G. S. Frankel, J. Vienna, J. Lian, and . Wastepd, an innovative center on materials degradation. npj Mater. Degrad, vol.1, p.5, 2017.

J. D. Vienna, J. V. Ryan, S. Gin, and Y. Inagaki, Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glasses, Int. J. Appl. Glass Sci, vol.4, pp.283-294, 2013.

C. M. Jantzen, K. G. Brown, and J. B. Pickett, Durable glass for thousands of years, Int. J. Appl. Glass Sci, vol.25, pp.38-62, 2010.

S. Gin, Open scientific questions about nuclear glass corrosion, Procedia Mater. Sci, vol.7, pp.163-171, 2014.

M. Fournier, Glass dissolution rate measurement and calculation revisited, J. Nucl. Mater, vol.476, pp.140-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998436

S. Gin, An international initiative on long-term behavior of high-level nuclear waste glass, Mater. Today, vol.16, pp.243-248, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00864925

K. Inagaki, H. Furuya, K. Idemitsu, and T. Arima, Review of waste glass corrosion and associated radionuclide release as a part of safety assessment of entire disposal system, Prog. Nucl. Energ, vol.32, pp.501-508, 1998.

B. C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses, Non-Cryst. Solids, vol.179, pp.300-308, 1994.

P. Van-iseghem, in Ceramic Transactions, vol.207, pp.115-126, 2009.

B. Grambow, Nuclear waste glasses -How durable?, Elements, vol.2, pp.357-364, 2006.

B. Parruzot, Altération des verres basaltiques dans des environnements confinés: analogie avec le stockage géologique des verres nucléaires [Basaltic glass alteration in confined environment: analogy to nuclear waste glass geological repository, 2014.

A. Verney-carron, S. Gin, and G. Libourel, Archaeological analogs and the future of nuclear waste glass, J. Nucl. Mater, vol.406, pp.365-370, 2010.

K. Ferrand, S. Liu, and K. Lemmens, The effect of Ordinary Portland Cement on nuclear waste glass dissolution, Procedia Mat. Sci, vol.7, pp.223-229, 2014.

T. Maeda, H. Ohmori, S. Mitsui, and T. Banba, Corrosion behavior of simulated HLW glass in the presence of magnesium ion, Int. J. Corros, p.796457, 2011.

M. Debure, P. Frugier, L. De-windt, and S. Gin, Borosilicate glass alteration driven by magnesium carbonates, J. Nucl. Mater, vol.420, pp.347-361, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00623912

M. Debure, L. De-windt, P. Frugier, and S. Gin, HLW glass dissolution in the presence of magnesium carbonate: diffusion cell experiment and coupled modeling of diffusion and geochemical interactions, J. Nucl. Mater, vol.443, pp.507-521, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860964

M. Debure, L. De-windt, P. Frugier, S. Gin, and P. Vieillard, Mineralogy and thermodynamic properties of magnesium phyllosilicates formed during the alteration of a simplified nuclear glass, J. Nucl. Mater, vol.475, pp.255-265, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306314

A. Michelin, Silicate glass alteration enhanced by iron: origin and long-term implications, Environ. Sci. Technol, vol.47, pp.750-756, 2013.

D. Rebiscoul, Reactive transport processes occurring during nuclear glass alteration in presence of magnetite, Appl. Geochem, vol.58, pp.26-37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228660

J. Reiser, Scientific basis for nuclear waste management XXXVIII, MRS Symposium Proceedings, vol.1744, pp.139-144, 2015.

P. Dillmann, S. Gin, D. Neff, L. Gentaz, and D. Rebiscoul, Effect of natural and synthetic iron corrosion products on silicate glass alteration processes, Geochim. Cosmochim. Acta, vol.172, pp.287-305, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01228556

M. Fournier, S. Gin, and P. Frugier, Resumption of nuclear glass alteration: state of the art, J. Nucl. Mater, vol.448, pp.348-363, 2014.

W. L. Ebert and J. K. Bates, Scientific basis for nuclear waste management XIV, Materials Research Society Symposium Proceedings, pp.89-98, 1991.

Y. Inagaki, Aqueous alteration of Japanese simulated waste glass P0798: effects of alteration-phase formation on alteration rate and cesium retention, J. Nucl. Mater, vol.354, pp.171-184, 2006.

I. S. Muller, S. Ribet, I. L. Pegg, S. Gin, and . Frugier, P. in Ceramic Transactions, vol.176, pp.191-199, 2006.

S. Gin, Scientific Basis for Nuclear Waste Management XXIV, Materials Research Society Symposium Proceedings, pp.207-215, 2000.

D. Rebiscoul, P. Frugier, S. Gin, and . Springerampamp,

A. Ayral, Protective properties and dissolution ability of the gel formed during nuclear glass alteration, J. Nucl. Mater, vol.342, pp.26-34, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077997

S. Gin, The controversial role of inter-diffusion in glass alteration, Chem. Geol, vol.440, pp.115-123, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02381000

S. Gin, I. Ribet, and M. Couillard, Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions, J. Nucl. Mater, vol.298, pp.1-10, 2001.

