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The lack of crisp mathematical models that capture the structure of real-world
data sets is a major obstacle to the detailed theoretical understanding of deep neural
networks. Here, we introduce a generative model for data sets that we call the
hidden manifold model (HMM). The idea is to have high-dimensional inputs lie on a
lower-dimensional manifold, with labels that depend only on their position within
this manifold, akin to a single layer decoder or generator in a generative adversarial
network. We first demonstrate the effect of structured data sets by experimentally
comparing the dynamics and the performance of two-layer neural networks trained
on three different data sets: (i) an unstructured synthetic data set containing random
i.i.d. inputs, (ii) a structured data set drawn from the HMM and (iii) a simple
canonical data set containing MNIST images. We pinpoint two phenomena related to
the dynamics of the networks and their ability to generalise that only appear when
training on structured data sets, and we experimentally demonstrate that training
networks on data sets drawn from the HMM reproduces both the phenomena seen
during training on real dataset. Our main theoretical result is that we show that
the learning dynamics in the hidden manifold model is amenable to an analytical
treatment by proving a “Gaussian Equivalence Theorem”, opening the way to further
detailed theoretical studies. In particular, we show how the dynamics of stochastic
gradient descent for a two-layer network is captured by a set of ordinary differential
equations that track the generalisation error at all times.
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1. Introduction

A major impediment for understanding the effectiveness of deep neural networks is our lack
of mathematical models for the data sets on which neural networks are trained. This lack of
tractable models prevents us from analysing the impact of data sets on the training of neural
networks and their ability to generalise from examples, which remains an open problem both in
statistical learning theory [1, 2], and in analysing the average-case behaviour of algorithms in
synthetic data models [3–5].

Indeed, most theoretical results on neural networks do not model the structure of the training
data, while some works build on a setup where inputs are drawn component-wise i.i.d. from
some probability distribution, and labels are either random or given by some random, but fixed
function of the inputs. Despite providing valuable insights, these approaches are by construction
blind to key structural properties of real-world data sets.

Our goal in this paper is to consider a model, the Hidden Manifold Model, amenable to
analytical studies, that will capture the most important features of real data sets. We shall show
in particular that one can analytically study the learning dynamics in this problem.

To motivate the model, we focus on two types of data structure that can both already be
illustrated by considering perhaps the simplest canonical problem of supervised machine learning:
classifying the handwritten digits in the MNIST database using a neural network N [6]. The
input patterns are images with 28 × 28 pixels, so a priori we work in the high-dimensional
R784. However, the inputs that may be interpreted as handwritten digits, and hence constitute
the “world” of our problem, span but a lower-dimensional manifold within R784 which is not
easily defined. Its dimension can nevertheless be estimated to be around D ≈ 14 based on the
neighbourhoods of inputs in the data set [7–10]. The intrinsic dimension being lower than the
dimension of the input space is a property expected to be common to many real data sets used
in machine learning. We should not consider presenting N with an input that is outside of its
world (or maybe we should train it to answer that the “input is outside of my world” in such
cases). We will call inputs structured if they are concentrated on a lower-dimensional manifold
and thus have a lower-dimensional latent representation, which consists of the position of the
input on that manifold.

The second type of structure concerns the function of the inputs that is to be learnt, which
we will call the learning task. We will consider two models: the teacher task, where the label is
obtained as a function of the high-dimensional input; and the latent task, where the label is a
function of only the lower-dimensional latent representation of the input.

1.1. Main contributions and related work

1. We experimentally pinpoint two key differences between networks trained in the vanilla
teacher-student setup and networks trained on the MNIST task (Sec. 2). i) Two identical
networks trained on the same MNIST task, but starting from different initial conditions, will
achieve the same test error on MNIST images, but they learn globally different functions.
Their outputs coincide in those regions of input space where MNIST images tend to lie –
the “world” of the problem, but differ significantly when tested on Gaussian inputs. In
contrast, two networks trained on the teacher task learn the same functions globally to
within a small error. ii) In the vanilla teacher-student setup, the test error of a network is
stationary during long periods of training before a sudden drop-off. These plateaus are
well-known features of this setup [4,12], but are not observed when training on the MNIST
task nor on other data sets used commonly in machine learning.

2. We introduce the hidden manifold model (HMM), a probabilistic model that generates data
sets containing high-dimensional inputs which lie on a lower-dimensional manifold and
whose labels depend only on their position within that manifold (Sec. 3). This model is akin
to a learnt single layer decoder with random input or a single layer generator of a learnt
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structured inputs inputs that are concentrated on a fixed, lower-dimensional
manifold in input space

latent representation for a structured input, its coordinates in the lower-
dimensional manifold

task the function of the inputs to be learnt

latent task for structured inputs, labels are given as a function of the
latent representation only

teacher task for all inputs, labels are obtained from a random, but fixed
function of the high-dimensional input without explicit de-
pendence on the latent representation, if it exists

MNIST task discriminating odd from even digits in the MNIST database

vanilla teacher-student setup Generative model due to [11], where data sets consist of
component-wise i.i.d. inputs with labels given by a fixed,
but random neural network acting directly on the input

hidden manifold model (HMM) Generative model introduced in Sec. 3 for data sets consist-
ing of structured inputs (Eq. 6) with latent labels (Eq. 7)

Table 1: Several key concepts used/introduced in this paper.

generative adversarial network (GAN). The input samples, resulting from this model, are
structured and their labels depend on their lower-dimensional latent representation only.
We experimentally demonstrate that training networks on data sets drawn from this model
reproduces both behaviours observed when training on MNIST. Moreover we show that the
model displays the recently widely discussed double-descent behaviour, again in agreement
to what is observed in MNIST. We also show that the structure of both, input space and
the task to be learnt, play an important role for the dynamics and the performance of
neural networks.

3. We show that the hidden manifold model can be studied analytically in a thermodynamic
limit using the “Gaussian Equivalence Theorem” (GET) of Sec. 4. This shows the HMM is
not only a better approximation of real data sets, but is also amenable to exact analytical
treatment. The GET also allows to study deterministic, or learnt, mapping from the hidden
manifold to the data set. These properties, we believe, open the way to many further
analytical studies of typical-case behaviour in machine learning problems.

4. We use the GET to derive asymptotically exact ordinary differential equations governing the
learning dynamics of stochastic gradient descent for online learning in the thermodynamic
limit (Sec. 5). These ODEs provide detailed insight into the dynamics of learning and
form a starting point for numerous further investigations, and generalise to the HMM the
classical analysis for unstructured data [12,13].

Relation to feature learning and random matrix theory There exists an interesting relation
– but also key differences – between the hidden manifold model (HMM) that we propose and
random feature learning with unstructured i.i.d. input data [14–16]. Remarkably, random feature
learning in the same scaling limit as used in the theoretical part of this paper was analysed
in several recent and concurrent works, notably in [17, 18] for ridge regression, and in [19] for
max-margin linear classifiers. These papers consider full batch learning, i.e. all samples are
used at the same time, which makes one difference from our online (one-pass stochastic gradient
descent) analysis.
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Another important difference is that we study learning in a neural network with a hidden layer,
while the existing works study simpler learning algorithms. Perhaps a more important difference
is that in our analysis the features do not need to be random, they can be deterministic, or even
be learnt from some data using a GAN or an autoencoder.

The principles underlying the analytic solution presented in the present paper, but also the
one of [17–19], boil down to the Gaussian Equivalence Principle, which is stated and used
independently in those papers. Special cases of the Gaussian Equivalence Theorem were in
fact derived previously using random matrix theory in [20–23], and this equivalent Gaussian
covariates mapping was explicitly stated and used in [18,19]. Very recently, this has been further
extended into a broader setting of concentrated vectors encompassing data coming from a GAN
in [24,25], a version closer to our formulation. We discuss the relation of our model to feature
learning and these results in more detail in Sec. 6.

Further related work Several works have appreciated the need to model the inputs in the first
place, and in particular the need to go beyond the simple component-wise i.i.d. modelling [26–30].
While we will focus on the ability of neural network to generalise from examples, two recent
papers studied a network’s ability to store inputs with lower-dimensional structure and random
labels: Chung et al. [31] studied the linear separability of general, finite-dimensional manifolds
and their interesting consequences for trained deep neural networks [32], while Rotondo et al. [33]
extended Cover’s argument [34] to count the number of learnable dichotomies when inputs are
grouped in tuples of k inputs with the same label. Recently, Yoshida and Okada analysed the
dynamics of online learning for data having an arbitrary covariance matrix, finding an infinite
hierarchy of ODE and finding a reduction of the plateau [35].

We also note that several works have compared neural networks trained from different initial
conditions on the same task by comparing the different features learnt in vision problems [36–38],
but these works did not compare the functions learnt by the network.

Accessibility and reproducibility We provide the full code of our experiments and our implemen-
tation of the ODEs describing online learning at https://github.com/sgoldt/hidden-manifold-model
and give necessary parameter values to reproduce our figures beneath each plot.

2. Learning on structured data sets versus unstructured
teacher-student model

In this section we compare neural networks trained on two different problems: the MNIST task,
where one aims to discriminate odd from even digits in the MNIST data set; and the vanilla
teacher-student setup. In this setup, inputs are drawn as vectors with i.i.d. component from the
Gaussian distribution and labels are given by a random, but fixed, neural network acting on the
high-dimensional inputs. This model is an example of a teacher task on unstructured inputs. It
was introduced by Gardner & Derrida [11] and has played a major role in theoretical studies of
the generalisation ability of neural networks from an average-case perspective, particularly within
the framework of statistical mechanics [3–5, 13, 39–43], and also in recent statistical learning
theory works, e.g. [18,44–46]. We choose the MNIST data set because it is the simplest widely
used example of a structured data set on which neural networks show significantly different
behaviour than when trained on synthetic data of the vanilla teacher-student setup. In appendix
D.1 we show that the same phenomenology is observed for “fashion MNIST” data set and we
expect in many others.

2.1. Learning setup

In order to proceed on the question of what is a suitable model for structured data, we consider the
setup of a feedforward neural network with one hidden layer with a few hidden units, as described
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below. So throughout this work, we focus on the dynamics and performance of fully-connected
two-layer neural networks with K hidden units and first- and second-layer weights W ∈ RK×N
and v ∈ RK , resp. Given an input x ∈ RN , the output of a network with parameters θ = (W ,v)
is given by

φ(x;θ) =

K∑
k

vkg
(
wkx/

√
N
)
, (1)

where wk is the kth row of W , and g : R→ R is the non-linear activation function of the network,
acting component-wise. We will focus on sigmoidal networks with g(x) = erf(x/

√
2), or ReLU

networks where g(x) = max(0, x) (see Appendix D.5).
We will train the neural network on data sets with P input-output pairs (xµ, y

∗
µ), µ = 1, . . . , P ,

where we use the starred y∗µ to denote the true label of an input xµ. We train networks by

minimising the quadratic training error E(θ) = 1/2
∑P

µ=1 ∆2
µ with ∆µ =

[
φ(xµ,θ)− y∗µ

]
using

stochastic gradient descent (SGD) with constant learning rate η,

θµ+1 = θµ − η∇θE(θ)|θµ,xµ,y∗µ . (2)

Initial weights for both layers of sigmoidal networks were always taken component-wise i.i.d.
from the normal distribution with mean 0 and variance 1. The initial weights of ReLU networks
were also taken from the normal distribution, but with variance 10−6 to ensure convergence.

The key quantity of interest is the test error or generalisation error of a network, for which
we compare its predictions to the labels given in a test set that is composed of P ∗ input-output
pairs (xµ, y

∗
µ), µ = 1, . . . , P ∗ that are not used during training,

εmse
g (θ) ≡ 1

2P ∗

P ∗∑
µ

[
φ(xµ,θ)− y∗µ

]2
. (3)

The test set might be composed of MNIST test images or generated by the same probabilistic model
that generated the training data. For binary classification tasks with y∗ = ±1, this definition is
easily amended to give the fractional generalisation error εfrac

g (θ) ∝
∑P ∗

µ Θ
[
−φ(xµ,θ)y∗µ

]
, where

Θ(·) is the Heaviside step function.

2.2. Learning from real data or from generative models?

We want to compare the behaviours of two-layer neural networks Eq. (1) trained either on real
data sets or on unstructured tasks. As an example of a real data set, we will use the MNIST
image database of handwritten digits [6] and focus on the task of discriminating odd from even
digits. Hence the inputs xµ will be the MNIST images with labels y∗µ = 1,−1 for odd and even
digits, resp. The joint probability distribution of input-output pairs (xµ, y

∗
µ) for this task is

inaccessible, which prevents analytical control over the test error and other quantities of interest.
To make theoretical progress, it is therefore promising to study the generalisation ability of
neural networks for data arising from a probabilistic generative model.

