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Abstract

Deformation induced dislocation microstructures appear in Face-Centred Cubic metals and
alloys if applying large enough tensile/cyclic strain. These microstructures are composed of a soft
phase with a low dislocation density (cell interiors, channels. . .) and a hard phase with a high dislo-
cation density (walls). It is well known that these dislocation microstructures induce backstresses,
which give kinematic hardening at the macroscopic scale. A simple two-phase localization rule is
applied for computing these intragranular backstresses. This is based on Eshelby’s inclusion problem
and the Berveiller–Zaoui approach. It takes into account an accommodation factor. Close-form for-
mulae are given and permit the straightforward computation of reasonable backstress values even
for large plastic strains. Predicted backstress values are compared to a number of backstress exper-
imental measurements on single crystals. The agreement of the model with experiments is encourag-
ing. This physical intragranular kinematic hardening model can easily be implemented in a
polycrystalline homogenization code or in a crystalline finite element code. Finally, the model is dis-
cussed with respect to the possible plastic glide in walls and the use of enhanced three phase local-
ization models.
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1. Introduction

Monotonic and cyclic behaviours of Faced Cubic Centred (FCC) single crystals and poly-
crystals have been extensively studied. Numerous Transmission Electronic Microscopy
(TEM) studies have shown that deformation induced dislocation microstructures appear
in Faced Cubic Centred metals and alloys if the tensile/cyclic applied strain is large enough
(Lukas et al., 1968; Mughrabi, 1987; Polak, 1991; Gerland et al., 1989; Mughrabi, 1983)
(Fig. 1). Other crystallographic structures can be concerned too. The dislocation microstruc-
tures are composed of a soft phase (cell interiors, channels) with a low dislocation density
(qc < 1014 m�2, often mobile dislocations) and a hard phase (walls) with a high dislocation
density (qw > 1015 m�2, often edge dipoles) (Mughrabi, 1987). Depending on the crystallo-
graphic orientation with respect to the solicitation axes, loading type (cyclic/monotonic) and
strain level, walls/channels, cells or labyrinths have been observed (Fig. 1). In single crystals
containing such dislocation microstructures, backstresses have been measured using differ-
ent kinds of procedures (Mughrabi, 1983). Direct mechanical measures using the hysteresis
loops (Cottrell, 1953; Kuhlmann-Wilsdorf and Laird, 1979), TEM dislocation radii mea-
sures (Mughrabi, 1987) and X-rays diffraction (Mughrabi et al., 1986; Ungar et al., 1991)
have been used. These backstresses are of opposite signs in the soft and hard phase. They
are due to the incompatibilities in the single crystal (dislocations glide easily in the soft phase,
but hardly in the hard phase). They induce kinematic hardening at the macroscopic scale.
Such deformation dislocation microstructures appear also in polycrystals. They depend par-
tially on the grain orientations with respect to the solicitation axes (Winter et al., 1981; Polak
et al., 1992; Hansen and Huang, 1998). Backstresses at the micrometer scale have been mea-
sured by synchrotron radiation (Holden et al., 1998), but they are due to both intragranular
and intergranular plastic heterogeneities, and not only to intragranular ones.

Fig. 1. Example of a dislocation microstructure in an austenitic steel (labyrinth microstructure). Cyclic alternated
stress, De = 0.6%, de/dt = 3 � 10�3 s�1, T = 550 �C (I. Monnet, SRMA).
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Concerning computations, there are at least three kinds of dislocation microstructure
backstress computation models have been proposed in the past. First, several models
based on inclusion problems have been proposed. They consider the soft phase as sur-
rounded by the matrix or by an elastic wall and by the matrix. They use hypotheses con-
cerning the localization rule which links the macroscopic scale to the cell or wall/channel
scale. Mughrabi’s model supposes homogeneous strain (Voigt’s model) (Mughrabi, 1983),
Pedersen’s one uses Eshelby’s transition rule (Eshelby, 1957; Kröner, 1961; Pedersen,
1990) and the Lemoine et al. one considers a cell interior surrounded by a wall and embed-
ded in a matrix (Fig. 2) (Lemoine et al., 1994; Langlois and Berveiller, 2003). Lemoine
et al. model permits us to take into account the geometry and the wall volume fraction
which characterize the dislocation microstructure. Generally, the walls are supposed to
be elastic, the soft phase is elastoplastic and the matrix is elastic or elastoplastic. The soft
phase backstress depends on the soft phase plastic slip. Using Eshelby’s coefficients
(Eshelby, 1957), it is possible to compute the 3D backstress tensor induced by a given
microstructure geometry and by the plastic slips given on several slip systems. But, all
these models are thermoelastic and use no plastic accommodation factor; that is why
the computed backstresses are too high as soon as the plastic strain is higher than a few
10�4 (Berveiller and Zaoui, 1979; Sauzay, 2000). In fact, thermoelastic models suppose
homogeneous strains in each phase even if there are heterogeneities in each phase, partic-
ularly near the interfaces. These heterogeneities permit the accommodation of the defor-
mation and reduce the incompatibilities and backstresses. That is why an
accommodation factor classically used in polycrystalline models (such as Berveiller and
Zaoui model (1979)) has been used in this work.