B. C. Bunker, Molecular mechanisms for corrosion of silica and silicate-glasses, J. Non-Cryst. Solids, vol.179, pp.300-308, 1994.

N. Valle, Elemental and isotopic (Si-29 and O-18) tracing of glass alteration mechanisms, Geochim. Cosmochim. Acta, vol.74, pp.3412-3431, 2010.

T. Geisler, Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism, J. Non-Cryst. Solids, vol.356, pp.1458-1465, 2010.

T. Geisler, The mechanism of borosilicate glass corrosion revisited. Geochim, Cosmochim. Acta, vol.158, pp.112-129, 2015.

S. Gin, The fate of silicon during glass corrosion under alkaline conditions: a mechanistic and kinetic study with the International Simple Glass, Geochim. Cosmochim. Acta, vol.151, pp.68-85, 2015.

S. Gin, Atom-probe tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: a multiscale approach to investigating rate-limiting mechanisms, Geochim. Cosmochim. Acta, vol.202, pp.57-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01927249

S. Gin, Origin and consequences of silicate glass passivation by surface layers, Nat. Commun, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157456

R. Hellmann, Nanometre-scale evidence for interfacial dissolutionreprecipitation control of silicate glass corrosion, Nat. Mater, vol.14, pp.307-311, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01929134

F. Delage, D. Ghaleb, J. L. Dussossoy, O. Chevallier, and E. Vernaz, A mechanistic model for understanding nuclear waste glass dissolution, J. Nucl. Mater, vol.190, pp.191-197, 1992.

B. Grambow and R. Muller, First-order dissolution rate law and the role of surface layers in glass performance assessment, J. Nucl. Mater, vol.298, pp.112-124, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00021463

S. Gin, X. Beaudoux, F. Angeli, C. Jegou, and N. Godon, Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, J. Non-Cryst. Solids, vol.358, pp.2559-2570, 2012.

S. Gin, P. Frugier, P. Jollivet, F. Bruguier, and E. Curti, New insight into the residual rate of borosilicate glasses: effect of S/V and glass composition, Int. J. Appl. Glass Sci, vol.4, pp.371-382, 2013.

P. Frugier, SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model, J. Nucl. Mater, vol.380, pp.8-21, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02458328

P. Jollivet, Investigation of gel porosity clogging during glass leaching, J. Non-Cryst. Solids, vol.354, pp.4952-4958, 2008.

C. Cailleteau, Insight into silicate-glass corrosion mechanisms, Nat. Mater, vol.7, pp.978-983, 2008.

S. Gin, J. V. Ryan, D. K. Schreiber, J. Neeway, and M. Cabie, Contribution of atomprobe tomography to a better understanding of glass alteration mechanisms: application to a nuclear glass specimen altered 25 years in a granitic environment, Chem. Geol, vol.349, pp.99-109, 2013.

C. Cailleteau, F. Devreux, O. Spalla, F. Angeli, and S. Gin, Why do certain glasses with a high dissolution rate undergo a low degree of corrosion?, J. Phys. Chem. C, vol.115, pp.5846-5855, 2011.

S. Gin, Origin and consequences of silicate glass passivation by surface layers, Nat. Commun, vol.6, p.6360, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157456

A. Ledieu, F. Devreux, P. Barboux, L. Sicard, and O. Spalla, Leaching of borosilicate glasses. I. Experiments, J. Non-Cryst. Solids, vol.343, pp.3-12, 2004.

B. Wild, pH-dependent control of feldspar dissolution rate by altered surface layers, Chem. Geol, vol.442, pp.148-159, 2016.

J. L. Crovisier, T. Advocat, and J. L. Dussossoy, Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses), J. Nucl. Mater, vol.321, pp.91-109, 2003.

M. Fournier, S. Gin, and P. Frugier, Resumption of nuclear glass alteration: state of the art, J. Nucl. Mater, vol.448, pp.348-363, 2014.

S. Ribet, I. S. Muller, I. L. Pegg, S. Gin, and P. Frugier, Scientific basis for nuclear waste management XXVIII, Materials Research Society Symposium Proceedings, pp.309-314, 2004.

M. Fournier, S. Gin, P. Frugier, and S. Mercado-depierre, Contribution of zeoliteseeded experiments to the understanding of resumption of glass alteration, npj Mater. Degrad, vol.1, p.17, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02418695

T. Fett, J. P. Guin, and S. M. Wiederhorn, Stresses in ion-exchange layers of sodalime-silicate glass, Fatigue Fract. Eng. Mater. Struct, vol.28, pp.507-514, 2005.

A. Barkatt, Leach Rate Excursions in Borosilicate Glasses -Effects of Glass and Leachant Composition, vol.212, 1991.

J. C. Sang, A. Barkatt, I. G. Talmy, and M. K. Norr, Scientific basis for nuclear waste management XVI, Materials Research Society Symposium Proceedings, pp.583-589, 1993.

L. G. Neill, Various effects of magnetite on international simple glass (ISG) dissolution: implications for the long-term durability of nuclear glasses, npj Mater. Degrad, vol.1, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02380473

S. Peuget, J. M. Delaye, and C. Jegou, Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation, J. Nucl. Mater, vol.444, pp.76-91, 2014.