A classic model for data sets is the vanilla teacher-student setup [11], where unstructured i.i.d.
inputs are fed through a random neural network called the teacher. We will take the teacher to
have two layers and M hidden nodes. We allow that M 6= K and we will draw the components
of the teacher’s weights θ∗ = (v∗ ∈ RM ,W ∗ ∈ RM×N ) i.i.d. from the normal distribution with
mean zero and unit variance. Drawing the inputs i.i.d. from the standard normal distribution
N (x; 0, IN ), we will take

y∗µ = φ(xµ,θ
∗) (4)

for regression tasks, or y∗µ = sgn [φ(xµ,θ
∗)] for binary classification tasks. This is hence an

example of a teacher task. In this setting, the network with K hidden units that is trained using
SGD Eq. (2) is traditionally called the student. Notice that, if K ≥ M , there exist a student
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Figure 1: (Left) Networks trained independently on MNIST achieve similar perfor-
mance, but learn different functions. For two networks trained independently on the MNIST
odd-even classification task, we show the averaged final fractional test error, εfrac

g (blue dots).

We also plot εfrac
1,2 (5), the fraction of Gaussian i.i.d. inputs and MNIST test images the networks

classify differently after training (green diamonds and orange crosses, resp.). (Right) Training
independent networks on a teacher task with i.i.d. inputs does not reproduce this
behaviour. We plot the results of the same experiment, but for Gaussian i.i.d. inputs with
teacher labels y∗µ (Eq. 4, M = 4). For both plots, g(x) = erf

(
x/
√

2
)
, η = 0.2, P ∗ = 76N,N = 784.

network that has zero generalisation error, the one with the same architecture and parameters as
the teacher.

We now proceed to demonstrate experimentally two significant differences in the dynamics and
the performance of neural networks trained on realistic data sets and networks trained within
the vanilla teacher-student setup.

2.3. Independent networks achieve similar performance, but learn different
functions when trained on structured tasks

We trained two sigmoidal networks with K hidden units, starting from two independent draws of
initial conditions to discriminate odd from even digits in the MNIST database. We trained both
networks using SGD with constant learning rate η, Eq. (2), until the generalisation error had
converged to a stationary value. We plot this asymptotic fractional test error εfrac

g as blue circles
on the left in Fig. 1 (the averages are taken over both networks and over several realisations
of the initial conditions). We observed the same qualitative behaviour when we employed the
early-stopping error to evaluate the networks, where we take the minimum of the generalisation
error during training (see Appendix D.3).

First, we note that increasing the number of hidden units in the network decreases the test
error on this task. We also compared the networks to one another by counting the fraction of
inputs which the two networks classify differently,

εfrac
1,2 (θ1,θ2) ≡ 1

2P ∗

P ∗∑
µ

Θ [−φ(xµ,θ1)φ(xµ,θ2)] . (5)

This is a measure of the degree to which both networks have learned the same function φ(x,θ).
Independent networks disagree on the classification of MNIST test images at a rate that roughly
corresponds to their test error for K ≥ 3 (orange crosses). However, even though the additional
parameters of bigger networks are helpful in the discrimination task (decreasing εg), both networks
learn increasingly different functions when evaluated over the whole of RN using Gaussian inputs
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Figure 2: (Left) Extended periods with stationary test error during training
(“plateaus”) appear in the vanilla teacher-student setup, not on MNIST. We plot
the generalisation error εmse

g (3) of a network trained on Gaussian i.i.d. inputs with teacher labels
(Eq. 4, blue) and when learning to discriminate odd from even digits in MNIST (orange). We
trained either the first layer only (dashed) or both layers (solid). Notice the log scale on the
x-axes. (Right) Both structured inputs and latent labels are required to diminish the
plateau for synthetic data. Same experiment, but now the network is trained on structured
inputs (Eq. 6) (f(x) = sgn(x), D = 10), with teacher labels y∗µ (Eq. 4, blue) and with latent labels

ỹ∗µ (Eq. 7, orange). In both plots, g(x) = erf
(
x/
√

2
)
, N = 784, P = 76N,M = 4,K = 3, η = 0.2.

as the network size K increases (green diamonds). The network learned the right function on
the lower-dimensional manifold on which MNIST inputs concentrate, but not outside of it.

This behaviour is not reproduced if we substitute the MNIST data set with a data set of
the same size drawn from the vanilla teacher-student setup from Sec. 2.2 with M = 4, leaving
everything else the same (right of Fig. 1). The final test error decreases with K, and as soon as
the expressive power of the network is at least equal to that of the teacher, i.e. K ≥ M , the
asymptotic test error goes to zero, since the data set is large enough for the network to recover
the teacher’s weights to within a very small error, leading to a small generalisation error. We
also computed the εfrac

1,2 evaluated using Gaussian i.i.d. inputs (green diamonds). Networks with
fewer parameters than the teacher find different approximations to that function, yielding finite
values of ε1,2. If they have just enough parameters (K = M), they learn the same function.
Remarkably, they also learn the same function when they have significantly more parameters
than the teacher. The vanilla teacher-student setup is thus unable to reproduce the behaviour
observed when training on MNIST.

2.4. The generalisation error exhibits plateaus during training on i.i.d. inputs

We plot the generalisation dynamics, i.e. the test error as a function of training time, for neural
networks of the form (1) in Fig. 2. For a data set drawn from the vanilla teacher-student setup
with M = 4, (blue lines in the left-hand plot of Fig. 2), we observe that there is an extended
period of training during which the test error εg remains constant before a sudden drop. These
“plateaus” are well-known in the literature for both SGD, where they appear as a function of
time [12, 47, 48], and in batch learning, where they appear as a function of the training set
size [4, 49]. Their appearance is related to different stages of learning: After a brief exponential
decay of the test error at the start of training, the network “believes” that data are linearly
separable and all her hidden units have roughly the same overlap with all the teacher nodes. Only
after a longer time, the network picks up the additional structure of the teacher and “specialises”:
each of its hidden units ideally becomes strongly correlated with one and only one hidden unit of
the teacher before the generalisation error decreases exponentially to its final value.
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In contrast, the generalisation dynamics of the same network trained on the MNIST task
(orange trajectories on the left of Fig. 2) shows no plateau. In fact, plateaus are rarely seen
during the training of neural networks (note that during training, we do not change any of the
hyper-parameters, e.g. the learning rate η.)

It has been an open question how to eliminate the plateaus from the dynamics of neural
networks trained in the teacher-student setup. The use of second-order gradient descent methods
such as natural gradient descent [50] can shorten the plateau [51], but we would like to focus on
the more practically relevant case of first-order SGD. Yoshida et al. [43] recently showed that
the length and the existence of the plateau depend on the dimensionality of the output of the
network, but our aim is to build a model where the plateau disappears independently of the
output dimension.

3. The hidden manifold model

3.1. Definition

We now introduce a new generative probabilistic model for structured data sets with the aim of
reproducing the behaviour observed during training on MNIST, but with a synthetic data set.
The main motivation for introducing such a model is that it is possible to derive a closed-form
solution of the learning dynamics, allowing for a detailed analytical study shown in Section 5.

To generate a data set containing P inputs in N dimensions, we first choose D feature vectors
fr, r = 1, . . . , D. These are vectors in N dimensions and we collect them in a feature matrix
F ∈ RD×N . Next we draw P vectors cµ with random i.i.d. components and collect them in the
matrix C ∈ RP×D. The vector cµ gives the coordinates of the µth input on the lower-dimensional
manifold spanned by the feature vectors in F . We will call cµ the latent representation of the
input xµ, which is given by the µth row of

X = f
(
CF /

√
D
)
∈ RP×N , (6)

where f is a non-linear function acting component-wise. In this model, the “world” of the data
on which the true label can depend is a D-dimensional manifold, which is obtained from the
linear subspace of RN generated by the D lines of matrix F , through a folding process induced
by the nonlinear function f . We note that the structure of data of the same type arises in a
learned variational autoencoder network [52] with single layer, or in a learned GAN network [53]
with a single layer generator network, the matrix C then corresponds to the random input, the
F to the learned features, f is the corresponding output activation. The exact form of f is not
important. We shall exemplify this statement in Sect. 4 where we work out the exact solutions
of the online learning dynamics in the “thermodynamic limit” where N,D → ∞ with a fixed
ratio: we will show explicitly that the whole learning dynamics depend on the folding function f
only through three parameters (see Eqs. (22)).

The latent labels are obtained by applying a two-layer neural network with weights θ̃ = (W̃ ∈
RM×D, ṽ ∈ RM ) within the unfolded hidden manifold according to

ỹ∗µ = φ(cµ, θ̃) =
M∑
m

ṽmg̃
(
w̃mcµ/

√
D
)
. (7)

We draw the weights in both layers component-wise i.i.d. from the normal distribution with
unity variance, unless we note it otherwise. The key point here is the dependency of labels ỹ∗µ
on the coordinates of the lower-dimensional manifold cµ rather than on the high-dimensional
data xµ. The exact functional form of this dependence is not crucial for the empirical part of
this work, there are other forms that would present the same behaviour, notably ones where the
latent representation is conditioned to the labels as in conditional GANs [54] or the manifold
model of [32]. For the analytical solution of the model in Section 5, the fact that the matrix C is
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Figure 3: A latent task on structured inputs makes independent networks behave
like networks trained on MNIST. (Left) For two networks trained independently on a binary
classification task with structured inputs (6) and latent labels ỹ∗µ (Eq. 7, M = 1), we plot the

final fractional test error, εfrac
g (blue dots). We also plot εfrac

1,2 (5), the fraction of Gaussian i.i.d.
inputs and structured inputs the networks classify differently after training (green diamonds and
orange crosses, resp.). (Right) In the same experiment, structured inputs with teacher labels
y∗µ (4) (M = 4) fail to reproduce the behaviour observed on MNIST (cf. Fig. 1). In both plots,

f(x) = sgn(x), g(x) = erf
(
x/
√

2
)
, D = 10, η = 0.2.

random i.i.d. and the labels are conditioned to it rather than the other way around simplifies
the analysis.

In the numerical simulations of this section, we choose the entries of both C and F to be i.i.d.
draws from the normal distribution with mean zero and unit variance. To ensure comparability
of the data sets for different data-generating function f(x), we always center the input matrix X
by subtracting the mean value of the entire matrix from all components and we rescale inputs by
dividing all entries by the covariance of the entire matrix before training. We stress at this point
that our results including the analysis of Section 5 holds for deterministic (learned if needed)
matrices F , we only require some balanced conditions stated in Eqs. (14-16)

3.2. Learning in the hidden manifold model

We repeated the experiments reported in Sec. 2.3 using data sets generated from the hidden
manifold model with D = 10 latent dimensions (see Appendix D.4 for experiments with large D).
On the right of Fig. 3, we plot the asymptotic performance of a network trained on structured
inputs which lie on a manifold (6) with a “teacher-task” as in (4): the labels are a function of
the high-dimensional inputs, y∗µ = φ(xµ,θ

∗), and they do not depend explicitly on the latent
representation cµ. In this case, the final results are similar to those of networks trained on
data from the vanilla teacher-student setup (cf. left of Fig. 1): given enough data, the network
recovers the teacher function if the network has at least as many parameters as the teacher. Once
the teacher weights are recovered by both networks, they achieve zero test error (blue circles)
and they agree on the classification of random Gaussian inputs because they do implement the
same function.

The left plot of Fig. 3 shows network performance when trained on the same inputs, but this
time with a “latent-task” where the labels are a function of the latent representation of the
inputs: ỹ∗µ = φ(cµ, θ̃

∗). The asymptotic performance of the networks then resembles that of
networks trained on MNIST: after convergence, the two networks disagree on structured inputs at
a rate that is roughly their generalisation error, but as K increases, they also learn increasingly
different functions, up to the point where they will agree on their classification of a random
Gaussian input in just half the cases. The hidden manifold model thus reproduces the behaviour

9



Figure 4: (Left) Same plot as the right plot of Fig. 1 with Gaussian i.i.d. inputs xµ and labels
y∗µ (4) provided by a teacher network with M = 4 hidden units that was pre-trained on the
MNIST task, reaching ∼ 5% on the task. Inset: Typical generalisation dynamics of networks
where we train the first or both layers (dashed and solid, resp.). g(x) = erf

(
x/
√

2
)
, η = 0.2, N =

784,M = K = 4, P ∗ = 76N . (Right) Four different setups for synthetic data sets in supervised
learning problems.

of independent networks trained on MNIST.
We now look at the learning dynamics. Again, we repeat the experiment of Sec. 2.4, but we

train networks on structured inputs X = sgn(CF ) with teacher-task (y∗µ) and latent-task (ỹ∗µ),
respectively. It is clear from Fig. 2 that the plateaus that are present in the teacher-task are
no longer seen when going to a latent-task. In Appendix D.2, we demonstrate that the lack
of plateaus for latent-tasks in Fig. 2 is not due to the fact that the network in the latent-task
asymptotes at a higher generalisation error than the teacher task. We will come back to the
plateau phenomenon in greater detail once we have derived the ODEs for online learning in
Sec. 5.