There are at least two kinds of other backstress models. Mughrabi proposes a second
model based on the hypothesis that both the hard and soft phases are plastically deformed
at maximal load (Mughrabi, 1987). This has been developed more recently by Feaugas and
Gaudin (2001). The computed soft phase backstress depends on the dislocation densities in
the two phases but not directly on the plastic slip. Another model has been proposed by
Harder (1999). This one is more phenomenological and uses adjustable parameters like
macroscopic kinematic hardening models (Lemaitre and Chaboche, 1987). These two
models do not take into account the dislocation microstructure geometry (walls/channels,

Fig. 2. Equiaxed dislocation cell (tensile or high cyclic plastic strain).
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equiaxed cells). These models permit us to compute the value of the backstress on a slip
system. But, the 3D backstress tensor computation is not so clear in spite of the proposi-
tion of Harder (1999) because of lack of a physical base. Homogenization codes (Caille-
taud, 1992; Langlois and Berveiller, 2003) as well as crystalline finite element codes
(Barbe et al., 2001; Clayton and McDowell, 2003; Erieau and Rey, 2004; Bertolino
et al., 2005; Delannay et al., 2006; Nakamachi et al., 2007) are more and more used. Even
when they take into account intragranular kinematic hardening laws, they generally use at
the grain scale macroscopic type laws and several adjustable parameters without any clear
physical meaning. Recently several enhanced models were proposed for simulating form-
ing processes on large structures (Tugcu et al., 2004; Habraken and Duchêne, 2004; Raabe
and Roters, 2004; Erieau and Rey, 2004; Guan et al., 2006). But they did not consider any
intragranular kinematic hardening model even if dislocation microstructures are usually
observed if large plastic strains are applied. This could reduce their prediction ability even
if there is a huge development of these micromechanical models and of their scale transi-
tion laws (enhanced homogenization modelling, comparisons between homogenization
and finite element code results at both grain and macroscopic levels). Kinematic hardening
based on deformation induced macrostructure should be particularly important for mod-
elling strain path changes during which dislocation microstructures evolve as mentioned
by Langlois and Berveiller (2003) or Beyerlein and Tomé (2007). Recently, discrete dislo-
cation dynamics (DDD) was used for evaluating the long-range stress field induced by par-
ticular dislocation microstructures (Khan et al., 2004; Déprés, 2004). But, DDD requires
time-consuming numerical computations and does not give close-form expressions which
can be directly implemented in crystalline finite element codes.

Experimental in situ TEM observations of Tabata et al. (1977, 1982) show that the plas-
tic glide in the walls is much reduced. Tabata et al. study [111] single crystals (Tabata
et al., 1977). They show that the slip lines stop at the cell walls and do not cross them
(Tabata et al., 1977) and that the dislocations glide much faster in the middle of the cells
than near the walls (Tabata et al., 1982). These observations permit an experimental eval-
uation of the dislocation speeds which are larger in the middle of the cells. The dislocation
densities are so high in the walls that the dislocation motion through them seems to be
limited.

Because of these experimental results, elastic walls and elastoplastic soft phase have
been considered in this work. An inclusion approach has been used in order to take into
account the dislocation microstructure geometry (except the enrobed character). Follow-
ing the Berveiller–Zaoui approach, a two-phase model is applied. The constitutive law of
the whole single crystal is supposed to be isotropic elastoplasticity. The average secant
modulus and finally the Berveiller–Zaoui accommodation factor are used. In spite of
the crystalline behaviour anisotropy, the used localization rule supposes isotropic behav-
iour in order to propose close-form formulae. The predicted (soft phase) backstresses are
compared with many backstress measures in single crystals for which the backstresses are
reduced to the intragranular ones. Even for large strains, the computations agree rather
well with the experimental measures. This physical intragranular kinematic hardening
model can be easily be implemented in a polycrystalline homogenization code or in a crys-
talline finite element code. These results are finally discussed, particularly concerning pos-
sible plastic glide inside walls (which has been neglected in a first attempt) and predictions
of enhanced three phase inclusion-matrix models (which take into account the enrobed
character of the soft or hard phase but do not give any close-form expression).
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2. Intragranular backstress computation

Because of their high dislocation densities, the walls are supposed to be elastic, whereas
the soft phase is elastoplastic. For the sake of simplicity, a single crystal is considered. Let
us consider a spherical cell (Fig. 2). This two-phase cell is supposed to be embedded in an
infinite matrix which constitutive law is the whole single crystal one. Crystalline plasticity
is considered. Therefore, the average plastic strain tensor is decomposed into a sum of
plastic shear tensors. The average plastic slip is denoted as cp

i and ni, mi are respectively
the slip normal and slip direction of the corresponding ith slip system. There are N slip
systems (N = 12 for the FCC structure and N = 24 for the Body Cubic Centred structure).
In the framework of small-strain theory, the whole single crystal plastic strain tensor is
given by:

ep ¼
XN

i¼1

cp
i

1

2
ðnimT

i þ minT
i Þ ð1Þ

As walls are supposed to be elastic, plastic deformation is localized in the soft phase only:

ep ¼ ð1� fwÞep
s ð2Þ

with fw the wall volume fraction and using the soft phase plastic strain tensor.
Following Kröner’s thermoelastic approach applied to a spherical inclusion (Kröner,

1961), the localization rule gives the soft phase backstress tensor:

xc ¼ �2lð1� bÞðep
s � epÞ ð3Þ

with l the elastic shear modulus, b = 2(4 � 5m)/15(1 � m) (Eshelby’s analysis for a spher-
ical inclusion) (Eshelby, 1957; Mura, 1987), m the Poisson ratio. This corresponds to the
backstress acting inside the cell.

Using Eqs. (1)–(3), Lemoine et al. (1994) obtain the soft phase backstress for a spherical
cell:

xc ¼ �
fw

1� fw

lð1� bÞ
XN

i¼1

cp
i ðnimT

i þ minT
i Þ ð4Þ

Following Kröner’s analysis (Kröner, 1961), this formula supposes elastic interactions be-
tween the matrix and the two-phase cell (Langlois and Berveiller, 2003; Mura, 1987).