M. Tribet, 2nd international summer school on nuclear glass wasteform: structure, properties and long-term behavior, pp.209-215, 2014.

W. J. Weber, Radiation effects in glasses used for immobilization of highlevel waste and plutonium disposition, J. Mater. Res, vol.12, pp.1946-1978, 1997.

W. J. Weber, Radiation and thermal ageing of nuclear waste glass, Procedia Mater. Sci, vol.7, pp.237-246, 2014.

B. P. Mcgrail, The structure of Na 2 O-Al 2 O 3 -SiO 2 glass: impact on sodium ion exchange in H 2 O and D 2 O, J. Non-Cryst. Solids, vol.296, pp.10-26, 2001.

V. Shutthanandan, 16th international conference on the application of accelerators in research and industry, pp.454-457, 2001.

J. P. Icenhower, B. P. Mcgrail, and A. Luttge, Origins of deviations from transitionstate theory: affects of ion-exchange kinetics in glass, Geochim. Cosmochim. Acta, vol.66, pp.351-351, 2002.

T. Kaneko, An ion-exchange model of glass leaching, J. Mater. Sci. Lett, vol.4, pp.631-634, 1985.

B. P. Mcgrail, Ion-Exchange Processes and Mechanisms in Glasses, 1998.

E. H. Oelkers, S. V. Golubev, C. Chairat, O. S. Pokrovsky, and J. Schott, The surface chemistry of multi-oxide silicates, Geochim. Cosmochim. Acta, vol.73, pp.4617-4634, 2009.

J. J. Neeway, Ion-exchange interdiffusion model with potential application to long-term nuclear waste glass performance, J. Phys. Chem. C, vol.120, pp.9374-9384, 2016.

B. C. Bunker, G. W. Arnold, D. E. Day, and P. J. Bray, The effect of molecularstructure on borosilicate glass leaching, J. Non-Cryst. Solids, vol.87, pp.226-253, 1986.

P. Zapol, H. Y. He, K. D. Kwon, and L. J. Criscenti, First-principles study of hydrolysis reaction barriers in a sodium borosilicate glass, Int. J. Appl. Glass Sci, vol.4, pp.395-407, 2013.

D. C. Ford, H. He, and P. Zapol, Density Functional Theory Calculations of Hydrolysis Reactions on a Sodium Borosilicate Glass Surface, 2015.

S. N. Kerisit and E. M. Pierce, Monte Carlo simulations of the dissolution of borosilicate and aluminoborosilicate glasses in dilute conditions, Geochim. Cosmochim. Acta, vol.75, pp.5296-5309, 2011.

S. Kerisit, J. V. Ryan, and E. M. Pierce, Monte Carlo simulations of the corrosion of aluminoborosilicate glasses, J. Non-Cryst. Solids, vol.378, pp.273-281, 2013.

P. Frugier, C. Martin, I. Ribet, T. Advocat, and S. Gin, The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ, J. Nucl. Mater, vol.346, pp.194-207, 2005.

C. Carriere, Influence of iron corrosion on nuclear glass alteration processes: nanoscale investigations of the iron-bearing phases, Corr. Eng. Sci. Tech, vol.53, pp.166-172, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01593258

W. L. Ebert and J. L. Jerden, Implementation of the ANL Stage 3 Glass Dissolution Model, 2016.

C. M. Jantzen, C. L. Trivelpiece, C. L. Crawford, J. M. Pareizs, and J. B. Pickett, Accelerated leach testing of glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases, Int. J. Appl. Glass Sci, vol.8, pp.84-96, 2017.

S. Ribet, I. S. Muller, I. L. Pegg, S. Gin, and P. Frugier, Scientific basis for nuclear waste management XXVIII, Materials Research Society Symposium Proceedings, pp.309-314, 2004.

D. M. Strachan and T. L. Croak, Compositional effects on long-term dissolution of borosilicate glass, J. Non-Cryst. Solids, vol.272, pp.22-33, 2000.

M. G. Fournier, P. Frugier, and S. Mercado-depierre, Contribution of zeoliteseeded experiments to the understanding of resumption of glass alteration, npj Mater. Degrad, vol.1, p.17, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02418695

R. Rechard, Basis for Identification of Disposal Options for Research and Development for Spent Nuclear Fuel and High-level Waste, 2011.

G. De-combarieu, Glass-iron-clay interactions in a radioactive waste geological disposal: an integrated laboratory-scale experiment, Appl. Geochem, vol.26, pp.65-79, 2011.

A. Michelin, Effect of iron metal and siderite on the durability of simulated archeological glassy material, Corros. Sci, vol.76, pp.403-414, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00981375

H. Arena, Impact of Zn, Mg, Ni and Co elements on glass alteration: additive effects, J. Nucl. Mater, vol.470, pp.55-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998377

M. Debure, L. De-windt, P. Frugier, and S. Gin, HLW glass dissolution in the presence of magnesium carbonate: diffusion cell experiment and coupled modeling of diffusion and geochemical interactions, J. Nucl. Mater, vol.443, pp.507-521, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860964

A. Verney-carron, S. Gin, P. Frugier, and G. Libourel, Long-term modeling of alteration-transport coupling: application to a fractured Roman glass, Geochim. Cosmochim. Acta, vol.74, pp.2291-2315, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486775

A. Verney-carron, S. Gin, and G. Libourel, A fractured roman glass block altered for 1800 years in seawater: analogy with nuclear waste glass in a deep geological repository, Geochim. Cosmochim. Acta, vol.72, pp.5372-5385, 2008.