3.3. Latent-tasks and hidden-manifold inputs model real data sets

Our quest to reproduce the behaviour of networks trained on MNIST has led us to consider three
different setups so far: the vanilla teacher-student setup, i.e. a teacher-task on unstructured
inputs; and teacher- and latent- tasks on structured inputs lying in a hidden manifold. While
it is not strictly possible to test the case of a latent-task with unstructured inputs, we can
approximate this setup by training a network on the MNIST task and then using the resulting
network as a teacher to generate labels y∗µ (4) for inputs drawn i.i.d. component-wise from the
standard normal distribution. To test this idea, we trained both layers sigmoidal networks with
M = 4 hidden units using vanilla SGD on the MNIST task, where they reach a generalisation
error of about 5%. They have thus clearly learnt some of the structure of the MNIST task.
However, as we show on the left of Fig. 4, independent students trained on a data set with i.i.d.
Gaussian inputs xµ and true labels y∗µ given by the pre-trained teacher network behave similarly
to students trained in the vanilla teacher-student setup of Sec. 2.3. Furthermore, the learning
dynamics of a network trained in this setup display the plateaus that we observed in the vanilla
teacher-student setup (inset of Fig. 4).

On the right of Fig. 4, we summarise the four different setups for synthetic data sets in
supervised learning problems that we have analysed in this paper. Out of these four, only the
hidden manifold model, consisting of a latent task on structured inputs, reproduced the behaviour
of neural networks trained on the MNIST task. We anticipate that other models and label
generative processes would reproduce the empirical behaviours observed in this paper, the main
advantage of the specific model defined here is its analytic tractability.
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Figure 5: The double descent phenomenology in the hidden manifold model with
(D = 250, top) and (D = 10, bottom) latent dimensions. Fractional and mean-squared
error for students (left and right, resp.). For both plots, g(x) = g̃(x) = erf

(
x/
√

2
)
, η = 0.2, P =

20N,N = 500,M = 1, Gaussian initial weights with std. dev. 10−3.

3.4. Double descent phenomenology in the hidden manifold model

We also point out that training two-layer neural network on the data from the hidden manifold
model presents the double descent phenomenon: when more and more parameters are added
to the network the generalisation error first goes up at around a point where the number of
parameters corresponds to the number of samples (vertical lines in Fig. 5) and then goes steadily
down without a sign of overfitting. This phenomenon has been discussed widely in the recent
deep learning literature [40, 55, 56], and dates back to early works in statistical mechanics of
learning [4, 57].

In order to reproduce the double descent picture we repeated our experiments with two
independent students by training two-layer fully connected networks with K hidden units on
structured inputs with a latent task. In all experiments, we take the teacher to have one hidden
unit (M = 1) and set its second-layer weight to unity. We train both layer of the student
until convergence of the generalisation error, starting from initial weights which are drawn i.i.d.
from the normal distribution with variance 10−3. We chose a fixed training with a number of
samples P = 20N . In Fig. 5), we mark the network that has the same number of parameters
as the training samples with a vertical line located at K = P/N . In Fig. 5, we see a clear peak
behaviour with all three measured errors peaking just before this line. This is consistent with
the observations of [55, 56] where this behaviour was demonstrated from MNIST and other data
sets and more generic neural networks. This behaviour is very consistently observed in deep
learning [58].
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4. Analytical study of the Hidden Manifold Model: the Gaussian
Equivalence Theorem

4.1. The asymptotic limit of the hidden manifold model

As we have seen the learning phenomenology of the HMM shows interesting similarities to
learning from a “real” database. The interest of the model is that, at the same time, it is
amenable to analytic studies.

In the following, we shall be interested in a thermodynamic limit where the size of the input
space N goes to ∞, together with the number P of patterns that are presented for learning,
keeping the ratio α = P/N fixed. The problem can be studied analytically in this case if one
assumes that the latent dimension D, i.e. the dimension of the feature space, also scales with N ,
meaning that it goes to ∞ with a fixed ratio δ = D/N which is of order 1 with respect to N , so
that we have

N,P,D →∞, with fixed α =
P

N
and δ =

D

N
. (8)

The difficulty in analysing HMM comes from the fact that the various components of one
given input pattern, say xµi and xνj , have correlations. However, it turns out that the relevant
variables which are the “local fields” acting on the neurons in the hidden layer can be shown to
follow a Gaussian distribution in the thermodynamic limit (8). We shall make this statement
precise in Sec 4.2 in the form of the “Gaussian Equivalence Theorem” (GET). Then we shall use
this theorem in order to derive the exact analytical equations for the online learning in Sec. 5.

A special case of the Gaussian Equivalence Theorem was in fact known in random matrix
theory [17,20–24] and the mapping was explicitly used in [18, 19]. We stress that the GET does
not require the matrix F ) to be a random one, and is valid as well for deterministic matrices.
This allows to generalise these mappings to the case of deterministic features using Hadamard and
Fourier matrices, such as the one used in Fastfood [59] or ACDC [60] layers. These orthogonal
projections are actually known to be more effective than the purely random ones [61]. It also
allows generalisation of the analysis in this paper for data coming from a learned GAN, along
the lines of [24, 25]. We shall illustrate this point below by analysing the dynamics of online
learning when the feature matrix F is a deterministic Hadamard matrix (cf. Sec. 5.2.2).

4.2. Gaussian Equivalence Theorem

Let {Cr}Dr=1 be D i.i.d. Gaussian random variables distributed as N (0, 1). In the following we
shall denote by E the expectation value with respect to this distribution. Define N variables ui,
i = 1, . . . , N as linear superpositions of the Cr variables,

ui ≡
1√
D

D∑
r=1

CrFir , (9)

and M variables νm, m = 1, . . . ,M as other linear superpositions,

νm ≡ 1√
D

D∑
r=1

Crw̃
m
r , (10)

where w̃mr are the teacher weights Eq. (7). Define K variables λk as linear superpositions of f(ui)
where f is an arbitrary function:

λk ≡ 1√
N

N∑
i=1

wki f(ui) , (11)

where w̃ki are the student weights Eq. (1). Denoting by 〈g(u)〉 the expectation of a function g(u)
when u is a normal variable with distribution u ∼ N (0, 1), we also introduce for convenience the
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“centered” variables

λ̃k ≡ 1√
N

N∑
i=1

wki (f(ui)− 〈f(u)〉) . (12)

We shall define the “thermodynamic” or “asymptotic” limit’ as the limit N →∞, D →∞,
keeping K,M and the ratio D/N finite. Notice that our notations keeps upper indices for indices
which take values in a finite range (k, ` ∈ {1, . . . ,K}, m,n ∈ {1, . . . ,M} ), and lower indices for
those which have a range of order N (i, j ∈ {1, . . . , N}; r, s ∈ {1, . . . , D}).

As the Cr are Gaussian, the ui variables are also Gaussian variables, with mean zero and a
matrix of covariance

Uij = E [uiuj ] =
1

D

D∑
r=1

FirFjr . (13)

We assume that, in the thermodynamic limit, the W , W̃ and F matrices have elements of
O(1) and that they are “balanced” in the sense that:

∀p, q ∀k1, . . . , kp, r1, . . . rq : S
k1k2...kp
r1r2...rq =

1√
N

∑
i

wk1i w
k2
i . . . w

kp
i Fir1Fir2 . . . Firq = O(1), (14)

with a similar scaling for the combinations involving the teacher weights w̃mr . We also assume
that

1√
D

D∑
r=1

FirFjr = O
(

1

N

)
(15)

for i 6= j, and we normalise F and W to

D∑
r=1

(Fir)
2 = D;

N∑
i=1

(wki )2 = N. (16)

Notice that the only variables which are drawn i.i.d. from a Gaussian distribution are the
coefficients Cr. Most importantly, the matrices F and W can be arbitrary (and deterministic)
as long as they are balanced.

Note that the covariances of the ui variables scale in the thermodynamic limit as

E [u2
i ] = 1; E [uiuj ] = O(1/

√
D), i 6= j. (17)

Under these conditions:

Theorem 4.1. Gaussian Equivalence Theorem (GET) In the asymptotic limit when N →
∞, D →∞, keeping K,M and the ratio D/N finite, {λk} and {νm} are K+M jointly Gaussian
variables, with mean

E [λk] = a
1√
N

N∑
i=1

wki ; E [um] = 0 , (18)

and covariance

Qk` ≡ E [λ̃kλ̃`] = (c− a2 − b2)W k` + b2Σk` , (19)

Rkm ≡ E [λ̃kνm] = b
1

D

D∑
r=1

Skr w̃
m
r , (20)

Tmn ≡ E [νmνn] =
1

D

D∑
r=1

w̃mr w̃
n
r , (21)

The “folding function” f(·) appears through the three coefficients a, b, c, which are defined as

a = 〈f(u)〉, b = 〈uf(u)〉, c = 〈f(u)2〉 (22)
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where 〈ψ(u)〉 denotes the expectation value of the function ψ when u ∼ N (0, 1) is a Gaussian
variable.

The covariances are defined in terms of the three matrices

Skr ≡
1√
N

N∑
i=1

wki Fir , (23)

W k` ≡ 1

N

N∑
i=1

wki w
`
i , (24)

Σk` ≡ 1

D

D∑
r=1

SkrS
`
r , (25)

whose elements are assumed to be of order O(1) in the asymptotic limit.

The proof of the theorem is given in Appendix A. This Gaussian theorem shows that there is a
whole family of activation functions f(x) (those that have the same values for a, b and c) that will
lead to equivalent analytical results for the learning curves studied in this paper. Furthermore, it
forms a basis from which we can develop an analytical understanding of learning with the hidden
manifold model, as we show in the next section.

5. The dynamics of stochastic gradient descent for the HMM in the
teacher-student setup

We now analyse the dynamics of stochastic gradient descent in the case of online learning, where
at each step of the algorithm µ = 1, 2, . . ., the student’s weights are updated according to Eq. (2)
using a previously unseen sample (xµ, yµ). This case is also known as one-shot or single-pass
SGD, and it has the advantage that it can be exactly described analytically, as we will show in
this section.

Before diving into the details of the analysis, we checked numerically that online learning
in the thermodynamic limit of Eq. (8) preserves the effects we observed in our experiments
of Sec. 2. On the left of Fig. 6, we show the behaviour of independent students for the same
experiment as in Fig. 1, but here the networks are trained on a data set drawn from the hidden
manifold model with δ = 0.05 that is large enough that every sample is used only once during
training. We checked numerically that the results shown in this plot remain unchanged, apart
from finite-size effects and sample-to-sample variations, as we increase N and D while keeping
δ = 0.05, going up to N = 1000. We were able to reproduce the results from MNIST and Fashion
MNIST (Figs. 1, 10) using the online learning for the hidden manifold model. On the right of
Fig. 6, we plot the generalisation dynamics of a two-layer network trained on the HMM with
δ = 0.5 during online learning. When training only the first layer of weights (dashed line), or
when training both layers (solid line), we see that there are no distinguishable plateaus in the
dynamics, in stark contrast to the vanilla teacher-student setup shown in Fig. 2. Online learning
of the hidden manifold model is thus a sensible case to study the effects we observed on MNIST
at the outset of the paper.

The goal of our analysis is to track the mean-squared generalisation error of the student with
respect to the teacher at all times,

εmse
g (θ, θ̃) ≡ 1

2
E
(

[φ(x,θ)− ỹ∗]2
)
, (26)

where the expectation E denotes an average over an input drawn from the hidden manifold
model, Eq. (6), with latent label ỹ∗µ = φ(cµ, θ̃

∗) given by a teacher network with fixed weights θ̃∗

acting on the latent representation (7). Note that the weights of both the student and the teacher,
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Figure 6: The online learning in the hidden manifold model (8) reproduces the
behaviour of independent students seen on MNIST. (Left) Same plot as Fig. 1, but this
time we train the two independent students on a data set drawn from the hidden manifold (8) with
δ = 0.05, training only the first layer of the student network. We also checked numerically that this
behaviour is unchanged as we increase N and D while keeping δ constant, going up to N = 1000.
Here, f(x) = sgn(x), g(x) = g̃(x) = erf(x/

√
2), N = 300, D = 15,M = 1, η = 0.2, ṽm = 1, vk = 1.

(Right) Generalisation dynamics of online learning using a data set drawn from the HMM with
δ = 0.5. The plateau seen in the vanilla-teacher-student setup (Fig. 2) are greatly reduced; see
Sec. 5.2.1 for a detailed discussion. f(x) = sgn(x), g(x) = g̃(x) = erf(x/

√
2), N = 1000, D =

50,M = 4,K = 3, η = 0.2.

as well as the feature matrix Fir, are held fixed when taking the average, which is an average
only over the coefficients cµr.