But, it is well known that a plastic accommodation takes place for large plastic strains,
which decreases the backstress level: Eq. (4) can overestimate the backstress level (Berve-
iller and Zaoui, 1979; Sauzay, 2000). The comparison between the predictions of Eq. (4)
and the experimental backstresses measures will be discussed in Part 4. It will be shown
that Eq. (4) overestimates largely the backstresses (see Tables 1 and 2). Physically, there
are heterogeneous plastic strains near the interfaces between the three media, which
induces backstress accommodation. In order to take this effect into account, a classical
localization rule proposed by Berveiller and Zaoui (1979) is used which introduces the
elastoplastic secant moduli and an accommodation factor. Such approach is suggested
by Langlois and Berveiller (2003) who obtain too high backstresses using the previous
Kröner approach. The Berveiller and Zaoui approach was initially proposed for studying
the interaction between one grain and the whole polycrystal. It is now applied to a two-
phase material (hard/soft phase). In order to introduce plastic accommodation, a simple
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geometry is considered: each (equiaxed) phase is supposed to be surrounded by the matrix
one. The wall is still supposed to be elastic and the plasticity takes place only in the soft
phase. Berveiller and Zaoui argumentation (1979) is now followed. The localization prob-
lem is reduced to a heterogeneity problem. For the sake of simplicity, the whole single
crystal behaviour is modelled as an isotropic one and its secant behaviour is used. The
application of the Berveiller and Zaoui model gives directly:

xc ¼ �2lð1� bÞ 1

1þ 3
2
l

ep
eq

req

ðep
s � epÞ ð5Þ

Using the relationship between the soft phase plastic strain tensor and the macroscopic
one (Eq. (2)), the modified backstress formula is obtained for a spherical cell:

xc ¼ �
fw

1� fw

lð1� bÞ 1

1þ 3
2
l

ep
eq

req

XN

i¼1

cp
i ðnimT

i þ minT
i Þ ð6Þ

The accommodation factor (compare Eqs. (1) and (6)) is equal to:

F accom ¼
1

1þ 3
2
l

ep
eq

req

ð7Þ

It is similar to the classical Berveiller and Zaoui accommodation factor (Berveiller and
Zaoui, 1979). It is quite equal to 1 for low plastic slips, which gives Eq. (4). But, if the

Table 1
Application of the Berveiller–Zaoui model to a two phases composite (Eq. (2))

cp(%) s fw xc (exp.) xc (B–Z) xc (Kröner) Stress measurement

Copper, well-oriented

38.2 44 0.22 (±15%) 26 (±20%) 31.1 (±18%) �5700 TEM

Copper, h001i loading axes

104 75 0.3 (±10%) 8.6 (±15%) 9.5 (±15%) �2500 X-ray diffraction

Comparison experiment/model. Tensile loading, large plastic strains. Stress unit is MPa. Geometry: equiaxed cell.
Experiment references: Essmann (1965), Fourie (1968), Mughrabi et al. (1986), and Ungar et al. (1991).
Amplitudes of the backstresses are given.

Table 2
Application of the Berveiller–Zaoui model to a two phases composite (Eq. (6) eventually adapted to the infinite
cylinder case)

cp (%) s fw xc (exp.) xc (B–Z) xc (Kröner) Stress measurement

Copper, well-oriented

0.0015 17 0.6 (±15%) 10 (±10%) 0.65 (±37%) 0.61 Hysteresis loop
1 28 0.3 (±15%) 11 (±10%) 11.7 (±21%) 96 Hysteresis loop

Austenitic steel 316L, well-oriented

0.2 60 0.5 (±15%) 16 (±10%) 19 (±29%) 54 Hysteresis loop

Comparison experiment/model. Cyclic loading. Stress unit is MPa. Geometries: cylinders (0.0015% and 0.2%) or
equiaxed cells (0.28% and 1%). Experiment references: Mughrabi (1978), Laird et al. (1986), and Li and Laird
(1994). Amplitudes of the backstresses are given.
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ep
eq=req coefficient is large enough, the accommodation factor is much lower than 1. This

accommodation factor is the quotient between the Berveiller and Zaoui prediction (Eq.
(6)) and Kröner’s prediction (Eq. (4)) (Tables 1 and 2). If only single slip is considered,
a scalar close-form is obtained. This gives the shear backstress on the activated slip
system:

xc ¼ �
fw

1� fw

lð1� bÞ 1

1þ 1
2
l cp

s

cp ð8Þ

with cp the plastic slip on the activated slip system.
Similar formulae can be given for other microstructure geometries, which can be mod-

elled as homothetic concentric ellipsoids, introducing geometrical factors which depend on
the ellipsoı̈d axes factors (Eshelby, 1957; Mura, 1987). For geometries more complicated
than a sphere, Eqs. (2) and (3) can be modified. The (1 � b) coefficient and the accommo-
dation factor can be modified (Mura, 1987). In addition, for multiple slip, a more compli-
cated close-form is obtained because the backstress tensor can be no more proportional to
the plastic strain tensor (case of infinite cylinders (Mura, 1987)).

For the validation of the model, two geometries have been used. They seem to be
roughly representative of the two-phase dislocation microstructures corresponding to
the tests and materials we refer to (Figs. 2 and 3). First, equiaxed cell microstructures have
been considered (spherical cells, Fig. 2). For single slip (Eq. (8)) should be used whereas
(Eqs. (6) and (7)) permits the computation of the backstress for multiple slip. Second,
veins/channels microstructures are considered (hard phase kinds of cylinders embedded
first in soft phase and second in matrix, Fig. 3). For the sake of simplicity, the cylinders
are supposed to be purely elastic, infinite and to have a circular basis. They are supposed
to be directly embedded in the macroscopic matrix and subjected to single slip. The slip
normal and direction belong to the cylinder basis. This leads to relationship between
the resolved shear stress and the primary plastic slip. For this second microstructure,
the geometrical factor is equal to 1/(4(1 � m)) (about 0.36 if m = 0.3) instead of (1 � b)
for the spherical cell (about 0.524 if m = 0.3) (Pedersen, 1990; Mura, 1987). Following
the idea given by Berveiller and Zaoui (1979), both macroscopic secant elastoplastic shear
modulus and Poisson ratio are used instead of the elasticity coefficients in the Kröner ther-
moelastic solution. The backstress equation as well as its calculation are given in
Appendix.

