.

M. Biancalana, K. Makabe, A. Koide, and S. Koide, Molecular Mechanism of Thioflavin-T Binding to the Surface of ?-Rich Peptide Self-Assemblies, J Mol Biol, 2009.

C. Wu, M. Biancalana, S. Koide, and J. E. Shea, Binding Modes of Thioflavin-T to the Single