The analysis of online learning has been performed previously for the vanilla teacher-student
model (4) with i.i.d. Gaussian inputs [12, 47, 62–64], and has recently been put on a rigorous
foundation [13].

Here, we generalise this type of analysis to two-layer neural networks trained on the Hidden
Manifold Model. Since we saw in the numerical part of our paper that the phenomenology
described in Sec. 3.2 does not depend on whether we train both layers or only the first layer
of the student, here we study training the first layer only, while the second layer of both the
teacher and the student is fixed at vk = ṽ∗m = 1 for all k = 1, . . . ,K; m = 1, . . . ,M , similar to
previous work [12,63,64]. Generalising our equations to the case where both layers are trained is
a straightforward exercise that we leave for future work. To keep notation compact, we focus on
cases where a = E f(u) = 0 in (22), which leads to λ̃k = λk in (12). A generalisation to the case
where a 6= 0 is straightforward.

We can make progress with the high-dimensional average over x in Eq. (26) by noticing that
the input x and its latent representation c only enter the expression via the local fields νm

and λk, Eqs. (10, 11):

εmse
g (θ, θ̃) =

1

2

K∑
k,`

E g(λk)g(λ`) +
1

2

M∑
n,m

E g̃(νn)g̃(νm)−
K∑
k

M∑
n

E g(λk)g̃(νm) (27)

and the average is now taken over the joint distribution of local fields {λk=1,...,K , νm=1,...,M}.
The key step is now to invoke the Gaussian Equivalence Theorem 4.1, which guarantees that this
distribution is a multivariate normal distribution with covariances Qk`, Rkm, and Tnm (19–21).
We stress at this point that in the online learning each new presented sample is independent
of what has been learned so far and this is why the GET can be used at every step. This is in
contrast with the full-batch learning where the corresponding results were only conjectured to be
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hold in [19]. Depending on the choice of g(x) and g̃(x), this makes it possible to compute the
average analytically; in any case, the GET guarantees that we can express εg(θ, θ̃) as a function
of only Qk`, Rkm, and Tnm, which are called order parameters in statistical physics [12,47,62]:

lim
N,D→∞

εmse
g (θ, θ̃) = εmse

g (Qk`, Rkn, Tnm) (28)

where in taking the limit, we keep the ratio δ = D/N finite (see Eq. (8)). For example, for a
student with g(λk) = erf(λk/

√
2) and a teacher with g̃(νm) = max(0, νm), we find that

εmse
g (Qk`, Rkn, Tnm) =

1

π

∑
i,k

arcsin

(
Qik√

1 +Qii
√

1 +Qkk

)
−
∑
k,n

Rkn
√

2π
√

1 +Qkk

+
∑
n,m

2
√
TmmTnn − (Tnm)2 + Tnm

[
π + 2 arctan

(
Tnm√

TmmTnn−(Tnm)2

)]
8π

. (29)

Intuitively, the order parameter Rkn measures the similarity between the action of the ith
student node on an input xµ and the nth teacher node acting on the corresponding latent
representation cµ. The matrix Qk` =

[
c− b2

]
W k` + b2Σk` quantifies the similarity between two

student nodes k and `, and has two parts: the latent student-student overlap Σk`, which measures
the overlap of the weights of two students nodes after they have been projected to the hidden
manifold, and the ambient student-student overlap W k`, which measures the overlap between
the vectors wk,w` ∈ RN . The overlaps of the teacher nodes are collected in the matrix Tnm,
which is not time-dependent, as it is a function of the teacher weights only. Our aim is then to
obtain a closed set of differential equations that describe the dynamics of the order parameters,
which we will call their equations of motion.

5.1. Derivation of the equations of motion

When we make a step of SGD, we update the weight wki using a new sample, generated using a
previously unused sample according to(

wki

)
µ+1
−
(
wki

)
µ

= − η√
N

∆g′(λk)f(ui) , (30)

where ∆ =
∑K

j=1 g(λ
j) −

∑M
m=1 g̃(ν

m). From here on out, we shall drop the index µ on the
right-hand side as we work at a fixed iteration time. We will keep the convention of Sec. 4.2
where extensive indices (taking values up to N or D) are below the line, while we’ll use upper
indices when they take finite values up to M or K. The challenge of controlling the learning
in the thermodynamic limit will be to write closed equations using matrices with only “upper”
indices left. Furthermore, we will adopt the convention that the indices j, k, `, ι = 1, . . . ,K
always denote student nodes, while n,m = 1, . . . ,M are reserved for teacher hidden nodes.

5.1.1. First steps

When we study the evolution of quantities that are linear in the weights, like Skr and the order
parameters constructed from it, e.g. Σk`, we need to study K∑

j=1

g(λj)−
M∑
m=1

g̃(νm)

 g′(λk)f(ui) =
K∑
j 6=k

ajki + bki −
M∑
n=1

cnki , (31)

where

ajki = g(λj)g′(λk)f(ui) , (32)

bki = g(λk)g′(λk)f(ui) , (33)

cnki = g̃(νn)g′(λk)f(ui) . (34)
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We can thus follow the dynamics of Skr (23), which is linear in the weights and enters the definition
of the order parameters Rkm (20) and Σkl (25):(

Skr

)
µ+1
−
(
Skr

)
µ

= − η

N

∑
i

Fir

 K∑
j 6=k

ajki + bki −
M∑
n

cnki

 . (35)

We want to average this update equation over a new incoming sample, i.e. over the cr variables.
Upon contraction with Fir in Eq. (35), we are thus led to computing the averages

Ajkr ≡
1√
N

∑
i

E
[
Firajki

]
= E

[
g(λj)g′(λk)βr

]
, (36)

Bkr ≡ E
[
g(λk)g′(λk)βr

]
, (37)

and
Cnkr = E

[
g̃(νn)g′(λk)βr

]
, (38)

where

βr =
1√
N

∑
i

Firf(ui). (39)

The crucial fact that allows for an analytic study of online learning is that, at each step µ of
SGD, a previously unseen input xµ is used to evaluate the gradient. The latent representation
cµ of this input is given by a new set of i.i.d. Gaussian random variables cµr, which are thus
independent of the current weights of the student at that time. In the thermodynamic limit, the
GET of the previous section shows that, for one given value of r, the K +M + 1 variables {λk},
{νm} and βr have a joint Gaussian distribution, making it possible to express the averages over
{λk, νm, βr} in terms of only their covariances.

Looking closer, we see that the average of (36,37,38) over this Gaussian distribution involves
two sets of random variables: on the one hand, the M + K local fields {νm, λk}, which have
correlations of order 1, and on the other hand the variable βr (for one given value of r). It turns
out that βr is only weakly correlated with the local fields {νm, λk} (the correlation is O(1/

√
N)).

In Appendix A.1, we discuss how to compute this type of average and prove Lemma A.1, which
for the averages (36–38) yields

Ajkr =
1

QkkQjj − (Qkj)2

[
QjjE

[
g′(λk)λkg(λj)

]
E
[
λkβr

]
−QkjE

[
g′(λk)λjg(λj)

]
E
[
λkβr

]
−QkjE

[
g′(λk)λkg(λj)

]
E
[
λjβr

]
+QkkE

[
g′(λk)λjg(λj)

]
E
[
λjβr

]]
,

(40)

Bkr =
1

Qkk
E
[
g′(λk)λkg(λk)

]
E
[
λkβr

]
, (41)

Cnkr =
1

QkkTnn − (Rkn)
2

[
TnnE

[
g′(λk)λkg̃(νn)

]
E
[
λkβr

]
−RknE

[
g′(λk)νng̃(νn)

]
E
[
λkβr

]
−RknE

[
g′(λk)λkg̃(νn)

]
E [νnβr] +QkkE

[
g′(λk)νng̃(νn)

]
E [νnβr]

]
.

(42)

This yields (
Skr

)
µ+1
−
(
Skr

)
µ

= − η√
N

 K∑
j 6=k
Ajkr + Bkr −

M∑
n

Cnkr

 , (43)

with only the single intensive index r left. While this equation would appear to open up a way
to write down the equation of motion for the “teacher-student” overlap Rkm by contracting (43)
with w̃mr , we show in Appendix B that such a program will lead to an infinite hierarchy of
equations. To avoid this problem, we rotate the problem to a different basis, as we explain in the
next section.
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5.1.2. Changing the basis to close the equations

We can close the equations for the order parameters by studying their dynamics in the basis
given by the eigenvectors of the operator

Ωrs ≡
1

N

∑
i

FirFis, (44)

which is a D ×D symmetric matrix, with diagonal elements Ωrr = 1, and off-diagonal elements
of order 1/

√
N . Consider the orthogonal basis of eigenvectors ψτ=1,...,D of this matrix, with

corresponding eigenvalues ρτ , such that∑
s

Ωrsψτs = ρτψτr. (45)

We will suppose that the components of the eigenvectors ψτr are of order 1 and we impose the
following normalisation: ∑

s

ψτsψτ ′s = Dδττ ′ ,
∑
τ

ψτrψτs = Dδrs. (46)

In this basis, the teacher-student overlap Rkm (20) is given by

Rkm =
b

D

∑
τ

Γkτ ω̃
m
τ , (47)

where we have introduced the projections

Γkτ =
1√
D

∑
r

Skrψτr (48)

and

ω̃mτ =
1√
D

∑
r

w̃mr ψτr. (49)

Since ω̃mτ is a static variable, the time evolution of Γkτ is given by

(
Γkτ

)
µ+1
−
(

Γkτ

)
µ

= − η√
δN

∑
r

ψτr

 K∑
j 6=k
Ajkr + Bkr −

M∑
n

Cnkr

 (50)

As we aim to compute the remaining sum over r, two types of terms appear:∑
r

ψτrE
[
λkβr

]
=

1√
δ

(
(c− b2)δ + b2ρτ

)
Γkτ =

dτ√
δ

Γkτ , (51)

where we have defined dτ = (c− b2)δ + b2ρτ , and∑
r

ψτrE [νnβr] =
b√
δ
ρτ ω̃

n
τ . (52)
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Putting everything together, the final evolution of Γkτ is

(
Γkτ

)
µ+1
−
(

Γkτ

)
µ

= − η

δN

dτΓkτ
∑
j 6=k

QjjE
[
g′(λk)λkg(λj)

]
−QkjE

[
g′(λk)λjg(λj)

]
QkkQjj − (Qkj)2

+
∑
j 6=k

dτΓjτ
QkkE

[
g′(λk)λjg(λj)

]
−QkjE

[
g′(λk)λkg(λj)

]
QkkQjj − (Qkj)2

+ dτΓkτ
1

Qkk
E
[
g′(λk)λkg(λk)

]
− dτΓkτ

∑
n

TnnE
[
g′(λk)λkg̃(νn)

]
−RknE

[
g′(λk)νng̃(νn)

]
QkkTnn − (Rkn)2

−bρτ
∑
n

ω̃nτ
QkkE

[
g′(λk)νng̃(νn)

]
−RknE

[
g′(λk)λkg̃(νn)

]
QkkTnn − (Rkn)2

]
.