Fig. 3. Hard phase cylinder enrobed by soft phase (cyclic loading, small plastic strain). The real dislocation
microstructure is made of less regular veins and channels.
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Some simplifications have been used in this model. The crystalline elasticity anisotropy
has not been taken into account (cubic symmetry). The plastic anisotropy has neither been
considered (for example single slip corresponds to an anisotropic plastic flow). And spe-
cific morphologies including a cell interior (inclusion), a concentric wall (shell) and a
matrix can be modelled by some three-phase models (Hervé and Zaoui, 1990; Hervé
et al., 1995) which consider separate inclusions (cell interiors) and a continuous phase
(walls) (Figs. 2 and 3). But, it should be noted that if stresses and strains are considered
as homogeneous in each phase, Eq. (4) (Kröner’s approach) does not suppose any geomet-
rical hypothesis such a cell embedded in a wall. If each phase is supposed to be directly
embedded in the matrix one and if Kröner’s localization rule is once more used, the same
backstress value is obtained. Therefore, comparison between Eqs. (4) and (6) concerns
rather the interaction hypothesis than the morphology hypothesis.

If more complicated hypotheses are considered (anisotropy, concentric walls), the com-
putation are less straightforward and close-form formulae can no more be easily obtained.
The choice of very simple hypotheses permit us to propose close-form formulae. This work
is then more focused on close-form formulae and comparison with experimental measures.

3. Validation for single crystals

The validation is straightforward when considering tests and measurements on single
crystals. For single crystals there are in fact no intergranular backstresses and the back-
stresses (inducing kinematic hardening) are reduced to the intragranular one. If there is
no pile-up in the considered metals and alloys, the intragranular backstress is essentially
due to the two-phase microstructure (walls and cell interiors/channels) and the plastic
strain heterogeneities. Therefore the computed backstresses given in Eq. (4) or (6) (even-
tually adapted to the cylinder case) can be compared to the backstress experimental mea-
sures. There are many experimental means of measuring backstresses. There are at least
three kinds of backstress measures: the mechanical one, the TEM one and the X-diffrac-
tion one.

First, the mechanical one uses the hysteresis c–s saturated loops (in the single slip case)
(Cottrell, 1953; Kuhlmann-Wilsdorf and Laird, 1979; Feaugas, 1999). Considering the
elastic part of the unloading curve, it is possible to measure the kinematic stress x which
is defined as the centre of the elasticity domain. It should be noticed that the kinematic
stress is the backstress amplitude. The isotropic stress, siso, is the amplitude of the unload-
ing elasticity domain which is described by the simple equation:

js� xj ¼ siso ð9Þ

The second experimental measure of backstress uses TEM observations (Essmann, 1965;
Mughrabi, 1987). During or after a mechanical test, the specimen is irradiated by fast neu-
trons in order to pin up the dislocations. Measuring the dislocation radii and taking into
account the edge/screw character of the dislocations, it is possible to evaluate the tension
line using:

si ¼
T i

ri
ð10Þ

with i = e,w depending on the edge/screw dislocation character, Ti a coefficient depend-
ing on the elastic parameters and on the edge/screw dislocation character and ri is the
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dislocation radius. Finally, the backstress is determined using the dislocation equilibrium
which gives xs = s � si if the irradiation takes place at maximal load or xs = �si if irradi-
ation takes place after unloading. Backstresses of opposite signs are measured in the mid-
dle of the channels and near the walls. In the case of Persistent Slip Bands (PSBs) in copper
well-oriented single crystals, the two experimental procedures agree quite well, giving a va-
lue of about 12 MPa in the channels.

The third procedure uses X-diffraction (Mughrabi et al., 1986; Ungar et al., 1991). Cop-
per single crystals oriented for multiple slip with h100i axes have been deformed in tension
in the [00 1] direction and investigated by X-ray line-broadening measurements. The inten-
sity distributions of the broadened line profiles are asymmetric which is at least partially
due to the two-phase nature of the deformed crystal. Two symmetric subprofiles corre-
sponding to the walls and to the cell interiors can be exhibited. The displacements of
the subprofiles with respect to the global profile have been evaluated by the authors in
terms of elastic strains which permit them to obtain the long-range internal stresses in
the walls and in the cell interiors, that is the backstresses.

For each backstress measure used for comparison with the predictions, the reference of
the experimental study is indicated in the legends of Table 1 or Table 2 (Mughrabi et al.,
1986; Ungar et al., 1991; Essmann, 1965; Fourie, 1968; Mughrabi, 1978; Laird et al., 1986;
Li and Laird, 1994). The order of magnitude of the experimental scatter error is given too.
For each measurement method, the scatter error is evaluated thanks to the scatter in the
experimental data (Li and Laird, 1994; Mughrabi, 1987; Mughrabi et al., 1986).

In addition to the backstress measures, wall volume fractions, dislocation microstruc-
ture geometries (cells, walls/channels. . .) and average plastic slips are needed for applying
Eq. (6) or (7). The wall volume fractions are usually obtained thanks to TEM observa-
tions and given in the referenced articles (Tables 1 and 2). In the case of the third pro-
cedure of backstress measurements (X-ray diffraction), the volume fractions are
measured using the integral intensities of the subprofiles. These measurements seem to
agree with the TEM ones (Mughrabi et al., 1986). The dislocation geometries are mod-
elled taken into account TEM observations in different diffraction conditions in order to
have a 3D view of the microstructures. The average plastic slips are given in the articles
(Tables 1 and 2).

