L. Anand, S. Balasubramanian, and K. Kothari, Constitutive modeling of polycrystalline metals at large strains, CISM Courses and Lectures No. 376: Large Plastic Deformation of Crystalline Aggregates, p.109, 1996.

F. Barbe, S. Forest, and G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates. Part 1. FE model, Int. J. Plast, vol.17, pp.513-536, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02327393

M. Berveiller and A. Zaoui, An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids, vol.26, pp.325-344, 1979.

G. Bertolino, V. Doquet, and M. Sauzay, Modelling of the scatter in short fatigue cracks growth kinetics in relation with the polycrystalline microstructure, Int. J. Fat, vol.27, pp.471-480, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01820130

I. J. Beyerlein and C. N. Tomé, Modeling transients in the mechanical response of copper due to strain path changes, Int. J. Plast, vol.23, issue.4, pp.640-664, 2007.

G. Cailletaud, A micromechanical approach to inelastic behaviour of metals, Int. J. Plast, vol.8, pp.55-73, 1992.

J. D. Clayton and D. L. Mcdowell, A multiscale multiplicative decomposition for elastoplasticity of polycrystals, Int. J. Plast, vol.19, pp.1401-1444, 2003.

A. H. Cottrell, Dislocations and Plastic Flow in Crystals, p.111, 1953.

L. Delannay, P. J. Jacques, and S. R. Kalidindi, Finite element modeling of crystal plasticity shaped as truncated octahedrons, Int. J. Plast, vol.22, pp.1879-1898, 2006.

C. Déprés, Modélisation physique des stades précurseurs de l'endommagement en fatigue dans l'acier inoxydable austénitique 316L. PhD, 2004.

K. Differt and U. Essmann, Dynamical model of the wall structure in persistent slip bands of fatigued metals I. Dynamical model of edge dislocation walls, Mater. Sci. Eng. A, vol.164, pp.295-299, 1993.

P. Erieau and C. Rey, Modeling of deformation and rotation bands and of deformation induced grain boundaries in IF steel aggregate during large plane strain compression, Int. J. Plast, vol.20, pp.1763-1788, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00019025

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, Proc. Roy. Soc. A, vol.252, pp.561-569, 1957.

U. Essmann, Electron microscopy investigation of dislocation arrangements in copper single crystals, Part I and Part II, Phys. Status Solidi, vol.12, issue.2, pp.723-747, 1965.

U. Essmann and K. Differt, Dynamic model of the wall structure in persistent slip bands of fatigued metals II. The wall spacing and the temperature dependence of the yield stress in saturation, Mater. Sci. Eng. A, vol.208, pp.56-68, 1996.

X. Feaugas, Contribution à la compréhension des mécanismes de déformation plastique et d'endommagement des matériaux, Habilitation à Diriger des Recherches, 1999.

X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: backstress and effective stress, Acta Mater, vol.47, pp.3617-3632, 1999.

X. Feaugas and C. Gaudin, Different levels of plastic strain incompatibility during cyclic loading: in terms of dislocation density and distribution, Mater. Sci. Eng, pp.382-385, 2001.

J. T. Fourie, The flow stress gradient between the surface and the centre of deformed single crystals, Phil. Mag, vol.17, pp.735-756, 1968.

M. Gerland, J. Mendez, P. Violan, and A. Saadi, Evolution of dislocation structures and cyclic behaviour of a 316L-type austenitic steel cycled in vacuo at room temperature, Mater. Sci. Eng. A, vol.118, pp.83-95, 1989.

Y. Guan, F. Pourboghrat, and F. Barlat, Finite element modeling of tube hydroforming of polycrystalline aluminium alloy extrusions, Int. J. Plast, vol.22, pp.2366-2393, 2006.

A. Habraken and L. Duchêne, Anisotropic elastoplastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model, Int. J. Plast, vol.20, pp.1525-1560, 2004.

N. Hansen and X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Mater, vol.46, pp.1827-1836, 1998.

J. Harder, A crystallographic model for the study of local deformation processes in polycrystals, Int. J. Plast, vol.15, pp.605-624, 1999.

E. Hervé and A. Zaoui, Modelling the effective behavior of non-linear matrix-inclusion composites, Eur. J. Mech., A/Solids, vol.9, issue.6, pp.505-515, 1990.

E. Hervé, R. Dendievel, and G. Bonnet, Steady-state power-law creep in ''inclusion-matrix" composite materials, Acta Metall. Mater, vol.43, pp.4027-4034, 1995.

T. M. Holden, R. A. Holt, and A. P. Clarke, Intergranular strains in Inconel-600 and the impact on interpreting stress fields in bent steam-generator tubing, Mater. Sci. Eng. A, vol.246, pp.180-198, 1998.

S. M. Khan, H. M. Zbib, and D. A. Hugues, Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity, Int. J. Plast, vol.20, pp.1059-1092, 2004.

E. Krö-ner, On the plastic deformation of polycrystals, Acta Metall, vol.9, pp.155-161, 1961.

J. Kratochvil, Derivation of Mughrabi's cellular structure model from synergetics of dislocations, Scripta Met. Mater, vol.24, pp.891-894, 1990.