(53)

At this point, we note that the remaining averages appearing in this expression, such
as E

[
λkg′(λk)g̃(νm)

]
, depend only on subsets of the local fields {λk=1,...,K , νm=1,...,M}. As

discussed above, the GET guarantees that these random variables follow a multi-dimensional
Gaussian distribution, so these averages depend only on the covariances of the local fields Rkm,
Qk`, and Tmn. To simplify the subsequent equations, we will use the following shorthand for the
three-dimensional Gaussian averages

I3(k, j, n) ≡ E
[
g′(λk)λj g̃(νn)

]
, (54)

which was introduced by Saad & Solla [12]. Arguments passed to I3 should be translated into
local fields on the right-hand side by using the convention where the indices j, k, `, ι always refer
to student local fields λj , etc., while the indices n,m always refer to teacher local fields νn, νm.
Similarly,

I3(k, j, j) ≡ E
[
g′(λk)λjg(λj)

]
, (55)

where having the index j as the third argument means that the third factor is g(λj), rather than
g̃(νm) in Eq. (54). The average in Eq. (54) is taken over a three-dimensional normal distribution
with mean zero and covariance matrix

Φ(3)(k, j, n) =

E
[
λkλk

]
E
[
λkλj

]
E
[
λkνn

]
E
[
λkλj

]
E
[
λjλj

]
E
[
λjνn

]
E
[
λkνn

]
E
[
λjνn

]
E [νnνn]

 =

Qkk Qkj Rkn

Qkj Qjj Rjn

Rkn Rjn Tnn

 . (56)

The explicit forms of the integrals I3 and I4 that appear in the equations of motion for the
order parameters and the generalisation error for networks with g(x) = erf

(
x/
√

2
)
. They were

first given by [12, 47]. Denoting the elements of the covariance matrix such as Φ3 (56) as φij , we
have

I3(·, ·, ·) =
2

π

1√
Λ3

φ23(1 + φ11)− φ12φ13

1 + φ11
(57)

with
Λ3 = (1 + φ11)(1 + φ33)− φ2

13. (58)

For the average I4, we have a covariance matrix Φ(4) that is populated in analogy to Φ(3) (56),
we have

I4(·, ·, ·, ·) =
4

π2

1√
Λ4

arcsin

(
Λ0√
Λ1Λ2

)
(59)
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where

Λ4 = (1 + φ11)(1 + φ22)− φ2
12, (60)

Λ0 = Λ4φ34 − φ23φ24(1 + φ11)− φ13φ14(1 + φ22) + φ12φ13φ24 + φ12φ14φ23, (61)

Λ1 = Λ4(1 + φ33)− φ2
23(1 + φ11)− φ2

13(1 + φ22) + 2φ12φ13φ23, (62)

Λ2 = Λ4(1 + φ44)− φ2
24(1 + φ11)− φ2

14(1 + φ22) + 2φ12φ14φ24 (63)

5.1.3. Dynamics of the teacher-student overlap Rkm

We are now in a position to write the update equation for(
Rkm

)
µ+1
−
(
Rkm

)
µ

=
b

D

∑
τ

[(
Γkτ

)
µ+1
−
(

Γkτ

)
µ

]
ω̃mτ , (64)

where we have used that the ω̃mτ are static. When performing the last remaining sum over τ ,
two types of terms appear. First, there is

T̃mn ≡ 1

D

∑
τ

ρτ ω̃
m
τ ω̃

n
τ . (65)

which depends only on the choice of the feature matrix Fir and the teacher weights w∗mr and is
thus a constant of the motion. The second type of term is of the form

1

D

∑
τ

ρτΓ`τ ω̃
n
τ . (66)

This sum cannot be reduced to a simple expression in terms of other order parameters. Instead,
we are led to introduce the density

rkm(ρ) =
1

ερ

1

D

∑
τ

Γkτ ω̃
m
τ 1 (ρτ ∈ [ρ, ρ+ ερ[) , (67)

where 1(·) is the indicator function which evaluates to 1 if the condition given to it as an argument
is true, and which otherwise evaluates to 0. We take the limit ερ → 0 after the thermodynamic
limit. Then we can rewrite the order parameter Rkm as an integral over the density rkm, weighted
by the distribution of eigenvalues of the operator Ωrs, PΩ(ρ):

Rkm = b

∫
dρ PΩ(ρ) rkm(ρ) . (68)

If, for example, we take the elements of the feature matrix Fir to be element-wise i.i.d. from the
normal distribution with mean zero and unit variance, then the limiting density of eigenvalues of
Ω is given by the Marchenko-Pastur law [65]:

PMP(ρ) =
1

2πδ

√
(ρmax − ρ)(ρ− ρmin)

ρ
, (69)

where ρmin =
(

1−
√
δ
)2

and ρmax =
(

1 +
√
δ
)2

.

The update equation of rkm(ρ) can be obtained immediately by substituting the update
equation for Γkτ (53) into its definition (67). Finally, in the thermodynamic limit, the normalised
number of steps t = µ/N can be interpreted as a continuous time-like variable, and so we have

Rkm(t) = b

∫
dρ PΩ(ρ) rkm(ρ, t) (70)
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with

∂rkm(ρ, t)

∂t
= −η

δ

d(ρ)rkm(ρ)
∑
j 6=k

Qjj I3(k, k, j)−QkjI3(k, j, j)

QjjQkk − (Qkj)2

+ d(ρ)
∑
j 6=k

rjm(ρ)
QkkI3(k, j, j)−Qkj I3(k, k, j)

QjjQkk − (Qkj)2

+ d(ρ)rkm(ρ)
1

Qkk
I3(k, k, k)

− d(ρ)rkm(ρ)
∑
n

TnnI3(k, k, n)−RknI3(k, n, n)

QkkTnn − (Rkn)2

−bρ
∑
n

T̃nm
QkkI3(k, n, n)−RknI3(k, k, n)

QkkTnn − (Rkn)2

)
,

(71)

where d(ρ) = (c− b2)δ+ b2ρ. Note that while we have dropped the explicit time dependence from
the right-hand side to keep the equation readable, all the order parameters on the right-hand
side are explicitly time-dependent, i.e. Qjj = Qjj(t), rkm(ρ) = rkm(ρ, t), and the averages I3(·)
are also time-dependent via their dependence on the order parameters (see Eq. (54) and the
subsequent discussion). In order to close the equations of motion, we now need to find the
equations for the order parameters that are quadratic in the weights.

5.1.4. Order parameters that are quadratic in the weights

There are two order parameters that appear when evaluating the covariance of the λ variables:

Qk` ≡ E
[
λkλ`

]
=
[
c− b2

]
W k` + b2Σk`. (72)

We will look at both W k` and Σk` in turn now.

Equation of motion for W k` For the student-student overlap matrix

W k` =
1

N

N∑
i

wki w
`
i , (73)

we find, after some algebra, that updates read

(
W k`

)µ+1
−
(
W k`

)
µ

= − η

N3/2

N∑
i

w`i

 K∑
j 6=k

ajki + bki −
M∑
n

cnki


− η

N3/2

N∑
i

wki

 K∑
j 6=`

aj`i + b`i −
M∑
n

cn`i


+
η2

N2

N∑
i

f(ui)
2g′(λk)g′(λ`)

 K∑
j,ι

g(λj)g(λι) +

M∑
n,m

g̃(νn)g̃(νm)

−2
K∑
j

M∑
m

g(λj)g̃(νm)



(74)

For the terms linear in the learning rate η, we can immediately carry out the sum over i, which
yields terms of the type

1√
N

∑
i

w`iE
[
g(λj)g′(λk)f(ui)

]
= E

[
g′(λk)λ`g(λj)

]
= I3(k, `, j) etc. (75)
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The term quadratic in the learning rate η requires the evaluation of terms of the type

1

N

∑
i

E
[
f(ui)

2g′(λk)g′(λ`)g(λj)g(λι)
]

= cE
[
g′(λk)g′(λ`)g(λj)g(λι)

]
. (76)

The sum over i thus makes this second-order term contribute to the total variation of W k` at
leading order, and we’re left with an average over four local fields, for which we introduce the
short-hand

I4(k, `, j, ι) ≡ E
[
g′(λk)g′(λ`)g(λj)g(λι)

]
, (77)

where we use the same notation as we did for I3(·) (54). The full equation of motion for W k`

thus reads

dW k`(t)

dt
=− η

 K∑
j

I3(k, `, j)−
∑
n

I3(k, `, n)

− η
 K∑

j

I3(`, k, j)−
∑
n

I3(`, k, n)


+ cη2

 K∑
j,a

I4(k, `, j, a)− 2

K∑
j

M∑
m

I4(k, `, j,m) +

M∑
n,m

I4(k, `, n,m)

 .

(78)

Equation of motion for Σk` After rotating to the basis ψτ , we have

Σk` ≡ 1

D

∑
r

SkrS
`
r =

1

D

∑
τ

ΓkτΓ`τ . (79)

It is then immediate that

(Σk`)
µ+1 − (Σk`)µ =

1

D

∑
τ

(
Γ`τ

)
µ

[
(Γkτ )

µ+1 − (Γkτ )µ

]
+

1

D

∑
τ

(
Γkτ

)
µ

[
(Γ`τ )

µ+1 − (Γ`τ )µ

]
+

η2

D2N

∑
τ

R∑
r,s

ψτrψτsE
[
∆2g′(λk)g′(λ`)βrβs

]
.

(80)

The terms linear in η can be obtained directly by substituting in the update equation for Γkτ (53)
and are similar to the update equation for rkm(ρ). As for the term quadratic in η, we have to
leading order

η2

DN

R∑
r,s

ψτrψτsE
[
∆2g′(λk)g′(λ`)βrβs

]
=

η2

DN

R∑
r

(ψτr)
2E
[
∆2g′(λk)g′(λ`)

]
E
[
β2
r

]
=
η2

N
E
[
∆2g′(λk)g′(λ`)

] [
(c− b2)ρτ +

b2

δ
ρ2
τ

]
, (81)

where we have used that covariance of βr is given by

E
[
β2
r

]
= c− b2 +

b2

δ

∑
t

Ω2
rt. (82)

To deal with the remaining sum over τ , we again make use of the fact that the equation of
motion for Σk` depends on the eigenvector index τ only through the eigenvalue ρτ . Introducing
the density

σk`(ρ) =
1

ερ

1

D

∑
τ

ΓkτΓ`τ1 (ρτ ∈ [ρ, ρ+ ερ[) , (83)

as we did for rkm(ρ) (67), we have

Σk`(t) =

∫
dρ PΩ(ρ) σk`(ρ, t) (84)
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with

∂σk`(ρ, t)

∂t
= −η

δ

d(ρ)σk`(ρ)
∑
j 6=k

QjjI3(k, k, j)−QkjI3(k, j, j)

QjjQkk − (Qkj)2

+
∑
j 6=k

d(ρ)σj`(ρ)
QkkI3(k, j, j)−QkjI3(k, k, j)

QjjQkk − (Qkj)2

+ d(ρ)σk`(ρ)
1

Qkk
I3(k, k, k)

− d(ρ)σk`(ρ)
∑
n

TnnI3(k, k, n)−RknI3(k, n, n)

QkkTnn − (Rkn)2

− bρ
∑
n

r`n(ρ)
QkkI3(k, n, n)−RknI3(k, k, n)

QkkTnn − (Rkn)2

+ all of the above with `→ k, k → `

)
.

+ η2

[
(c− b2)ρ+

b2

δ
ρ2

] K∑
j,a

I4(k, `, j, a)

−2

K∑
j

M∑
m

I4(k, `, j,m) +

M∑
n,m

I4(k, `, n,m)



(85)

This last result completes the programme that we embarked upon at the beginning of this Section:
we have derived a closed set of equations of motion for the teacher-student overlap Rkm (68,71)
and the student-student overlap Qk` =

[
c− b2

]
W k` + b2Σk` (78,84,85). These equations give us

complete access to the dynamics of a neural network performing one-shot stochastic gradient
descent on a data set generated by the hidden manifold model. We can now integrate these
equations and substitute the values of the order parameters at any time into the expression for
the generalisation error (28), thereby tracking the dynamics of the generalisation error at all
times. We describe this procedure in more detail next.

5.2. Solving the equations of motion

The equations describing online learning that we have derived using the GET are valid for
any choice of functions f(x), g(x) and g̃(x). To solve the equations for a particular setup, one
first needs to compute the three constants a, b, c (22) and to evaluate the averages yielding
the functions I3 and I4. Choosing g(x) = g̃(x) = erf(x/

√
2), these averages can be computed

analytically [47]. Second, one needs to determine the spectral density of the feature matrix Fir. In
our experiments in the previous parts of this paper, we drew the entries of the feature matrix Fir
i.i.d. from the normal distribution with mean zero and unit variance, so the limiting distribution
of the eigenvalues ρ in the integrals (68) and (84) is the Marchenko-Pastur distribution (69) (but
see also Sec. 5.2.2 for a non-random matrix F ).

We illustrate the use of the equations of motion in Fig. 7, where we plot the dynamics of
the generalisation error (top left) and of the order parameters Rkm, Σk` and W k` computed
during a single experiment (crosses) and as obtained from integration of the equations of motion
(line). We provide a complete implementation of the equations of motion together with the
code for our simulations, which can be found on GitHub at https://github.com/sgoldt/

hidden-manifold-model.
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Figure 7: The analytical description of the hidden manifold generalisation dynamics
matches experiments. We plot the time evolution of the generalisation error εg(α) and the
three order-parameters Rkm, Σk` and W k` obtained by integration of the ODEs (solid) and from
a single run of SGD (2) (crosses). f(x) = sgn(x), g(x) = g̃(x) = erf(x/

√
2), N = 8000, D =

4000,M = 2,K = 2, η = 1.