Concerning the computations, the case of single slip and multiple slip should be distin-
guished. The single slip case is straightforward using Eq. (8) with the plastic slips and shear
stresses given in the articles. The multiple slip case needs more preliminary computations
before using Eq. (6) which is more general than Eq. (8). Two cases have been considered.
First, for the copper tensile test in the [001] direction, symmetry and incompressibility rea-
sons allow us to compute the plastic strain tensor which depends only on the plastic strain
in the [00 1] direction (or on the plastic slip which is the same for the eight activated slip
systems (Anand et al., 1996)) for comparison with the experimental one. In this case, no
crystallographic rotation occurs during deformation (Anand et al., 1996). Then, the back-
stress tensor is computed and the shear backstress is finally obtained after projection of the
backstress tensor on one of the activated slip system. Second, concerning the tensile test on
a well-oriented crystal, the plastic slips on the activated slip systems have been computed
by Anand et al. (1996) which permits us to evaluate the plastic strain tensor components
(at the beginning of the test, only the well-oriented slip system is activated, but after large
plastic deformation, a second one is activated because of the large rotation of the slip sys-
tems). And the shear backstress obtained on the well-oriented slip system is finally deduced
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as before. It should be noticed that Eq. (1) is not strictly valid in this case because of the
crystallographic rotation occurring during tensile deformation (an incremental formula-
tion should be used).

The measured and computed backstresses are given in Tables 1 and 2. Computations
are made thanks to Eq. (6) or (8). The computed accommodation factor, Faccom, is given
too. Table 1 is dedicated to multiple slip and tensile loadings. Table 2 focuses on single slip
and cyclic loadings. Several metals (copper, 316L stainless steel), orientations (single slip,
multiple slip) and test conditions (tensile/cyclic loadings, small/large plastic strains) have
been considered. Rough estimations of the experimental catter errors on the measured
backstresses and hard phase volume fractions are given in Tables 1 and 2. These estima-
tions are based on the scatter in the data we could find in the corresponding articles. The
error ranges on the computed backstresses induced by the experimental scatter errors of
the dislocation wall volume fractions have been computed and are given in Tables 1
and 2. The predictions are reasonable except in the case of very small plastic strains (of
order of magnitude 10�5).

Finally, the whole evolution of the computed backstress along the tensile deformation
of a copper [001] single crystal is plotted in Fig. 4. Only measured values of the hard phase
volume given by Mughrabi et al. are used in our computations (either using TEM obser-
vations or X-ray diffraction, Mughrabi et al., 1986). The predicted evolution can be com-
pared with the evolution of the backtress measured by Ungar et al. by X-ray diffraction
(Ungar et al., 1991). Taking into account the scatter errors, the computations agree quite
well with the experiments. For the smallest macroscopic shear stress value, it should be
noticed that the scatter error on the measured backstress seems to be rather high following
Fig. 8 of Mughrabi et al., 1986. The relative scatter error seems smaller at higher shear
stress. But, for plotting the experimental error bars, a constant relative scatter error of
15% was used even if the relative error could be larger at the smallest stress amplitude.

Fig. 4. Comparison between computed and measured backstresses. Tensile deformation of a [001] copper single
crystal. Experimental measures: Ungar et al. (1991), for the backstresses and Mughrabi et al. (1986), for the hard
phase volume fractions. Model of spherical cells (Fig. 2). Amplitudes of the backstresses are given.
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4. Discussion

Comparison between Kröner’s predictions and experimental measures confirms the
inadequacy of the classical inclusion models of intragranular backstresses (Tables 1 and
2). In fact, they suppose thermoelastic interactions between the phases and the average
medium, that is why they predict too high backstresses. Even in the case of plastic strain
with an order of magnitude of 10�3, Kröner’s analysis gives too high backstresses (two or
three times the experimental ones) (Table 2). But, in this case, the Berveiller and Zaoui
approach gives backstresses which are rather close to the experimental ones (computed
values using B–Z, Table 2, Fig. 4). For large plastic strains, Kröner’s predictions are
two orders of magnitude higher than the measured values whereas the Berveiller and
Zaoui predictions are much more reasonable. The ratio between the two models is in that
case larger than 100. Generally, the agreement between the close-form Berveiller and
Zaoui formulae and the measured values is rather encouraging.

But, in the case of very small plastic strains (of order of magnitude 10�5), the model
underestimates largely the backstress. Computation using Eq. (8) gives in fact a backstress
with an order of magnitude smaller than the experimental one. In addition, the model sup-
poses that walls are dense enough for being considered as elastic. In fact, there seems to be
only a loose heterogeneous dislocation microstructure (Laird et al., 1986; Obrtlik et al.,
1993), which means that the computation should predict an overestimation of the back-
stress induced by the dislocation microstructure. Therefore, following Table 2, there is a
real discrepancy between the prediction and the measured value. In fact, there can be other
types of backstress sources such as dislocation pile-ups. For small applied stress, there is
less cross-slip than for large stresses. That is why pile-ups could be more efficient for small
applied stresses and could induce backstresses which are not taken into account in Eq. (6)
or (8).