D. Kuhlmann-wilsdorf and C. Laird, Dislocation behavior in fatigue II. Friction stress and back stress as inferred from an analysis of hysteresis loops, Mater. Sci. Eng, vol.37, pp.111-120, 1979.

D. Kuhlmann-wilsdorf and J. H. Van-der-merwe, Theory of dislocation cell sizes in deformed metals, Mater. Sci. Eng, vol.55, pp.79-83, 1982.

D. Kuhlmann-wilsdorf, Q: Dislocations structures -how far from equilibrium? A: Very close indeed, Mater. Sci. Eng. A, vol.315, pp.211-216, 2001.

C. Laird, P. Charsley, and H. Mughrabi, Low energy dislocation structures produced by cyclic deformation, Mater. Sci. Eng, vol.81, pp.433-450, 1986.

L. Langlois and M. Berveiller, Overall softening and anisotropy related with the formation and evolution of dislocation cell structures, Int. J. Plast, vol.19, pp.599-624, 2003.

J. Lemaitre and J. Chaboche, Mechanics of Solid Materials, 1987.

X. Lemoine, D. Muller, and M. Berveiller, Texture of microstructure in BCC metals for various loading paths, Mater. Sci. Forum, vol.157, pp.1821-1826, 1994.

Y. Li and C. Laird, Cyclic response and dislocation structures of AISI 316L stainless steel. Part 1. Single crystals fatigued at intermediate strain amplitude, Mater. Sci. Eng. A, vol.186, pp.65-86, 1994.

P. Lukas, M. Knesnil, and J. Krejci, Dislocations and persistent slip bands in copper single crystals fatigued at low-stress amplitude, Phys. Stat. Sol, vol.27, pp.545-558, 1968.

H. Mughrabi, The cyclic hardening and saturation behaviour of copper single crystals, Mater. Sci. Eng, vol.33, pp.207-223, 1978.

H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metall, vol.31, issue.9, pp.1367-1379, 1983.

H. Mughrabi, T. Ungar, W. Kienle, and M. Wilkens, Long-range internal stresses and asymmetric X-ray linebroadening in tensile-deformed, Phil. Mag. A, vol.53, issue.6, pp.793-813, 1986.

H. Mughrabi, The long-range internal stress field in the dislocation wall structure of persistent slip bands, Phys. Stat. Sol. (a), vol.104, pp.107-120, 1987.

H. Mughrabi, Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals, Rev. Phys. Appl, vol.23, pp.367-379, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00245783

T. Mura, Micromechanics of defects in solids, 1987.

E. Nakamachi, N. N. Tam, and H. Morimoto, Multi-scale finite element analysis of sheet metals by using SEM-EBSD measured crystallographic RVE models, Int. J. Plast, vol.23, issue.3, pp.450-489, 2007.

K. Obrtlik, J. Polak, and J. Komurka, Dislocation structures in polycrystalline copper cycled at low strain amplitudes, Scripta Met. Mater, vol.28, pp.495-499, 1993.

W. Pantleon, On the statistical origin of disorientation in dislocation microstructures, Acta Mater, vol.46, issue.2, pp.451-456, 1998.

O. B. Pedersen, Mechanism maps for cyclic plasticity and fatigue of single phase materials, Acta Metall. Mater, vol.38, issue.7, pp.1221-1239, 1990.

J. Polak, . Amsterdam, J. Polak, K. Obrtlik, M. Hajek et al., Cyclic stress-strain response of polycrystalline copper in a wide range of plastic strain amplitudes, Mater. Sci. Eng. A, vol.151, pp.19-27, 1991.

D. Raabe and F. Roters, Using texture components in crystal plasticity finite element simulations, Int. J. Plast, vol.20, pp.339-361, 2004.

C. Robertson, M. C. Fivel, and A. Fissolo, Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K, Mater. Sci. Eng. A, vol.315, pp.47-58, 2001.

M. Sauzay, Effets de surface et d'anisotropie en fatigue multiaxiale, p.54, 2000.

T. Tabata, S. Yamanaka, and H. Fujita, In situ deformation of the [1 1 1] aluminium single crystals observed by high voltage electron microscopy, Acta Metall, vol.26, pp.405-411, 1977.

T. Tabata, H. Fujita, M. Hiraoka, and S. Miyake, The relationship between flow stress and dislocation behaviour in [1 1 1] aluminium single crystals, Phil. Mag. A, vol.46, pp.801-816, 1982.

P. Tugcu, K. W. Neale, P. D. Wu, and K. Inal, Crystal plasticity simulation of the hydrostatic bulge test, Int. J. Plast, vol.20, pp.1603-1653, 2004.

T. Ungar, H. Mughrabi, M. Wilkens, and A. Hilscher, Long-range internal stresses and asymmetric X-ray line broadening in tensile-deformed, vol.54, pp.495-496, 1991.

A. T. Winter, O. B. Pedersen, and K. V. Rasmussen, Dislocation microstructures in fatigued copper single crystals, Acta Metall, vol.29, pp.735-748, 1981.

D. Zhou, J. C. Moosbrugger, and D. J. Morrisson, Finite element simulation of PSB macroband nucleation and propagation in single crystal nickel cycled at low plastic strain amplitudes, Int. J. Plast, vol.22, pp.1336-1366, 2006.