5.2.1. Specialisation of hidden units in the hidden manifold model

Closer inspection of the time evolution of the order parameters in Fig. 7 reveals the mechanism
of learning by the neural network. If we look at the order parameter Rkm (top right), we see
that during the initial decay of the generalisation error up to a time t = µ/N ∼ 10, all elements
of the matrix Rkm increase from roughly 0 to a constant value, Rkm ' 0.35 . In other words,
the correlations between the pre-activation λk of any student node and the pre-activation νm of
any teacher node is roughly the same. As training continues, the student nodes “specialise”: the
pre-activation of one student node becomes strongly correlated with the pre-activation of only a
single teacher node. In the example shown in Fig. 7, we have strong correlations between the
pre-activation of the first student and the second teacher node (R12), and between the second
student and first teacher node (R21). The specialisation of the teacher-student correlations is
actually preceded by a de-correlation of the student units, as can be seen from the plots of
the latent and ambient student-student overlaps Σk` and W k`, respectively (bottom of Fig. 7).
Similar specialisation transitions have been observed in the vanilla teacher-student setup for both
online and batch learning [4]. In these setups, there is a large drop in the generalisation error
as student nodes specialise, leading to the appearance of the plateaus in the learning dynamics,
whereas here, we see but a tiny change in generalisation error.
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Figure 8: The ODE analysis is asymptotically correct for non-random feature ma-
trices F . We plot the time evolution of the generalisation error εg obtained by integration of the
ODEs (solid) and from a single run of SGD (2) (crosses) for two different matrices F : (i) elements
Fir are drawn i.i.d. from the standard normal distribution (blue); (ii) F is a Hadamard matrix [66]
f(x) = sgn(x), g(x) = g̃(x) = erf(x/

√
2), N = 1023, D = 1023,M = 2,K = 2, η = 0.2.

5.2.2. Using non-random feature matrices F

Our derivation of the ODEs for online learning did not assume that the feature matrix F
be random; instead, we only require the balance condition stated in Eq. (14) as well as the
normalisation conditions (15, 16). To illustrate this point, we plot the examples of online learning
dynamics with M = K = 2 in Fig. 8, with the prediction from the ODE as solid lines and the
result of a single simulation with crosses. In blue, we show results where the elements of Fir
were drawn i.i.d. from the standard normal distribution. For the experiment in orange, F = HN ,
where HN is a Hadamard matrix [66]. Hadamard matrices are N ×N matrices, so δ = 1 and
are popular in error-correcting codes such as the Reed-Muller code [67, 68]. They can be defined
via the relation

HNH
>
N = NIN , (86)

where IN is the N × N identity matrix. As we can see from Fig. 8, the ODEs capture the
generalisation dynamics of the Hadamard-case just as well. Another application explored in [17,25]
is to consider data coming from a trained GAN.

6. The relation of the HMM to learning with random features

As we alluded to in the introduction, there exists a deep relation between the hidden manifold
model (HMM) and random feature learning with unstructured i.i.d. input data. The idea of
learning with random features goes back to the mechanical perceptron of the 1960s [14] and
was popularised by the random kitchen sinks of Recht and Rahimi [15, 16]. This connection
is interesting beyond the formal analogy since random features are studied in detail, and can
approximate kernel methods to arbitrary precision [15,16].

Let us introduce random feature learning using notation that will make the relation to the
hidden manifold model explicit (see also Fig. 9). The P samples of the input data live in
dimension D and are collected in the matrix C ∈ RP×D. The neural network used for random
kitchen-sink or random feature learning consists of a first layer projecting the D-dimensional
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Figure 9: The relation between the hidden manifold model and learning with random
features. (Left) The key idea of random feature learning is to first project an input cµ to a
higher-dimensional space using a random projection matrix F . Then, a non-linearity f is applied,
and conventionally, a layer of weights is found via linear ridge regression. (Right) In this paper,
we study a setup where structured inputs are trained by projecting i.i.d. vectors cµ (the latent
representation) to the higher-dimensional ambient space before applying a non-linear function
f(x). Then, we train two-layer neural networks with K hidden units and first- and second-layer
weights W and v, respectively, on this data set.

input into an N -dimensional space via a set of random projections (a.k.a. features) collected in a
matrix F ∈ RD×N , and a component-wise non-linear function f(·), so that the output of the
first layer of the neural network is given by X = f(CF /

√
D) ∈ RP×N . Finally, a second layer of

weights is obtained via linear ridge regression on the projections X and the labels y ∈ RP . The
setting of the present paper corresponds to using a committee machine with K hidden units to
perform regression on the projections X with labels y (7) via stochastic gradient descent.

The analytical solution of the dynamics of (one-pass) stochastic gradient descent algorithm (2)
for committee machines that we derive in Sec. 5 applies to the random projections X when the
input data C is an element-wise i.i.d. random matrix, and the output labels are generated by a
teacher committee machine with random weights (7) that acts on the input data C. Crucially,
we do not require the feature matrix F to be random, and instead only require a certain “balance”
condition that we state precisely in Eq. (14). The thermodynamic limit we consider takes the
dimension D, the number of random features N and the number of samples P to infinity with
fixed ratios α = P/N = O(1), δ = D/N = O(1). This limit is quite remarkable comparing to
existing literature on learning with random features. On the one hand, considering a number
of samples that is proportional to the input dimension is very interesting, as most existing
approaches require the number of samples to be much larger, which in turn makes the learning
problem simpler. On the other hand, having a number of features that is of the same order as the
input dimension limits the performance of these methods, as it is known that for random feature
learning to be powerful, the number of features should be much larger than the input dimension,
see e.g. [18]. For instance, one can reinterpret the ODE analysis in Sec. 5 as the analysis of the
performance of SGD applied to random features followed by a committee machine.

It is remarkable that concurrently, the same setting and scaling limit as in the present paper
was considered and analysed for random feature learning with linear teacher, and ridge regression
learning in [18], and for max-margin linear classifiers in [19]. Both these papers consider full
batch learning, i.e. all samples are used at the same time, which makes them different from our
online (one-pass SGD) analysis. The principles underlying the analytic solution of [18,19] boil
down to the Gaussian Equivalence Principle, which is stated and used independently in those
papers. More precisely in [18] the full-batch formulas are proven from random matrix theory,
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while in [19] the formulas are only conjectured. Note also that one of the main points of [18] was
the double descent behaviours that we also reproduced in Sec. 3.4.

We note that thanks to the Gaussian Equivalence Theorem, the full batch learning in the
present model – with committee teacher and committee student and deterministic matrix F – is
also amenable to analysis with the replica method, thus generalising the results of [18,19]. We
give a rough sketch of how the formulas of [18, 19] can be obtained as an application of the GET
in connection with the replica method from statistical physics in Appendix C. Since this is a
rather general approach to studying the full batch learning problem, we leave its full investigation
for our future work.
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gradient descent for two-layer neural networks in the teacher-student setup. In Advances in
Neural Information Processing Systems 33, 2019.

[14] F. Rosenblatt. Principles of Neurodynamics. Spartan, 1962.

[15] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

[16] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In Advances in neural information processing systems, pages
1313–1320, 2009.

[17] C. Louart, Z. Liao, and Romain Couillet. A random matrix approach to neural networks.
The Annals of Applied Probability, 28(2):1190–1248, 2018.

[18] S. Mei and A. Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv:1908.05355, 2019.

[19] A. Montanari, F. Ruan, Y. Sohn, and J. Yan. The generalization error of max-margin linear
classifiers: High-dimensional asymptotics in the overparametrized regime. arXiv:1911.01544,
2019.

[20] W. Hachem, P. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of
large random matrices. Ann. Appl. Probab., 17(3):875–930, 06 2007.

[21] X. Cheng and A. Singer. The spectrum of random inner-product kernel matrices. Random
Matrices: Theory and Applications, 2(04):1350010, 2013.

[22] Z. Fan and A. Montanari. The spectral norm of random inner-product kernel matrices.
Probability Theory and Related Fields, 173(1-2):27–85, 2019.

[23] J. Pennington and P. Worah. Nonlinear random matrix theory for deep learning. In Advances
in Neural Information Processing Systems, pages 2637–2646, 2017.

[24] M.E.A. Seddik, M. Tamaazousti, and R. Couillet. Kernel random matrices of large concen-
trated data: the example of gan-generated images. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7480–7484. IEEE,
2019.

[25] Anonymous. Random matrix theory proves that deep learning representations of GAN-
data behave as Gaussian mixtures. In Submitted to International Conference on Learning
Representations, 2020. under review.

[26] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

[27] A.B. Patel, M.T. Nguyen, and R. Baraniuk. A probabilistic framework for deep learning. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 2558–2566. Curran Associates, Inc., 2016.

[28] Marc M. Mean-field message-passing equations in the hopfield model and its generalizations.
Physical Review E, 95(2):022117, 2017.
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A. Proof of the Gaussian Equivalence Theorem

A.1. Nonlinear functions of weekly correlated Gaussian random variables

In order to prove the GET theorem 4.1 we first formulate and establish some lemmas concerning
the correlations between nonlinear functions of weakly correlated random variables.

A.1.1. Correlations of two functions

Lemma A.1. Given n+ p random variables organised in two vectors,

x =


x1

.

.
xn

 , y =


y1

.

.
yp

 , (87)

with a joint Gaussian distribution, denote by E the expectation with respect to this distribution.
The first moments are supposed to vanish,

Exi = 0 , E yj = 0 , (88)

and we denote by Q,R, εS the covariances :

E [xixj ] = Qij , E [yiyj ] = Rij , E [xiyj ] = εSij . (89)

Let f(x) and g(y) be two functions of x and y respectively regular enough so that E x[xif(x)],
E x[xixjf(x)], E y[yif(y)] and E y[yiyjf(y)] exist, where Ex denotes the expectation with respect
to the distribution N (a,Q) of x and Ey denotes the expectation with respect to the distribution
N (b, R) of x.

Then, in the ε→ 0 limit:

E [f(x)g(y)] = E x[f(x)] E y[g(y)]

+ ε
n∑
i=1

p∑
j=1

Ex[xif(x)]
(
Q−1SR−1

)
ij
Ey[yjg(y)] +O(ε2) . (90)

Proof. The result is obtained by a straightforward expansion in ε.
The joint distribution of x and y is

P (x, y) =
1

Z
exp

[
−1

2

(
x y

)
M−1

(
x
y

)]
(91)

where

M =

(
Q εS
εST R

)
. (92)

One can expand the inverse matrix M−1 to first order in ε:

M−1 =

(
Q−1 0

0 R−1

)
− ε

(
0 Q−1SR−1

R−1STQ−1 0

)
(93)

and substitute this into the joint distribution (91). This gives:

P (x, y) =
1

Z
exp

[
−1

2

(
x y

)(Q−1 0
0 R−1

)(
x
y

)]
1 + ε

n∑
i=1

p∑
j=1

xi
(
Q−1SR−1

)
ij
yj +O(ε2)

 . (94)

Using this expression, the result (90) follows immediately.
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An immediate application of the lemma to the case when n = p = 1 is the following. Consider
two Gaussian random variables u1, u2 with mean zero and covariance

E [u2
1] = 1 ; E [u2

2] = 1 ; E [u1u2] = εm12 , (95)

and two functions f1 and f2. Define, for ∈ {1, 2}:

ai = 〈fi(u)〉 ; bi = 〈ufi(u)〉 (96)

where 〈.〉 denotes the average over the distribution of the random Gaussian variable u distributed
as N (0, 1).

Then, in the ε→ 0 limit, the correlation between f(u1) and g(u2) is given by

E [f1(u1)f2(u2)] = a1a2 + εm12b1b2 +O(ε2) . (97)

This means that, if we consider centered functions f̃i(ui) = fi(ui)− ai, their covariance is

E [f̃1(u1)f̃2(u2)] = +εm12b1b2 +O(ε2) . (98)

This result generalises to correlation functions of higher order, as stated in the following lemma.

A.1.2. Higher-order correlations

Lemma A.2. Consider m Gaussian random variables u1, . . . , um with mean zero and covariance

∀i : E [u2
i ] = 1 ; ∀i 6= j : E [uiuj ] = εmij , (99)

and m functions f1,..., fm. Define as before :

ai = 〈fi(u)〉 ; bi = 〈ufi(u)〉, i ∈ {1, . . . ,m} (100)

and define the centered functions as

f̃i(u) = fi(u)− ai , (101)

then

lim
ε→0

1

εp/2
E f̃1(u1) . . . f̃m(um) = b1 . . . bm

∑
σ∈Π

mσ1σ2mσp−1σp if m is even

= 0 if m is odd (102)

where Π denotes all the m!/(2m/2(m/2)!) partitions of {1, . . . ,m} into m/2 disjoint pairs.
This result means that, for the moments involving only different indices, the random vari-
ables f̃1(u1)/

√
ε, . . . , f̃m(um)/

√
ε behave, in the ε → 0 limit, like Gaussian variables with a

covariance matrix bibjmij.

Proof. The covariance matrix U of the variables u1, . . . , um has elements 1 on the diagonal, and
elements of order ε out of the diagonal: U = I + εm. One can expand U−1 in powers of ε:

U−1 =

∞∑
p=0

(−ε)pmp . (103)

The integration measure over the variables u1, . . . , um can be expanded as:

√
(2π)mdetM e−

1
2

∑
i u

2
i

∞∏
p=1

Gp(u1, . . . , um) (104)
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where

Gp(u1, . . . , um) = 1 +
(
−ε

2

)p∑
ij

(mp)ijuiuj +
1

2!