The intragranular kinematic hardening model corresponding to Eq. (2) can be easily
used when applying an analytical/numerical polycrystalline homogenization model. These
homogenization models allow us to compute the macroscopic behaviour depending on the
texture and on the intragranular constitutive laws. For taking into account the interactions
between grains, an intergranular backstress computation model has to be used too (see for
example (Holden et al., 1998)). Thanks to the intragranular kinematic hardening model,
the intragranular backstress tensor can be computed in each grain (that means for each
crystallographic orientation). It depends on the stresses and plastic strains values in the
considered grain. In fact, the mechanical fields and hardening variables at the grain scale
are known only after the resolution of a global equation system concerning all orienta-
tions. It should be noticed that the proposed intragranular kinematic hardening model
needs no adjustable parameter contrary to other models (Feaugas and Gaudin, 2001;
Harder, 1999). Generally, in the framework of elastoplasticity, polycrystalline homogeni-
zation models include two parts: grain-polycrystal homogenization rules and crystalline
constitutive equations (Cailletaud, 1992). Then, they need numerous adjustable parame-
ters. Therefore it is often uneasy to compare polycrystalline predictions with experimental
results. If a disagreement is for example observed, it is not clear how to improve predic-
tions. Should it concern the grain-polycrystal localization rule? The crystalline isotropic
hardening model? Or the crystalline kinematic one? If each specific part of the global
model is validated independently, it could permit an easier research of the global model
possible improvement. As an example of the backstress model interest, the predictions
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of the intragranular and intergranular backstresses given by Feaugas (1999) is now consid-
ered. The authors predict a vanishing of the intergranular backstresses with tensile plastic
strain increasing. These results are in disagreement with the evolution measured by Holden
et al. (1998) in similar conditions. For comparison, intragranular and intergranular back-
stress evolutions are computed using Eq. (6) and wall volume fractions measured by Feau-
gas (1999) thanks to TEM observations. A stabilization of both is predicted which agrees
much better with the experimental results of Holden et al. (1998). A crystalline kinematic
hardening model and its parameters are needed for performing Finite Element crystalline
computations too (Barbe et al., 2001; Clayton and McDowell, 2003; Erieau and Rey, 2004;
Bertolino et al., 2005). Recently, some enhanced models were proposed for simulating
forming processes (Tugcu et al., 2004; Habraken and Duchêne, 2004; Raabe and Roters,
2004). Both finite element computations at the structure scale and grain-volume element
transition laws are used. But these models did not take into account any physically based
intragranular kinematic hardening law even if it is well-known that large plastic strains
induce cell formation and long-range internal stresses. In addition, it has been noticed that
the intragranular kinematic hardening mechanisms could affect significantly the macro-
scopic behaviour during change of loading path (Langlois and Berveiller, 2003). Then,
the proposed model (Eqs. (6) and (8)) could help to carry out simulations using an addi-
tional microstructure mechanism.

But, this model needs knowledge about the deformation induced microstructures (wall
volume fraction, fw, and microstructure morphology). As mentioned before, the fw volume
fraction is an influent parameter of the intragranular backstress model. The evaluation of
the fw volume fraction has to be precise because the backstress is proportional to the fw/
(1 � fw) factor (Eq. (6)) of which variation with fw is large. If a fw variation of ±10% is
supposed, a backstress variation of ±14% (±21%) is obtained for fw = 0.3 (fw = 0.5).
For the validation, experimental measures of fw have been used, originating from either
TEM observations or the X-rays diffraction measures. These volume fraction measures
obtained by these two techniques seem to agree following Mughrabi et al. (1986). In order
to propose a complete backstress prediction, the use of a deformation induced dislocation
microstructure model is needed, allowing the prediction of the hard phase morphology
and volume fraction. Then, the backstress model could be applied. The dislocation micro-
structure characteristics depend in fact on both the material and loading. A large number
of dislocation microstructure prediction models have been proposed. At least three kinds
can be distinguished. First, they can use an energy minimization principle. Following this
principle, the observed two-phase dislocation microstructure is the less energetic micro-
structure (Kuhlmann-Wilsdorf and van der Merwe, 1982; Kuhlmann-Wilsdorf, 2001). Sec-
ond, they can be founded on bifurcation analysis. For example, if two equilibrium
solutions are possible, one can be stable (two-phase microstructure) and the other one
can be unstable (homogeneous microstructure) and therefore can not be observed (Krat-
ochvil, 1990). Third, continuous or discrete dislocation dynamics models try to predict the
formation of dislocation microstructures (Differt and Essmann, 1993; Pantleon, 1998;
Robertson et al., 2001). These models generally take into account dislocation interaction,
annihilation and dipole formation. The recent modelling attempt of Zhou et al. (2006),
should be mentioned. These authors try to predict the volume fraction of PSBs in nickel
single crystals using crystalline finite element analysis.

The possibility of plastic glide inside the dense walls is now discussed. Indeed, authors
do not agree completely about wall plasticity. The walls are considered to be plastically
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deformed by some authors (Mughrabi, 1987; Feaugas and Gaudin, 2001), but they are
supposed to be purely elastic by others (Pedersen, 1990; Langlois and Berveiller, 2003).
Because of their high dislocation densities, the walls are less deformable than the soft
phase and their critical shear stress is higher. Plastic incompatibilities induce long-range
stresses inside both the soft phase (backstress xc) and the hard phase, xw (Mughrabi,
1983). The wall long-range stress (‘‘forward stress”) magnitude is generally high because
of their small volume fraction (the single crystal average long-range stress is equal to zero
(Mura, 1987)). Cell backstress and wall forward stress have opposite signs. Therefore, con-
trary to the soft phase backstress, the hard phase forward stress tends to aid plastic glide at
the end of loading/unloading. Finally, is the wall critical stress reached during loading/
unloading? This would induce dislocation glide inside the hard phase which should be
taken into account in the modelling. Hard phase effective stresses can be computed and
compared with wall critical shear stress for guessing if walls could be plastically deformed
or not. The soft phase backstress predictions (Tables 1 and 2) allow us to compute the
hard phase ‘‘forward stress” values (Tables 3 and 4) because the average long-range inter-
nal stress should be equal to zero. Inside the walls, at the end of loading/unloading, the
effective stress is the sum of the applied stress and the local forward stress because they
have the same sign. Then, well-known critical shear stress models are used, corresponding
to the microstructures observed in some of the experiments used for the model validation
(Tables 1 and 2). Two local hardening mechanisms are considered. First, well-oriented sin-
gle crystals tested at small cyclic strain/stress are studied. Two microstructures are usually
observed, depending on the applied strain: either veins/channels (Fig. 3) only or persistent
slip bands (PSBs) and veins/channels (Lukas et al., 1968). Following TEM observations,
the walls are made of edge dipoles for both. Following the Essmann and Differt dipole
hardening model (1996), the critical shear stress can be calculated:

scrit;w ¼ bDhydi
qw

2
ð11Þ

with b a constant depending on the dipoles-mobile dislocation interaction kind (on aver-
age b � 5), D = lb/2p(1 � t) and hydi the average dipole height. This is the minimal stress
for dislocation gliding through the wall dipoles. The average dipole height is given by:

Table 3
Forward stress, effective stress and critical shear stress inside the walls at maximal load

Microstructure xw s + xw (effective) scrit,w (dipoles) qw (�1015 m�2)

Veins/channels 12 29 72 1.5
PSBs 70 100 125–250 3–6

Copper, low strain cycling. Dipole hardening model (single slip) (Essmann and Differt, 1996). Stress unit is MPa.