R. A. Berner, Rate control of mineral dissolution under earth surface conditions, Am. J. Sci, vol.278, pp.1235-1252, 1978.

S. Brantley, B. Brantley, J. Kubicki, and A. White, , pp.151-210, 2008.

A. C. Lasaga, Chemical Weathering Rates of Silicate Minerals, pp.23-86, 1995.

A. Putnis, Thermodynamics and Kinetics of Water-Rock Interaction, vol.70, pp.87-124, 2009.

J. Schott, O. S. Pokrovsky, and E. Oelkers, Thermodynamics and Kinetics of Water-Rock Interaction, vol.70, pp.207-258, 2009.

J. V. Walther, Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge, Am. J. Sci, vol.296, pp.693-728, 1996.

J. Burgess, Ions in Solution-Basic Principles of Chemical Interaction 2nd edn, 1999.

R. Hellmann and D. Tisserand, Dissolution kinetics as a function of the Gibbs free energy of reaction: an experimental study based on albite feldspar, Geochim. Cosmochim. Acta, vol.70, pp.364-383, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00267018

W. White, Corrosion of Glass, Ceramics and Superconductors, 1992.

P. Aagaard and H. C. Helgeson, Thermodynamic and kinetic constraints on reaction-rates among minerals and aqueous-solutions .1. theoretical considerations, Am. J. Sci, vol.282, pp.237-285, 1982.

A. Lasaga, Kinetics of Geochemical Processes, vol.8, pp.135-169, 1981.

J. M. Gautier, E. H. Oelkers, and J. Schott, Experimental-study of k-feldspar dissolution rates as a function of chemical affinity at 150-degrees-c and ph-9

, Geochim. Cosmochim. Acta, vol.58, pp.4549-4560, 1994.

E. H. Oelkers and J. Schott, Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis, Geochim. Cosmochim. Acta, vol.59, pp.5039-5053, 1995.

E. H. Oelkers, J. Schott, and J. L. Devidal, The effect of aluminum, ph, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim. Acta, vol.58, pp.2011-2024, 1994.

K. L. Nagy, A. E. Blum, and A. C. Lasaga, Dissolution and precipitation kinetics of kaolinite at 80-degrees-c and ph 3 -the dependence on solution saturation state, Am. J. Sci, vol.291, pp.649-686, 1991.

T. E. Burch, K. L. Nagy, and A. C. Lasaga, Free-energy dependence of albite dissolution kinetics at 80-degrees-c and ph 8.8, Chem. Geol, vol.105, pp.137-162, 1993.

A. Luttge, Crystal dissolution kinetics and Gibbs free energy, J. Electron Spectrosc. Relat. Phenom, vol.150, pp.248-259, 2006.

A. C. Lasaga and A. Luttge, Variation of crystal dissolution rate based on a dissolution stepwave model, Science, vol.291, pp.2400-2404, 2001.

T. Diedrich, A. Dybowska, J. Schott, E. Valsarni-jones, and E. H. Oelkers, The dissolution rates of SiO 2 nanoparticles as a function of particle size, Environ. Sci. Technol, vol.46, pp.4909-4915, 2012.

P. Swaminathan, S. Sivaramakrishnan, J. S. Palmer, and J. H. Weaver, Size dependence of nanoparticle dissolution in a matrix: gold in bismuth, Phys. Rev. B, vol.79, p.144113, 2009.

L. Briese, R. S. Arvidson, and A. Luttge, The effect of crystal size variation on the rate of dissolution A kinetic Monte Carlo, Geochim. Cosmochim. Acta, vol.212, pp.167-175, 2017.

A. B. Harker, D. R. Clarke, C. M. Jantzen, and P. E. Morgan, Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems Materials Science Research, 1981.

S. Myhra, R. L. Segall, R. S. Smart, P. S. Turner, and T. J. White, Scientific basis for nuclear waste management IX, Materials Research Society Symposium Proceedings, 1985.

Z. M. Zhang and M. L. Carter, An X-ray photoelectron spectroscopy investigation of highly soluble grain-boundary impurity films in hollandite, J. Am. Ceram. Soc, vol.93, pp.894-899, 2010.

E. H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution, Geochim. Cosmochim. Acta, vol.65, pp.3703-3719, 2001.

W. H. Casey, H. R. Westrich, and G. W. Arnold, Surface-chemistry of labradorite feldspar reacted with aqueous-solutions at ph=2, 3, and 12. Geochim. Cosmochim, Acta, vol.52, pp.2795-2807, 1988.

W. H. Casey, H. R. Westrich, J. F. Banfield, G. Ferruzzi, and G. W. Arnold, Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals, Nature, vol.366, pp.253-256, 1993.