(
−ε

2

)2p∑
ijk`

(mp)ij(m
p)k`uiujuku` + . . . (105)

When we compute the integral of f̃1(u1) . . . f̃m(um) with the measure (104, because of the fact
that 〈f̃i(ui)〉 = 0, we need to include terms coming from

∏
pGp(u1, . . . , up) that involve at least

one power of each of the variables u1, . . . , um.
When m is even, say m = 2r, for ε→ 0, the term of this kind with the smallest power of ε is

the monomial u1 . . . u2r that comes from the rth order term in G1. This gives:

E f1(u1) . . . f2r(u2r) =
1

r!

(ε
2

)r ∑̂
i1j1...irjr

mi1j1mirjr +O(εr+1) , (106)

where the sum
∑̂

i1j1...irjr
runs over all permutations of the indices 1, . . . , 2r. This proves (102)

for m even.
When m is odd, m = 2r + 1, for ε → 0, the leading terms coming from

∏
Gp that give a

non-zero result are monomials of the type u1
1u2 . . . u2r+1. They are of order O(εr+1). This proves

(102) for m odd.

Corollary A.3. In the special case m = 3, we get

E [f1(u1)f2(u2)f3(u3)] = a1a2a3 + ε(a1m23b2b3 + a2m13b1b3 + a3m12b1b2) . (107)

A.2. Proof of the Theorem

The proof is based on the computation of moments of the variables λk and νm, showing that,
in the thermodynamic limit, all the moments are those of Gaussian random variables. Here we
shall explicit the proof up to fourth order moments, and leave to the reader the generalisation to
higher order moments.

A.2.1. Covariances

We first compute the covariance matrix Gk` = E[λ̃kλ̃`]:

Gk` =
1

N

∑
i,j

wki w
`
jE (f(ui)− a)(f(uj)− a) (108)

= (c− a2)W k` +
1

N

∑
i 6=j

wki w
`
jE (f(ui)− a)(f(uj)− a) . (109)

In the last piece, we need to compute E [(f(ui)−a)(f(uj)−a)] for two Gaussian random variables
ui and uj which are weakly correlated in the large N limit. In fact, as i 6= j:

Euiuj = Uij (110)

is of order 1/
√
D. In the thermodynamic limit, we can apply the lemma (A.1) which gives:

E f(ui)f(uj) = a2 + b2
1

D

D∑
r=1

FirFjr . (111)

From(109, 111) we get the covariance of λ variables as written in (19). The covariance E [νmνn]
is analogous.

We now compute the covariance E [λ̃kνm]. This is equal to

1√
N

N∑
i=1

wki
1√
D

D∑
r=1

w̃mr E [f(ui)Cr] . (112)
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The two variables ui and cr are Gaussian random variables with a correlation

E [uiCr] =
1√
D
Fir (113)

which goes to zero as O(1/
√
N) in the thermodynamic limit. We can thus use Lemma (A.1),

and more precisely Eq. (98), to get

E [f(ui)Cr] =
1√
D
Fir〈uf(u)〉〈C2

r 〉 =
b√
D
Fir . (114)

Using this result in (112) gives Eq. (20).

A.2.2. Fourth moments of λ̃k variables

We study the fourth moment defined as:

Gk1k2k3k4 = 〈λ̃k1 λ̃k2 λ̃k3 λ̃k4〉 =
1

N2

∑
i1,i2,i3,i4

wki1w
`
i2w

k′
i3w

`′
i4〈f̃(ui1)f̃(ui2)f̃(ui3)f̃(ui4)〉 (115)

where f̃(u) = f(u)− a is the centered function.
We shall decompose the sum over i1, i2, i3, i4 depending on the number of distinct indices there

are.

Distinct indices Let us study the first piece of the fourth moment 〈λk1λk2λk3λk4〉:

Gk1k2k3k44 =
1

N2

′∑
i1,i2,i3,i4

wk1i1 w
k2
i2
wk3i3 w

k4
i4
〈f̃(ui1)f̃(ui2)f̃(ui3)f̃(ui4)〉 (116)

where the sum runs over four indices i1, i2, i3, i4 which are distinct from each other. We can use
the factorisation property of the 4th moments of f(u) of lemma (A.2). This gives

Gk1k2k3k44 =
1

N2

′∑
i1,i2,i3,i4

wk1i1 w
k2
i2
wk3i3 w

k4
i4

[
〈f̃(ui1)f̃(ui2)〉〈f̃(ui3)f̃(ui4)〉+ 2 perm.

]

=

 1

N

′∑
i1,i2

wk1i1 w
k2
i2
〈f(ui1)f(ui2)〉

 1

N

′∑
i3,i4

wk3i3 w
k4
i4
〈f(ui3)f(ui4)〉

− Corr.


+2 perm. . (117)

The correction terms come from pieces where the intersection between {i1, i2} and {i3, i4} is
non-empty. If we first neglect this correction, we find

Gk1k2k3k44 = b4
[(

Σk1k2 −W k1k2
)(

Σk3k4 −W k3k4
)

+ 2 perm.
]
. (118)

Now we shall show that the corrections are negligible. Consider the term i1 = i3, i2 6= i4. This
gives a correction

− 1

N2

′∑
i1,i2,i4

wk1i1 w
k2
i2
wk3i1 w

k4
i4

[
〈f̃(ui1)f̃(ui2)〉〈f̃(ui1)f̃(ui4)〉

]
. (119)

Using (98)

〈f̃(ui1)f̃(ui2)〉 = b2Ui1i2 = b2
1

D
Fi1rFi2r , (120)
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we get the expression for the correction

− 1

N2R2
〈uf(u)〉4

′∑
i1,i2,i4

wk1i1 w
k2
i2
wk3i1 w

k4
i4
Fi1rFi2rFi1sFi4s = − 1√

NR2

∑
r,s

Sk1k3rs Sk2r S
k4
s . (121)

Using our hypothesis on the fact that the quantities S are of order one, this correction is clearly
at most of order O(1/

√
N), and therefore negligible.

The last correction that we need to consider is the term where i1 = i3 = i, and i2 = i4 = j.
This gives

− 1

N2

′∑
i,j

wk1i w
k2
j w

k3
i w

k4
j 〈f̃(ui)f̃(uj)〉2 = − 1

NR2
〈uf(u)〉4

∑
r,s

[
Sk1k3rs Sk2k4rs − Sk1k3k2k4rrss

]
, (122)

which is again negligible in the large N limit.

Three distinct indices Let us study the contributions to the fourth moment of λ coming from
three distinct indices. We study the case where i1 = i4:

Ek1k2k3k4 =
1

N2

′∑
i1,i2,i3

wk1i1 w
k2
i2
wk3i3 w

k4
i1
〈f̃(ui1)2f̃(ui2)f̃(ui3)〉 . (123)

Using the expression for the third moment of functions of u1, u2, u3 found in (107), we get:

Ek1k2k3k4 = cb2
1

N2

′∑
i1,i2,i3

wk1i1 w
k2
i2
wk3i3 w

k4
i1
− Corr.

= cb2W k1k4
[
Σk2k3 −W k2k3

]
− Corr. (124)

The corrections come from cases when i1 = i2 or i1 = i3. For instance the piece with i1 = i2 gives

− cb2 1

NR

∑
r

Sk1k2k4r Sk3r (125)

which is O(1/N) at most.
The only pieces that do not vanish in the large N limit are thus the pieces similar to the one

computed in (124). Putting all of them together we find that the contribution to 〈λ̃k1 λ̃k2 λ̃k3 λ̃k4〉
coming form pieces with exactly three distinct indices in i1, i2, i3, i4 is equal to:

Gk1k2k3k43 = cb2
(
Xk1k2;k3k4 +Xk1k3;k2k4 +Xk1k4;k2k3 +Xk2k3;k1k4 +Xk2k4;k1k3 +Xk3k4;k1k2

)
where

Xk1k2;k3k4 = W k1k2
[
Σk3k4 −W k3k4

]
. (126)

Two distinct indices Let us now study the contribution to the fourth moment of λ coming
from two distinct indices. We study first one piece of this contribution to the fourth moment,
corresponding to i1 = i2 = i, i3 = i4 = j:

F k1k2k3k4 =
1

N2

′∑
i,j

wk1i w
k2
i w

k3
j w

k4
j 〈f̃(ui)

2f̃(uj)
2〉 . (127)

To leading order in the thermodynamic limit, we can write

〈f̃(ui)
2f̃(uj)

2〉 = c2 (128)
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and therefore
F k1k2k3k4 = c2W k1k2W k3k4 (129)

(the correction coming from i = j being obviously at most O(1/N)).
We study now the second piece of this contribution to the fourth moment, corresponding to

i1 = i2 = i3 = i, i4 = j. This is equal to

1

N2

′∑
i,j

wk1i w
k2
i w

k3
i w

k4
j 〈f̃(ui)

3f̃(uj)〉 . (130)

Using

〈f̃(ui)
3f̃(uj)〉 = b〈uf̃(u)3〉 1

D

∑
r

FirFjr , (131)

this gives

b〈uf̃(u)3〉 1

NR

∑
r

Sk1k2k3r Sk4r (132)

and it is therefore negligible.
Therefore all the contributions to the fourth moment of λ coming from exactly two distinct

indices are of the type (129). They give a total contribution:

Gk1k2k3k42 = c2
[
W k1k2W k3k4 +W k1k3W k2k4 +W k1k4W k2k4

]
. (133)

One distinct index The contribution to the fourth moment 〈λk1λk2λk3λk4〉 coming from i1 =
i2 = i3 = i4 is clearly of O(1/N) and can be neglected.

Final result for the four-point correlation function of λ variables We can now put together
all the contributions to the fourth moment 〈λ̃k1 λ̃k2 λ̃k3 λ̃k4〉 coming form pieces with four distinct
indices found in (118), those with three distinct indices found in (126), and those with two
distinct indices found in (133). Defining

Y k1k2 = Σk1k2 −W k1k2 , (134)

and recalling the definition (126) of the X variables, we obtain:

〈λ̃k1 λ̃k2 λ̃k3 λ̃k4〉 = b4
(
Y k1k2Y k3k4 + Y k1k3Y k2k4 + Y k1k4Y k2k3

)
+ b2c

(
Xk1k2;k3k4 +Xk1k3;k2k4

+ Xk1k4;k2k3 +Xk2k3;k1k4 +Xk2k4;k1k3 +Xk3k4;k1k2
)

+ c2
[
W k1k2W k3k4 +W k1k3W k2k4 +W k1k4W k2k4

]
. (135)

We can see that this is equal to[
b2Y k1k2 + cW k1k2

] [
b2〉2Y k3k4 + cW k3k4

]
+ 2 perm. (136)

which proves that

〈λ̃k1 λ̃k2 λ̃k3 λ̃k4〉 = 〈λ̃k1 λ̃k2〉〈λ̃k3 λ̃k4〉+ 2 permutations . (137)

With this, it is clear how to proceed with the calculation of the fourth moments involving λ
and ν variables. We first need to study the moments with three λ and one ν, then moments with
two λ and two ν, and finally the moments with one λ and three ν variables. In the interest of
conciseness, we do not spell out the full details of this calculations here, which proceeds very
similarly to the calculations performed hitherto.

The generalisation to higher moments of λ variables uses the same strategy, together with
repeated use of Lemma A.2, and careful decomposition in subsets of distinct indices. In result,
the set of λ variables has a Gaussian distribution in the thermodynamic limit.
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B. The equations of motion do not close in the trivial basis

Here we give a short demonstration that it is not possible to close the equations for order
parameters if we do not rotate their dynamics to the basis given by the eigenvectors of Ω, which
is what we do in our derivation in Sec. 5.

B.1. Order parameters that are linear in the weights

To start with a variable that is linear in the weights, take the time-evolution of Skr . It is clear
that the tensor structure of the result (43) will be of the form

(Skr )µ+1 − (Skr )µ = − η

N

[∑
`

Dk`
∑
s

ΩrsS
`
s +

∑
m

Ekm
∑
s

Ωrsw̃
m
s

]
(138)

where Dk` and Ekm are known quantities, expressed in terms of the matrices Q,T,R, and we
have introduced the operator

Ωrs =
1

N

∑
i

FirFis (139)

which has diagonal elements equal 1, and off diagonal elements of order 1/
√
N .

In particular we can use this evolution to study the evolution of R:

(Rkm)µ+1− (Rkm)µ = −〈uf(u)〉 η
N

[∑
`

Dk` 1

D

∑
rs

w̃mr ΩrsS
`
s +

∑
m

Ekm
1

D

∑
rs

w̃rsΩrsw̃
m
s

]
(140)

The point of this analysis is to show that the time evolution of Skr involves (ΩS)`r. Therefore to
know the evolution of S we need the one of ΩS. This is not inocuous because, in order to have
dynamical evolution equations with only “up” indices, we need to contract it. The evolution of
Rkm, which is proportional to the scalar product (in the R-dimensional manifold space) of Sk

and w̃m, is thus given by the scalar product of ΩSk and w̃m.
It is not difficult to see that the evolution of ΩS will require knowing Ω2S etc. So we have an

infinite hierarchy of coupled equations. However these can be closed by changing basis for S.