Table 4
Forward stress, effective stress and critical shear stress inside the walls at maximal load

Microstructure xw s + xw (effective) scrit,w (forest) qw (�1015 m�2)

Cells (fatigue) 60 90 130–245 1–6
Cells (monotonic) 30 105 109 0.79

Copper, high strain cycling and tensile loading with high strain. Equiaxed cells. Forest hardening model (multiple
slip). Stress unit is MPa.
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hydi ¼
ymaxye

ymax � ye

ln
ymax

ye

� �
ð12Þ

with ye the edge annihilation distance (ye = 1.6 nm for copper at room temperature) and
ymax the maximal stable dipole height. Considering a local shear stress equal to sloc, dipole
stability is assured if the dipole height is smaller than the maximal one which can be com-
puted too (Essmann and Differt, 1996):

ymax ¼
D

4sloc

ð13Þ

The computed critical stresses are given in Table 3. The wall dislocation densities are given
in the corresponding articles (Table 3). Isotropic elasticity coefficients have been used. For
the veins/channels microstructure, the computed critical shear stress is larger than the
effective stresses and it seems not very easy to activate dislocation glide inside the walls.
But, for PSB walls, it is impossible to conclude because the effective stress and the critical
shear stress values could be rather close or far depending on the dislocation density mea-
sure for which there is always non-negligible experimental scatter.

Second, high strain cyclic loadings or tensile loadings are considered. They induce equi-
axed cell formation in the studied cases (Tables 2 and 4) (Fig. 2). As multiple slip is acti-
vated in such cases, a forest hardening model is used for computing the critical shear stress
inside the walls:

sc;w ¼ alb
ffiffiffiffiffiffi
qw

p ð14Þ

A classical forest hardening coefficient of a = 0.3 has been used. The wall dislocation den-
sities are given in the corresponding articles (Table 4). Isotropic elasticity coefficients have
been used. The computed critical shear stresses are larger than the effective stresses (Table
4). But, the differences are rather small and for the tensile loading the effective stress is
nearly equal to the flow stress. Indeed the hardening parameter values are not known pre-
cisely, that is why general conclusions can not be drawn from these comparisons except for
the vein/channel microstructure. Finally, it should be noticed that the backstresses com-
puted using either Eq. (6) or (8) become proportional to the total stress for large enough
plastic strains (and if the dislocation microstructures do not change a lot with the strain
increasing). If the effective stress saturates too, then the total stress remains constant
and the behaviour is a perfectly plastic one. Mughrabi claims that the perfect plasticity
behaviour which is observed for copper single crystals at the end of high strain experimen-
tal cycle loading indicates that the walls deform plastically at high strain (Mughrabi,
1988). In fact, our model could predict such perfect plasticity even if walls deform elasti-
cally. Of course, the saturated stress level depends on the behaviour of the walls (elasticity
or elastoplasticity).

For the sake of simplicity, both elastic and plastic anisotropies of single crystals are
neglected when using the Berveiller and Zaoui localization rule. In fact, both the single
crystal elasticity and plasticity are supposed to be isotropic. For copper and austenite,
the cubic elasticity anisotropy ratio is about 3.3 which means that the elasticity anisotropy
is high. Crystalline plasticity is neither isotropic because of the finite number of slip sys-
tems. Work is in progress for taking into account these anisotropy sources. But, it should
be noticed that it would no more permit us to give close-form formulae and to propose
straightforward computations of the backstresses. In fact, the computation of the Eshelby
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localization coefficients would be needed. And for anisotropic elasticity, their computation
requires generally the use of numerical procedures (Mura, 1987).

When using the Berveiller and Zaoui localization rule, the enrobed character of the soft
(or hard) phase has been neglected too (Figs. 2 and 3). But, it could influence the soft
phase backstresses and consequently the intragranular kinematic hardening. Lemoine
et al. model takes this particular morphology into account (Lemoine et al., 1994). But,
the deduced soft phase backstress is the same as for a simpler morphology with soft phase
spherical inclusions directly embedded in the macroscopic medium (like for the two-phase
model described in this paper). In fact, it takes into account only the wall volume fraction
and the soft phase ellipsoidal geometry. And their model is thermoelastic, it does not
reproduce any accommodation effect and therefore gives much larger backstress values
as soon as the plastic strain is higher than a few 10�4 (Table 2). Following the Hervé
and Zaoui approach (three phase inclusion-matrix model), work is in progress for taken
into account both the real morphologies of dislocation microstructures and the plastic
accommodation (Hervé and Zaoui, 1990). Comparisons with possible predictions of such
enhanced models can already be discussed. Microstructures considered in this article are of
two kinds. First, dislocation equiaxed cells can be modelled as soft phase inclusion/hard
shell/matrix geometries (Fig. 2). Second, veins/channels microstructures can be modelled
as hard phase cylindrical inclusion/soft phase shell/matrix geometries (Fig. 3). Following
the published results concerning the three phase inclusion-matrix model and referring to
the two-phase Berveiller and Zaoui model predictions (this article ones), higher stresses
should be predicted for the first kind of microstructure, and smaller for the second kind
(see (Hervé and Zaoui, 1990) concerning elastoplasticity and (Hervé et al., 1995) concern-
ing viscoplasticity). Therefore, for the microstructures described in Table 1 and for the sec-
ond one of Table 2 (dislocation cells), higher backstresses should be predicted. But, if
differences between three-phase and two-phase models were high, predictions obtained
thanks to the three-phase model would not agree with experimental measures. For the
two remaining microstructures of Table 2 (vein/channel microstructures), smaller back-
stresses would be predicted, which would not considerably improve the prediction-exper-
iment comparison. In fact, considering the parameters of the studied dislocation
microstructures and the comparisons between both models published in the literature,
small differences between both could be predicted. Following (Hervé et al., 1995), the
smaller is the contrast between the hard and soft phase (in terms of reference stress ratios),
the smaller is the relative difference between the two-phase and the three-phase model pre-
dictions (in the viscoplasticity framework). Let us first consider soft inclusion-hard shell
geometries. Following Tables 3 and 4, the critical shear stress in the walls of copper single
crystals is in the 75–250 MPa range depending on the dislocation microstructure. The crit-
ical shear stress in the soft phase is probably close to 15 MPa (critical shear stress mea-
sured during the tensile loading of a copper single crystal (Anand et al., 1996),
amplitude of the hysteresis loops (Mughrabi, 1978)). It means that the ratio between
the critical shear stresses of the hard and soft phases is in the 5–17 range. Following the
computations reported in (Hervé et al., 1995), for a ratio equal to 10, a viscoplasticity
exponent equal to 0.5 in both phases and for wall volume fractions in the 0.3–0.5 range
(see Tables 1 and 2), the difference between the macroscopic reference stresses obtained
thanks to a two-phase or a three-phase model is relatively small. The same holds for
the case of the cylindrical geometries mentioned in Table 2 (hard inclusion, soft shell).
The stress state in the walls should be particularly studied in order to better evaluate if
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plastic glide is acting inside them (see Section 4 above about this subject). Work is in pro-
gress for comparing predictions of three-phase and two-phase models. But, it should be
noticed that probably no analytical expression of the backstress could be available using
the three-phase model which requires numerical computations (Hervé and Zaoui, 1990).