S. L. Brantley and Y. Chen, Chemical weathering rates of pyroxenes and amphiboles, Chem. Weather Rates Silic. Miner, vol.31, pp.119-172, 1995.

E. H. Oelkers and J. Schott, An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution, Geochim. Cosmochim. Acta, vol.65, pp.1219-1231, 2001.

G. D. Saldi, S. J. Kohler, N. Marty, and E. H. Oelkers, Dissolution rates of talc as a function of solution composition, pH and temperature, Geochim. Cosmochim. Acta, vol.71, pp.3446-3457, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00299003

J. Schott, Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite, Geochim. Cosmochim. Acta, vol.98, pp.259-281, 2012.

F. Angeli, P. Mcglinn, and P. Frugier, Chemical durability of hollandite ceramic for conditioning cesium, J. Nucl. Mater, vol.380, pp.59-69, 2008.

V. Luca, D. Cassidy, E. Drabarek, K. Murray, and B. Moubaraki, Cesium extraction from Ss(0.8)Ba(0.4)Ti(8)O(16) hollandite nuclear waste form ceramics in nitric acid solutions, J. Mater. Res, vol.20, pp.1436-1446, 2005.

T. Suzuki-muresan, J. Vandenborre, A. Abdelouas, B. Grambow, and S. Utsunomiya, Studies of (Cs,Ba)-hollandite dissolution under gamma irradiation at 95 degrees C and at pH 2.5, 4.4 and 8.6, J. Nucl. Mater, vol.419, pp.281-290, 2011.

C. M. Jantzen, D. R. Clarke, P. E. Morgan, and A. B. Harker, Leaching of polyphase nuclear waste ceramics -microstructural and phase characterization, J. Am. Ceram. Soc, vol.65, pp.292-300, 1982.

R. Hellmann, Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces, Chem. Geol, vol.294, pp.203-216, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834914

E. Ruiz-agudo, C. V. Putnis, and A. Putnis, Coupled dissolution and precipitation at mineral-fluid interfaces, Chem. Geol, vol.383, pp.132-146, 2014.

Z. M. Zhang, M. G. Blackford, G. R. Lumpkin, K. L. Smith, and E. R. Vance, Aqueous dissolution of perovskite (CaTiO 3 ): Effects of surface damage and Ca 2 + in the leachant, J. Mater. Res, vol.20, pp.2462-2473, 2005.

D. Pham, F. Neall, S. Myhra, R. Smart, and P. Turner, Dissolution mechanisms of CaTiO 3 -solution analysis, surface analysis and electron microscope studies implications for synroc, MRS Proc, vol.127, pp.231-241, 1988.

G. R. Lumpkin, Alpha-decay damage and aqueous durability of actinide host phases in natural systems, J. Nucl. Mater, vol.289, pp.136-166, 2001.

A. E. Blum, Feldspars and their Reactions, 1994.

S. Salvi, G. S. Pokrovski, and J. Schott, Experimental investigation of aluminumsilica aqueous complexing at 300 degrees C, Chem. Geol, vol.151, pp.51-67, 1998.

R. O. Fournier and J. J. Rowe, Solubility of amorphous silica in water at hightemperatures and high-pressures, Am. Mineral, vol.62, pp.1052-1056, 1977.

Y. Chen, S. L. Brantley, and E. S. Ilton, X-ray photoelectron spectroscopic measurement of the temperature dependence of leaching of cations from the albite surface, Chem. Geol, vol.163, pp.115-128, 2000.

G. Sposito, The Surface Chemistry of Soils, 1984.

A. T. Stone and J. J. Morgan, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface, pp.221-254, 1987.

D. W. Shoesmith, S. Sunder, M. G. Bailey, and G. J. Wallace, Anodic-oxidation of Uo2 .5. electrochemical and X-ray photoelectron spectroscopic studies of filmgrowth and dissolution in phosphate-containing solutions, Can. J. Chem. Rev. Can. Chim, vol.66, pp.259-265, 1988.

D. W. Shoesmith, S. Sunder, M. G. Bailey, and G. J. Wallace, The corrosion of nuclear-fuel (uo2) in oxygenated solutions, Corros. Sci, vol.29, pp.1115-1128, 1989.

C. M. Jantzen and C. L. Trivelpiece, Uranium dissolution and geochentical modeling in anoxic and oxic solutions, MRS Adv, vol.2, pp.705-710, 2017.

W. Stumm and G. Furrer, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface, pp.197-219, 1987.

V. Luca, Y. J. Zhang, E. Drabarek, and H. Chronis, Cesium release from tungstate and titanate waste form materials in simulated canister corrosion productcontaining solutions, J. Am. Ceram. Soc, vol.90, pp.2510-2516, 2007.

E. Mccafferty, Introduction to Corrosion Science, 2010.

H. Kaesche, Corrosion of Metals: Physicochemical Principles and Current Problems, pp.1-594, 2003.

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 1974.

C. Y. Chao, L. F. Lin, and D. D. Macdonald, A point-defect model for anodic passive films .1. Film growth-kinetics, J. Electrochem. Soc, vol.128, pp.1187-1194, 1981.

