A. Arenas, A. Fernández, and S. Gómez, Analysis of the structure of complex networks at different resolution levels, New Journal of Physics, vol.10, p.53039, 2008.

J. P. Bagrow, Communities and bottlenecks: trees and treelike networks have high modularity, Physical Review E, vol.85, p.66118, 2012.

M. Bazzi, M. Porter, S. Williams, M. Mcdonald, D. Fenn et al., Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks, Multiscale Modeling & Simulation, vol.14, pp.1-41, 2016.

L. Bennett, A. Kittas, S. Liu, L. G. Papageorgiou, and S. Tsoka, Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks, PLOS ONE, vol.9, p.112821, 2014.

V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, p.10008, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01146070

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer et al., On modularity clustering, IEEE Transactions on Knowledge and Data Engineering, vol.20, pp.172-188, 2007.

F. De-montgolfier, M. Soto, and L. Viennot, Asymptotic modularity of some graph classes, International Symposium on Algorithms and Computation, pp.435-444, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00909733

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Physical Review E, vol.84, p.290, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00661643

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and Phase Transitions in the Detection of Modules in Sparse Networks, Physical Review Letters, vol.107, p.65701, 2011.

T. S. Evans, Clique graphs and overlapping communities, Journal of Statistical Mechanics: Theory and Experiment, p.12037, 2010.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, pp.75-174, 2010.

S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proceedings of the National Academy of Sciences, vol.104, pp.36-41, 2007.

S. Fortunato and D. Hric, Community detection in networks: A user guide, Physics Reports, vol.659, pp.1-44, 2016.

A. Ghasemian, P. Zhang, A. Clauset, C. Moore, and L. Peel, Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks, Physical Review X, vol.6, p.31005, 2016.

M. Girvan and M. E. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences, vol.99, pp.7821-7826, 2002.

Q. Han, K. S. , and E. M. Airoldi, Consistent estimation of dynamic and multi-layer block models, 2015.

T. C. Havens, J. C. Bezdek, C. Leckie, K. Ramamohanarao, and M. Palaniswami, A Soft Modularity Function For Detecting Fuzzy Communities in Social Networks, IEEE Transactions on Fuzzy Systems, vol.21, pp.1170-1175, 2013.

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, vol.5, pp.109-137, 1983.

M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software, PLOS ONE, vol.9, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01908005

L. G. Jeub, M. Bazzi, J. S. Inderjit, and P. J. Mucha, A generalized Louvain method for community detection implemented in MATLAB, pp.2011-2030

B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in networks, Physical Review E, vol.83, p.16107, 2011.

M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno et al., Multilayer networks, Journal of Complex Networks, vol.2, pp.203-271, 2014.

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.2, pp.83-97, 1955.

D. Lai, X. Shu, and C. Nardini, Correlation enhanced modularity-based belief propagation method for community detection in networks, Journal of Statistical Mechanics: Theory and Experiment, p.53301, 2016.

R. Lambiotte, J. Delvenne, and M. Barahona, Laplacian dynamics and Multiscale Modular structure in Networks, arxiv.org, vol.1, pp.76-90, 2009.

R. Lambiotte, J. Delvenne, and M. Barahona, Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks, IEEE transactions on network science and engineering, vol.1, pp.76-90, 2014.

A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E, vol.78, p.46110, 2008.

E. Lazega and . Others, The collegial phenomenon: The social mechanisms of cooperation among peers in a corporate law partnership, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01800250

J. Liu, Fuzzy modularity and fuzzy community structure in networks, The European Physical Journal B, vol.77, pp.547-557, 2010.

M. Mézard and A. Montanari, Information, physics, and computation, 2009.

J. Moody and P. J. Mucha, Portrait of political party polarization, Network Science, vol.1, pp.119-121, 2013.

P. J. Mucha and M. A. Porter, Communities in multislice voting networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.20, p.41108, 2010.

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, pp.876-878, 2010.

R. R. Nadakuditi and M. E. Newman, Graph Spectra and the Detectability of Community Structure in Networks, Physical Review Letters, vol.108, p.188701, 2012.

M. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.69, p.268, 2004.

M. E. Newman, Analysis of weighted networks, Physical Review E, vol.70, p.56131, 2004.

M. E. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detection, Physical Review E, vol.94, p.52315, 2016.

A. R. Pamfil, S. D. Howison, R. Lambiotte, and M. A. Porter, Relating modularity maximization and stochastic block models in multilayer networks, 2018.

J. Pearl, Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach, Proceedings of the Second AAAI Conference on Artificial Intelligence, pp.133-136, 1982.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988.

L. Peel, D. B. Larremore, and A. Clauset, The ground truth about metadata and community detection in networks, Science Advances, vol.3, p.1602548, 2017.

T. P. Peixoto, Nonparametric Bayesian inference of the microcanonical stochastic block model, Physical Review E, vol.95, p.12317, 2017.

M. A. Porter, J. Onnela, and P. J. Mucha, Communities in networks, vol.56, pp.1082-1097, 2009.

J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Physical Review E, 2006.

M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proceedings of the National Academy of Sciences, vol.105, pp.1118-1123, 2008.

M. T. Schaub, J. Delvenne, M. Rosvall, and R. Lambiotte, The many facets of community detection in complex networks, Applied Network Science, vol.2, p.4, 2017.

C. Schülke and F. Ricci-tersenghi, Multiple phases in modularity-based community detection, Physical Review E, vol.92, p.42804, 2015.

S. Shai, N. Stanley, C. Granell, D. Taylor, and P. J. Mucha, Case studies in network community detection, arXiv, 2017.

N. Stanley, S. Shai, D. Taylor, and P. J. Mucha, Clustering network layers with the strata multilayer stochastic block model, IEEE transactions on network science and engineering, vol.3, pp.95-105, 2016.

D. Taylor, S. Shai, N. Stanley, and P. J. Mucha, Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation, vol.116, p.228301, 2016.

V. A. Traag, G. Krings, and P. Van-dooren, Significant scales in community structure, Scientific reports, vol.3, p.75, 2013.

N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance, Journal of Machine Learning Research, vol.11, pp.2837-2854, 2010.

A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter, Party Polarization in Congress: A Network Science Approach, arXiv.org, 2009.

W. H. Weir, S. Emmons, R. Gibson, D. Taylor, and P. Mucha, Post-Processing Partitions to Identify Domains of Modularity Optimization, Algorithms, p.93, 2017.

W. H. Weir, R. Gibson, and P. J. Mucha, Convex Hull of Admissible Modularity Partitions in Python and MATLAB, 2017.

W. H. Weir and B. Walker, , 2018.

P. Zhang and C. Moore, Scalable detection of statistically significant communities and hierarchies, using message passing for modularity, Proceedings of the National Academy of Sciences, vol.111, pp.18144-18149, 2014.

S. Zhang, R. Wang, and X. Zhang, Identification of overlapping community structure in complex networks using fuzzy c-means clustering, Physica A: Statistical Mechanics and its Applications, vol.374, pp.483-490, 2007.