5. Conclusions

A large number of experiments have shown that deformation induced dislocation
microstructures (hard and soft phases appearing for example in FCC metals and alloys)
induce backstresses at the single crystal scale. In this article, an application of the Berve-
iller and Zaoui localization scheme is proposed. It is based on the use of the single crystal
secant modulus and on a deduced accommodation factor. It allows us to take into account
non-negligible plastic strains. Eshelby’s inclusion problem solutions are used for two kinds
of geometry: either spherical soft phase inclusions or hard phase infinite cylinders. The
model is specifically validated at the single crystal scale because in this case, only intra-
granular backstresses are involved in the kinematic hardening. For the validation, a large
number of backstress experimental measures on single crystals after tensile or cyclic load-
ings are used. The backstress model needs no adjustable parameter and only experimental
data are used for the computation. Despite the Berveiller and Zaoui localization rule does
not take into account crystalline elasticity and plasticity anisotropies, the agreement
between predictions and measures is rather encouraging. Its predictions are much more
reasonable than the ones obtained using classical inclusion models of intragranular back-
stresses. Thanks to the rudimentary hypotheses of the model, analytical formulae can be
proposed and the computations are straightforward. This intragranular kinematic harden-
ing model could replace more phenomenological models and avoids the use of any adjust-
able parameter. Because of its physical basis, it could help to improve the predictions of
polycrystalline homogenization codes or crystalline finite element codes which need the
knowledge of intragranular constitutive laws.
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Appendix A. Calculation of the backstress equation for veins and channels microstructures

subjected to single slip

Veins/channels microstructures are considered (hard phase kinds of cylinders embed-
ded first in soft phase and second in matrix, Fig. 3). For the sake of simplicity, the cylin-
ders are supposed to be purely elastic, infinite and to have a circular basis. They are
supposed to be directly embedded in the macroscopic matrix. Only single slip is consid-
ered. The slip normal and direction belong to the cylinder basis. This leads to resolved
shear stress versus primary plastic slip relationships. The macroscopic plastic slip is
denoted as cp. For the cylinder inclusion, the geometrical factor is equal to 1/(4(1 � m))
(about 0.36 if m = 0.3) instead of (1 � b) for the spherical cell (about 0.524 if m = 0.3)
(Pedersen, 1990; Mura, 1987). A computation similar to the one described by Berveiller
and Zaoui is carried out for calculating the evaluating accommodation induced by the
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use of secant instead of elasticity coefficients (Berveiller and Zaoui, 1979). The Eshelby
stress solution is computed using the secant elastoplastic shear modulus and Poisson ratio,
lsecant and msecant, instead of the isotropic elasticity moduli, l and m. Following Kröner’s
idea, the inclusion free strain is replaced by the difference between the inclusion and matrix
plastic strains (Kröner, 1961), which reduces to the opposite of the macroscopic plastic
strain, �cp/2, because the cylinders are purely elastic. Therefore, the residual stress in
the hard phase, xw, can be computed using:

xw ¼ lsec ant

1

4

1

ð1� msec antÞ
cp

The residual resolved shear stress in the soft phase, i.e. the backstress , xc, is deduced using
average stress balance equation:

fwxw þ ð1� fwÞxc ¼ 0

Finally, the backstress can be computed as follows:

xc ¼ �
fw

1� fw

lsec ant

1

4

1

ð1� tsec antÞ
cp

It depends only on the elasticity coefficients and on the macroscopic plastic slip and shear
stress, cp and s, because the secant elastoplastic shear modulus and Poisson ratio depend
only on the macroscopic stress and plastic slip (Berveiller and Zaoui, 1979):

lsec ant ¼
s

s
lþ cp

¼ l
1

1þ l cp

s

msec ant ¼
tþ lð1þ tÞ cp

3s

1þ 2lð1þ tÞ cp

3s

Using the Young’s modulus, E = 2(1 + m)l and von Misès equivalent plastic strain and
stress, ep

eq ¼ cp=31=2 and req = 31/2s (single slip). Elasticity is supposed to be isotropic. Plas-
ticity transformation is isovolumetric and isotropic.
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agement des matériaux. In: Habilitation à Diriger des Recherches. Université de Compiègne, Compiègne,
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