E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006.

D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proceedings of the National Academy of Sciences, vol.102, issue.27, pp.9446-9451, 2005.

D. Donoho and J. Tanner, Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing, Phil. Trans. A: Mathematical, Physical and Engineering Sciences, vol.367, pp.4273-4293, 1906.

H. Monajemi, S. Jafarpour, M. Gavish, and D. L. Donoho, Deterministic matrices matching the compressed sensing phase transitions of gaussian random matrices, Proceedings of the National Academy of Sciences, vol.110, issue.4, pp.1181-1186, 2013.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The convex geometry of linear inverse problems, Foundations of Computational mathematics, vol.12, issue.6, pp.805-849, 2012.

D. Amelunxen, M. Lotz, M. B. Mccoy, and J. A. Tropp, Living on the edge: phase transitions in convex programs with random data, Journal of the IMA, vol.3, issue.3, pp.224-294, 2014.

J. Pennington and P. Worah, Nonlinear random matrix theory for deep learning, Advances in Neural Information Processing Systems, pp.2637-2646, 2017.

Z. Liao and R. Couillet, On the spectrum of random features maps of high dimensional data, International Conference on Machine Learning, pp.3069-3077, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01954933

D. J. Thouless, P. W. Anderson, and R. G. Palmer, Solution of'solvable model of a spin glass, Philosophical Magazine, vol.35, issue.3, pp.593-601, 1977.

M. Bayati and A. Montanari, The dynamics of message passing on dense graphs, with applications to compressed sensing, IEEE Transactions on Information Theory, vol.57, issue.2, pp.764-785, 2011.

M. Bayati, M. Lelarge, and A. Montanari, Universality in polytope phase transitions and message passing algorithms, The Annals of Applied Probability, vol.25, issue.2, pp.753-822, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01254901

T. Tanaka, Statistical mechanics of CDMA multiuser demodulation, Europhysics Letters), vol.54, issue.4, p.540, 2001.

A. M. Tulino, G. Caire, S. Verdu, and S. Shamai, Support recovery with sparsely sampled free random matrices, IEEE Transactions on Information Theory, vol.59, issue.7, pp.4243-4271, 2013.

F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices, Journal of Statistical Mechanics: Theory and Experiment, vol.2012, issue.08, p.8009, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00764645

, Statistical-physics-based reconstruction in compressed sensing, Physical Review X, vol.2, issue.2, p.21005, 2012.

J. Zhu and D. Baron, Performance regions in compressed sensing from noisy measurements, 2013 47th Annual Conference on Information Sciences and Systems (CISS), pp.1-6, 2013.

J. Barbier, M. Dia, N. Macris, and F. Krzakala, The mutual information in random linear estimation, Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on, pp.625-632, 2016.

G. Reeves and H. D. Pfister, The replica-symmetric prediction for compressed sensing with gaussian matrices is exact, Information Theory (ISIT), pp.665-669, 2016.

J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová, Optimal errors and phase transitions in high-dimensional generalized linear models, Proceedings of the National Academy of Sciences, vol.116, issue.12, pp.5451-5460, 2019.

J. Vila and P. Schniter, Expectation-maximization bernoulli-gaussian approximate message passing, Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, pp.799-803, 2011.

A. Montanari, Graphical models concepts in compressed sensing, Compressed Sensing: Theory and Applications, pp.394-438, 2012.

A. M. Tulino and S. Verdú, Random matrix theory and wireless communications, Foundations and Trends R in Communications and Information Theory, vol.1, issue.1, pp.1-182, 2004.

Y. Kabashima, T. Wadayama, and T. Tanaka, A typical reconstruction limit for compressed sensing based on lp-norm minimization, J. of Stat. Mech.: Theory and Experiment, issue.09, p.9003, 2009.

K. Takeda, S. Uda, and Y. Kabashima, Analysis of CDMA systems that are characterized by eigenvalue spectrum, Europhysics Letters), vol.76, issue.6, p.1193, 2006.

J. Barbier, N. Macris, A. Maillard, and F. Krzakala, The mutual information in random linear estimation beyond i.i.d. matrices, 2018 IEEE International Symposium on Information Theory (ISIT), 2018.

D. L. Donoho, A. Maleki, and A. Montanari, Message-passing algorithms for compressed sensing, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.18-914, 2009.

K. Takeuchi, A unified framework of state evolution for message-passing algorithms, 2019.

B. Cakmak, O. Winther, and B. H. Fleury, S-amp: Approximate message passing for general matrix ensembles, 2014 IEEE Information Theory Workshop, pp.192-196, 2014.

T. P. Minka, Expectation propagation for approximate bayesian inference, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, ser. UAI'01, pp.362-369, 2001.

M. Opper and O. Winther, Expectation consistent approximate inference, Journal of Machine Learning Research, vol.6, p.2177, 2005.

J. Ma and L. Ping, Orthogonal amp, IEEE Access, vol.5, pp.2020-2033, 2017.

S. Rangan, P. Schniter, and A. K. Fletcher, Vector approximate message passing, 2017 IEEE International Symposium on Information Theory (ISIT), pp.1588-1592, 2017.

A. Manoel, F. Krzakala, M. Mézard, and L. Zdeborová, Multi-layer generalized linear estimation, 2017 IEEE International Symposium on Information Theory, pp.2098-2102, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01447203

A. Rahimi and B. Recht, Random features for large-scale kernel machines, Advances in neural information processing systems, pp.1177-1184, 2008.