A. Seyeux, V. Maurice, and P. Marcus, Oxide film growth kinetics on metals and alloys I. Physical model, J. Electrochem. Soc, vol.160, pp.189-196, 2013.

T. Massoud, Local electronic properties of the passive film on nickel studied by scanning tunneling spectroscopy, J. Electrochem. Soc, vol.159, pp.351-356, 2012.

T. Massoud, V. Maurice, L. H. Klein, and P. Marcus, Nanoscale morphology and atomic structure of passive films on stainless steel, J. Electrochem. Soc, vol.160, pp.232-238, 2013.

M. Seo, R. Furuichi, G. Okamoto, and N. Sato, Dissolution of hydrous chromium oxide in acid solutions, Trans. Jpn Inst. Metal, vol.16, pp.519-525, 1975.

C. L. Mcbee and J. Kruger, Nature of passive films on iron-chromium alloys, Electrochim. Acta, vol.17, p.1337, 1972.

R. Kirchheim, The passivity of iron-chromium alloys, Corros. Sci, vol.29, pp.899-917, 1989.

P. Marcus and J. M. Grimal, The anodic-dissolution and passivation of Ni-Cr-Fe alloys studied by esca, Corros. Sci, vol.33, pp.805-814, 1992.

V. Maurice, W. P. Yang, and P. Marcus, XPS and STM study of passive films formed on Fe-22Cr(110) single-crystal surfaces, J. Electrochem. Soc, vol.143, pp.1182-1200, 1996.

A. Machet, XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy, Electrochim. Acta, vol.49, pp.3957-3964, 2004.

N. Cabrera and N. F. Mott, Theory of the oxidation of metals, Rep. Progress. Phys, vol.12, p.163, 1949.

F. P. Fehlner and N. F. Mott, Low-temperature oxidation, Oxid. Met, vol.2, pp.59-99, 1970.

D. D. Macdonald, The point-defect model for the passive state, J. Electrochem. Soc, vol.139, pp.3434-3449, 1992.

M. Momeni and J. C. Wren, A mechanistic model for oxide growth and dissolution during corrosion of Cr-containing alloys, Faraday Discuss, vol.180, pp.113-135, 2015.

M. Bojinov, Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys, Electrochim. Acta, vol.45, pp.2029-2048, 2000.

Z. Xu, K. M. Rosso, and S. Bruemmer, Metal oxidation kinetics and the transition from thin to thick films, Phys. Chem. Chem. Phys, vol.14, pp.14534-14539, 2012.

J. J. O'dwyer, Theory of high field conduction in a dielectric, J. Appl. Phys, vol.40, pp.3887-3890, 1969.

A. T. Fromhold, Theory of Metal Oxidation: Fundamentals, 1976.

H. H. Strehblow, Nucleation and repassivation of corrosion pits for pitting on iron and nickel, Mater. Corros, vol.27, pp.792-799, 1976.

D. A. Jones, Principles and Prevention of Corrosion, pp.1-572, 1996.

P. Marcus, V. Maurice, and H. H. Strehblow, Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure, Corros. Sci, vol.50, pp.2698-2704, 2008.

S. Y. Yu, W. E. O'grady, D. E. Ramaker, and P. M. Natishan, Chloride ingress into aluminum prior to pitting corrosion -an investigation by XANES and XPS, J. Electrochem. Soc, vol.147, pp.2952-2958, 2000.

B. Macdougall and M. Cohen, Breakdown of oxide-films on nickel, J. Electrochem. Soc, vol.124, pp.1185-1190, 1977.

C. J. Boxley and H. S. White, Relationship between Al 2 O 3 film dissolution rate and the pitting potential of aluminum in NaCl solution, J. Electrochem. Soc, vol.151, pp.265-270, 2004.

H. H. Strehblow and B. Titze, Pitting potentials and inhibition potentials of iron and nickel for different aggressive and inhibiting anions, Corros. Sci, vol.17, pp.461-472, 1977.

W. Khalil, S. Haupt, and H. H. Strehblow, The thinning of the passive layer of iron by halides, Mater. Corros, vol.36, pp.16-21, 1985.

H. Nakajima, The discovery and acceptance of the Kirkendall effect: the result of a short research career, JOM, vol.49, pp.15-19, 1997.

C. Wang, D. K. Schreiber, M. J. Olszta, D. R. Baer, and S. M. Bruemmer, Direct in situ TEM observation of modification of oxidation by the injected vacancies for Ni-4Al alloy using a microfabricated nanopost, ACS Appl. Mater. Interfaces, vol.7, pp.17272-17277, 2015.

L. L. Luo, In-situ transmission electron microscopy study of surface oxidation for Ni-10Cr and Ni-20Cr alloys, Scr. Mater, vol.114, pp.129-132, 2016.

L. Langli, In situ atomic scale visualization of surface kinetics driven dynamics of oxide growth on a Ni-Cr surface, Chem. Commun, vol.52, pp.3300-3303, 2016.