C. Replica analysis for full-batch learning for the hidden manifold
mode: a sketch

We sketch here how the results in [18, 19] can be re-derived and generalized as an application of
the GET used in connection with the replica method from statistical physics. This is actually a
general approach to study the full batch learning problem. We shall not develop the full approach
here, leaving it for future work, but we show the general strategy.

Consider the HMM trained on P patterns

Xµi = f

(
D∑
r=1

CµrFri/
√
D

)
(141)

with output labels given by

ỹµ =
M∑
m=1

ṽmg̃

(
D∑
r=1

Cµrw̃
m
r /
√
D

)
. (142)

Our neural network is a two-layer committee machine, the output corresponding to input pattern
µ is given by:

ỹµ =

K∑
k=1

g̃

(
N∑
i=1

Xµiw
k
i /
√
D

)
. (143)
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The weights wki are learnt during the training, while the coefficients Cµr, describing the weight
of pattern µ on feature r, are i.i.d. Gaussian random variables of mean 0 and variance 1. The
other matrices, F, w̃ are fixed a priori, and they are supposed to be balanced in the sense that
they satisfy the hypothesis of the GET. We introduce a loss function, or in physical terms a
learning energy, given by

P∑
µ=1

E(ỹµ − yµ). (144)

In our numerical studies for instance, we used a least square function E(y) = y2.
Using Gardner’s approach [69], we suppose that the weights wki have a prior distribution∏
i,k Pw(wki ) which is i.i.d. for each i and k, and we estimate the “partition function”:

Z =

N∏
i=1

K∏
k=1

[
dwki Pw(wki )

]
e−β

∑
µ E(ỹµ−yµ) . (145)

Sending β →∞ will allow to minimise the energy
∑

µ E(ỹµ, yµ). The optimal training energy is
thus found as −d logZ/dβ estimated in the β →∞ limit.

We would like to evaluate E C logZ, which is the average of logZ over the Gaussian distribution
of the coefficients Cµr. We use the replica methods which consists in computing E CZ

n, in the
limit n→ 0. We can write Zn as the partition function of replicated weights wkai , where a = 1, ,̇n
is a replica index.

Zn =
N∏
i=1

K∏
k=1

N∏
a=1

[
dwkai Pw(wkai )

]
e−β

∑
µ,a E(ỹµ−yaµ). (146)

where

yaµ =
K∑
k=1

g̃

(
N∑
i=1

Xµiw
ka
i /
√
D

)
. (147)

When we compute the average of Zn with respect to the distribution of Cµr, we notice first
that the average for different values of µ factorises. Furthermore, one can introduce the auxiliary
variables

uiµ =
1√
D

D∑
r=1

FirCµr (148)

λkaµ =
1√
N

N∑
i=1

wkai f [uiµ] (149)

νmµ =
1√
D

D∑
r=1

w̃mr Crµ (150)

so that the Boltzmann weight is given by

exp

[
−β
∑
µ,a

E(
∑
m

g̃(νmµ )−
∑
k

g(λkaµ ))

]
(151)

Therefore this weight depends on wai only through the quantities λkaµ and νmµ . This makes it

easy to do the average over Crµ: the GET tells us that, for a given µ the Kn variables λkaµ and
the Mn variables νmµ are joint Gaussian variables, with mean 0 (assuming for simplicity that
〈f(u)〉 = 0) and covariance given by the GET. Denoting by E λ;ν the expectation with respect to
this joint Gaussian distribution, we get:

E C Z
n =

∏
ika

[
dwkai Pw(wkai )

]∏
µ

E λ;ν exp

[
−β
∑
µ,a

E (
∑
m

g̃(νmµ )−
∑
k

g(λkaµ ))

]
. (152)

39



2 4 6 8
K

0.0

0.1

0.2

0.3

0.4

0.5

fra
c

g
frac
g

frac
1, 2  (struc.) frac

1, 2   (i.i.d.)

10 1 100 101 102 103 104

steps / N

10 1

100

g

1st
both

Figure 10: Experimental results for neural networks trained on Fashion MNIST.
(Left) Same plot as Fig. 1, but this time we train the networks on the Fashion MNIST data set.
(Right) Generalisation dynamics of a two-layer network with K = 3 hidden units trained on
the FMNIST odd-even discrimination task described in Sec. D.1. Similar to Fig. 2, we see that
the plateaus characteristic of the vanilla teacher-student setup are missing here. In both plots,
g(x) = erf(x/

√
2), N = 784, P ∗ = 76N,K = 3, η = 0.2

From this expression, using standard methods from replica theory [70], one can obtain the
quenched average E C logZ, and therefore compute the training error and test error. This whole
study will be the subject of an upcoming paper.

D. Additional numerical experiments

D.1. Experiments on Fashion MNIST

To verify that our experimental results are not specific to the MNIST data set, we replicated our
experiments using the Fashion MNIST data set [71], which consists of 60 000 images of fashion
products, divided into ten classes. We split these classes into two groups: (T-shirt/top, Pullover,
Coat, Shirt, Bag) vs (Trouser, Dress, Sandal, Sneaker, Ankle boot) and trained networks to
discriminate between these two classes. As we show in Fig. 10, the behaviour of independent
students shows the same behaviour as it did on MNIST: While the generalisation error improves
slightly as we increase the number of parameters in the network, two independent students
disagree on Fahsion MNIST images only at a rate that is comparable to their generalisation error.
However, they learn globally different functions, as is evidenced by their large disagreement on
the classification of i.i.d. Gaussian inputs.

D.2. The existence of plateaus is not explained by the asymptotic generalisation
error

We have demonstrated on the right of Fig. 2 that neural networks trained on data drawn from
the hidden manifold model (HMF) introduced here do not show the plateau phenomenon, where
the generalisation error stays stationary after an initial exponential decay, before dropping again.
Upon closer inspection, one might think that this is due to the fact that the student trained on
data from the HMF asymptotes at a higher generalisation error than the student trained in the
vanilla teacher-student setup. This is not the case, as we demonstrate in Fig. 11: we observe no
plateau in a sigmoidal network trained on data from the HMF even that network asymptotes at a
generalisation error that is, within fluctuations, the same as the generalisation error of a network
of the same sized trained in the vanilla teacher-student setup and which shows a plateau.
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Figure 11: The plateau in the vanilla teacher-student setup can have larger gen-
eralisation error than the asymptotic error in a latent task on structured inputs.
Generalisation dynamics of a sigmoidal network where we train only the first layer on (i) struc-
tured inputs X = max(0,CF) with latent labels ỹi (7) (blue, D = 10) and (ii) the vanilla
teacher-student setup (Sec. 2.1, orange). In both cases, M = 5,K = 6, η = 0.2, P = 76N, v∗m = 1.
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Figure 12: Measuring early stopping errors does not affect the phenomenology of
latent and teacher tasks. (Left) Performance of independent sigmoidal students on the MNIST
task as evaluated by the early-stopping generalisation error. (Center and Right) We reproduce
Fig. 3 of the main text, but this time we plot the early-stopping generalisation error ε̂frac

g for two
networks trained independently on a binary classification task with structured inputs (6) and
latent labels ỹ∗i (Eq. 7, M = 1, Center) and teacher labels y∗i (4) (M = 4) (Left). In both plots,
f(x) = sgn(x), g(x) = erf

(
x/
√

2
)
, D = 10, η = 0.2.

D.3. Early-stopping yields qualitatively similar results

In Fig. 12, we reproduce Fig. 3, where we compare the performance of independent neural
networks trained on the MNIST task (Left), or trained on structured inputs with a latent task
(Center) and a teacher task (Right), respectively. This time, we the early-stopping generalisation
error ε̂frac

g rather than the asymptotic value at the end of training. We define ε̂frac
g as the minimum

of εfrac
g during the whole of training. Clearly, the qualitative result of Sec. 3.2 is unchanged:

although we use structured inputs (6) in both cases, independent students will learn different
functions which agree on those inputs only when they are trained on a latent task (7) (Center),
but not when trained on a vanilla teacher task (4) (Right). Thus structured inputs and latent
tasks are sufficient to reproduce the behaviour observed when training on the MNIST task.

D.4. Dynamics with a large number of features D ∼ N

Here we investigate the behaviour of networks trained on data from the hidden manifold model
when the number of feature vectors D is on the same order as the input dimension N . We call
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Figure 13: Performance of independent networks trained on a latent task with inputs
in many latent directions D = N/2. (Top Left) For two networks trained independently
on a binary classification task with structured inputs (6) and latent labels ỹ∗i (Eq. 7, M = 1),
we plot the final fractional test error, εfrac

g (blue dots). We also plot εfrac
1,2 (5), the fraction of

Gaussian i.i.d. inputs and structured inputs the networks classify differently after training (green
diamonds and orange crosses, resp.). (Top Right) Same experiment, but with structured inputs
and teacher labels y∗i (4) (M = 4). (Bottom row) Same plots as in the top row, but this time for
the early-stopping error ε̂frac (see Sec. D.3). In all plots, f(x) = sgn(x), g(x) = erf

(
x/
√

2
)
, N =

500, D = 250, η = 0.2.

this the regime of extensive D. It is a different regime from MNIST, where experimental studies
consistently find that inputs lie on a low-dimensional manifold of dimension D ∼ 14, which is
much smaller than the input dimension N = 784 [8–10].

We show the results of our numerical experiments with N = 500, D = 250 in Fig. 13, where we
reproduce Fig. 3 for the asymptotic (top row) and the early-stopping (bottow row) generalisation
error. The behaviour of networks trained on a teacher task with structured inputs (right column)
is unchanged w.r.t. to the case with D = 10. For the latent task, increasing the number of
hidden units, however, increases the generalisation error, indicating severe over-fitting, which is
only partly mitigated by early stopping. The generalisation error on this task is generally much
higher than in the low-D regime and clearly, increasing the width of the network is not the right
way to learn a latent task; instead, it would be intriguing to analyse the performance of deeper
networks on this task where finding a good intermediate representation for inputs is key. This is
an intriguing avenue for future research.

42



2 4 6 8
K

0.0

0.1

0.2

0.3

0.4

0.5
fra

c
g

2 4 6 8
K

0.00

0.01

0.02

0.03

0.04

0.05

m
se

g

2 4 6 8
K

0.00

0.02

0.04

0.06

fra
c

g

frac
g
frac
1, 2  (structured)
frac
1, 2   (i.i.d. Gaussian)

Figure 14: Behaviour of independent students with ReLU activation functions. (Left)
Asymptotic generalisation error of independent students with ReLU activation function g(x) =
max(0, x) on the MNIST task. (Center and Right) We reproduce Fig. 3 of the main text for
two networks with ReLU activation trained independently on a binary classification task with
structured inputs (6) and latent labels ỹ∗i (Eq. 7, M = 1) (Center) and teacher labels y∗i (4)
(M = 4 Right). In both plots, f(x) = sgn(x), g(x) = max(0, x), D = 10, η = 0.1.

D.5. Independent students with ReLU activation function

We also verified that the behaviour of independent networks we observed on MNIST with
sigmoidal students persists when training networks with ReLU activation function and that
the hidden manifold model is able to reproduce it for these networks. We show the results
of our numerical experiments in Fig. 14. To that end, we trained both layers of a network
φ(x,θ) with g(x) = max(x, 0) starting from small initial conditions, where we draw the weights
component-wise i.i.d. from a normal distribution with variance 10−6.

We see that the generalisation error of ReLU networks on the MNIST task (Left of Fig. 14)
decreases with increasing number of hidden units, while the generalisation error on MNIST
inputs of the two independent students with respect to each other is comparable or less than the
generalisation error of each individual network on the MNIST task.

On structured inputs with a teacher task (Right of Fig. 14), where labels were generated by a
teacher with M = 4 hidden units, the student recovers the teacher such that its generalisation
error is less than 10−3 for K > 4, and both independent students learn the same function, as
evidenced by their generalisation errors with respect to each other. This is the same behaviour
that we see in Fig. 3 for sigmoidal networks. The finite value of the generalisation error for
K = M = 4 is due to two out of ten runs taking a very long time to converge, longer than our
simulation lasted for. Finally, we see that for a latent task on structured inputs, the generalisation
error of the two networks with respect to each other increases beyond the generalisation error
on structured inputs of each of them, as we observed on MNIST. Thus we have recovered the
phenomenology that we described for sigmoidal networks in ReLU networks, too.
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