L. F. Lin, C. Y. Chao, and D. D. Macdonald, A point-defect model for anodic passive films. 2. Chemical breakdown and pit initiation, J. Electrochem. Soc, vol.128, pp.1194-1198, 1981.

J. A. Richardson and G. C. Wood, A study of pitting corrosion of a1 by scanning electron microscopy, Corros. Sci, vol.10, p.313, 1970.

N. Sato, Theory for breakdown of anodic oxide films on metals, Electrochim. Acta, vol.16, p.1683, 1971.

. Szklarska-smialowska, Z. Pitting and Crevice Corrosion, 2005.

G. S. Frankel, Pitting corrosion of metals: a review of the critical factors, J. Electrochem. Soc, vol.145, pp.2186-2198, 1998.

A. J. Sedriks, Corrosion of Stainless Steels 2nd edn, 1996.

M. Urquidi and D. D. Macdonald, Solute-vacancy interaction-model and the effect of minor alloying elements on the initiation of pitting corrosion, J. Electrochem. Soc, vol.132, pp.555-558, 1985.

K. Hashimoto, K. Asami, and K. Teramoto, X-ray photoelectron spectroscopic study on the role of molybdenum in increasing the corrosion-resistance of ferritic stainless-steels in hcl, Corros. Sci, vol.19, pp.3-14, 1979.

N. Bui, A. Irhzo, F. Dabosi, and Y. Limouzinmaire, ON The mechanism for improved passivation by additions of tungsten to austenitic stainless-steels, Corrosion, vol.39, pp.491-496, 1983.

Y. C. Lu, R. Bandy, C. R. Clayton, and R. C. Newman, Surface enrichment of nitrogen during passivation of a highly resistant stainless-steel, J. Electrochem. Soc, vol.130, pp.1774-1776, 1983.

R. C. Newman and T. Shahrabi, The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behavior of austenitic stainless-steel in hydrochloric-acid, Corros. Sci, vol.27, pp.827-838, 1987.

R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim, and Y. Lu, AN XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless-steel, Corros. Sci, vol.31, pp.179-190, 1990.

R. J. Brigham and E. W. Tozer, Localized corrosion-resistance of mn-substituted austenitic stainless-steels -effect of molybdenum and chromium, Corrosion, vol.32, pp.274-276, 1976.

G. S. Frankel, L. Stockert, F. Hunkeler, and H. Boehni, Metastable pitting of stainless steel, Corrosion, vol.43, pp.429-436, 1987.

V. M. Salinasbravo and R. C. Newman, AN alternative method to determine critical pitting temperature of stainless-steels in ferric-chloride solution, Corros. Sci, vol.36, pp.67-77, 1994.

R. Qvarfort, Critical pitting temperature-measurements of stainless-steels with an improved electrochemical method, Corros. Sci, vol.29, pp.987-993, 1989.

M. H. Moayed, N. J. Laycock, and R. C. Newman, Dependence of the critical pitting temperature on surface roughness, Corros. Sci, vol.45, pp.1203-1216, 2003.

R. J. Brigham and E. W. Tozer, Temperature as a pitting criterion, Corrosion, vol.29, pp.33-36, 1973.

R. C. Alkire and K. P. Wong, The corrosion of single pits on stainless-steel in acidic chloride solution, Corros. Sci, vol.28, p.411, 1988.

F. Hunkeler and H. Bohni, Determination of pit growth-rates on aluminum using a metal foil technique, Corrosion, vol.37, pp.645-650, 1981.

R. C. Newman and E. M. Franz, Growth and repassivation of single corrosion pits in stainless-steel, Corrosion, vol.40, pp.325-330, 1984.

Y. Kondo, Prediction of fatigue crack initiation life based on pit growth, Corrosion, vol.45, pp.7-11, 1989.

G. S. Frankel, T. S. Li, and J. R. Scully, Localized corrosion: passive film breakdown vs pit growth stability, J. Electrochem. Soc, vol.164, pp.180-181, 2017.

K. Oh, S. Ahn, K. Eom, K. Jung, and H. Kwon, Observation of passive films on Fe-20Cr-xNi (x=0, 10, 20 wt.%) alloys using TEM and Cs-corrected STEM-EELS, Corros. Sci, vol.79, pp.34-40, 2014.

H. F. Xu, Investigation of pyrochlore-based U-bearing ceramic nuclear waste: uranium leaching test and TEM observation, Environ. Sci. Technol, vol.38, pp.1480-1486, 2004.

J. J. Neeway, P. C. Rieke, B. P. Parruzot, J. V. Ryan, and R. M. Asmussen, The dissolution behavior of borosilicate glasses in far-from equilibrium conditions, Geochim. Cosmochim. Acta, vol.226, pp.132-148, 2018.

C. Guy, New conditionings for separated long-lived radionuclides, Comptes Rendus Phys, vol.3, pp.827-837, 2002.

S. K. Roberts, W. L. Bourcier, and H. F. Shaw, Aqueous dissolution kinetics of pyrochlore, zirconolite and brannerite at 25, 50, and 75 degrees C, Radiochim. Acta, vol.88, pp.539-543, 2000.

G. S. Frankel, Repassivation transients measured with thin-film breaking electrodes, J. Electrochem. Soc, vol.138, pp.643-644, 1991.

D. G. Kolman and J. R. Scully, Limitations of potentiostatic repassivation techniques and their relationship to the applicability of the high-field approximation to the repassivation of titanium, J. Electrochem. Soc, vol.142, pp.2179-2188, 1995.

R. D. Peters and S. C. Slate, Fracturing of simulated high-level waste glass in canisters, Nucl. Eng. Des, vol.67, pp.425-445, 1982.

D. Kim, D. K. Peeler, and P. Hrma, Effect of crystallization on the chemical durability of simulated nuclear waste glasses, Ceram. Trans, vol.61, pp.177-186, 1995.

R. C. Cammarata, Surface and interface stress effects in thin-films, Prog. Surf. Sci, vol.46, pp.1-38, 1994.

J. Luo, Y. Zhou, S. T. Milner, C. G. Pantano, and S. H. Kim, Molecular dynamics study of correlations between IR peak position and bond parameters of silica and silicate glasses: Effects of temperature and stress, J. Am. Ceram. Soc, vol.101, pp.178-188, 2018.

N. Sheth, J. W. Luo, J. Banerjee, C. G. Pantano, and S. H. Kim, Characterization of surface structures of dealkalized soda lime silica glass using X-ray photoelectron, specular reflection infrared, attenuated total reflection infrared and sum frequency generation spectroscopies, J. Non-Cryst. Solids, vol.474, pp.24-31, 2017.

J. Du and J. Rimsza, Atomistic computer simulations of water interactions and dissolution of inorganic glasses, Nat. Mat. Deg, vol.1, p.16, 2017.

L. J. Criscenti, J. D. Kubicki, and S. L. Brantley, Silicate glass and mineral dissolution: calculated reaction paths and activation energies for hydrolysis of a Q(3) si by H3O+using ab initio methods, J. Phys. Chem. A, vol.110, pp.198-206, 2006.

J. Greeley and J. K. Norskov, Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations, Electrochim. Acta, vol.52, pp.5829-5836, 2007.

C. D. Taylor, M. Neurock, and J. R. Scully, First-principles investigation of the fundamental corrosion properties of a model Cu(38) nanoparticle and the (111), (113) surfaces, J. Electrochem. Soc, vol.155, pp.407-414, 2008.

K. Mathew, R. Sundararaman, K. Letchworth-weaver, T. A. Arias, and R. G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways, J. Chem. Phys, vol.140, p.84106, 2014.

J. A. Yuwono, N. Birbilis, K. S. Williams, and N. V. Medhekar, Electrochemical stability of magnesium surfaces in an aqueous environment, J. Phys. Chem. C, vol.120, pp.26922-26933, 2016.

W. L. Bourcier, Waste glass corrosion modeling: comparison with experimental results, Materials Research Society Symposium Proceedings, 2011.

B. Mishra, S. Al-hassan, D. L. Olson, and M. M. Salama, Development of a predictive model for activation-controlled corrosion of steel in solutions containing carbon dioxide, Corrosion, vol.53, pp.852-859, 1997.

J. M. Delaye and D. Ghaleb, Molecular dynamics simulation of SiO 2 +B 2 O 3 +Na 2 O +ZrO 2 glass, J. Non-Cryst. Solids, vol.195, pp.239-248, 1996.

M. G. Ren, L. Deng, and J. C. Du, Bulk, surface structures and properties of sodium borosilicate and boroaluminosilicate nuclear waste glasses from molecular dynamics simulations, J. Non-Cryst. Solids, vol.476, pp.87-94, 2017.

M. G. Ren, L. Deng, and J. C. Du, Surface structures of sodium borosilicate glasses from molecular dynamics simulations, J. Am. Ceram. Soc, vol.100, pp.2516-2524, 2017.

M. Collin, Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions, Mater. Degrad, vol.2, p.4, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01707691

J. M. Rimsza and J. C. Du, Interfacial structure and evolution of the water-silica gel system by reactive force-field-based molecular dynamics simulations, J. Phys. Chem. C, vol.121, pp.11534-11543, 2017.

J. M. Rimsza, J. Yeon, A. C. Van-duin, and J. C. Du, Water interactions with nanoporous silica: comparison of ReaxFF and ab lnitio based molecular dynamics simulations, J. Phys. Chem. C, vol.120, pp.24803-24816, 2016.

O. Assowe, Reactive molecular dynamics of the initial oxidation stages of Ni(111) in pure water: effect of an applied electric field, J. Phys. Chem. A, vol.116, pp.11796-11805, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00789833

B. Malki and B. Baroux, Computer simulation of the corrosion pit growth, Corros. Sci, vol.47, pp.171-182, 2005.

S. Kerisit, E. M. Pierce, and J. V. Ryan, Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses, J. Non-Cryst. Solids, vol.408, pp.142-149, 2015.

A. Ledieu, F. Devreux, and P. Barboux, Monte Carlo simulations of borosilicate glass corrosion: predictions for morphology and kinetics, J. Non-Cryst. Solids, vol.345, pp.715-719, 2004.