A. N. Avramidis and J. R. Wilson, Correlation-induction techniques for estimating quantiles in simulation experiments, Oper. Res, vol.46, pp.574-591, 1988.

H. A. David, Order Statistics, 1981.

R. Davidson and J. G. Mackinnon, Regression-based methods for using control variates in Monte Carlo experiments, J. Econometrics, vol.54, pp.203-222, 1992.

T. Dielman, C. Lowry, and R. Pfaffenberger, A comparison of quantile estimators, Communications in Statistics-Simulation and Computation, vol.23, pp.355-371, 1994.

K. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments, p.2223960, 2006.

G. S. Fishman, , 1996.

M. C. Concepts, Algorithms and Applications

P. Glasserman, P. Heidelberger, and P. Shahabuddin, Stratification issues in estimating Value-at-Risk, Proceedings of the 1999 Winter Simulation Conference, pp.351-359, 1998.

P. Glynn, Importance sampling for Monte Carlo estimation of quantiles, Mathematical Methods in Stochastic Simulation and Experimental Design: Proceedings of the 2nd St. Petersburg Workshop on Simulation 180-185, 1996.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, p.1082147, 1990.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2001.

T. C. Hesterberg, Control variates and importance sampling for the bootstrap, Proceedings of the Statistical Computing Section of the American Statistical Association 40-48, 1993.

T. C. Hesterberg, Average importance sampling and defensive mixture distributions, Technometrics, vol.37, pp.185-194, 1995.

T. C. Hesterberg and B. L. Nelson, Control variates for probability and quantile estimation, Management Science, vol.44, pp.1295-1312, 1998.

J. C. Hsu and B. L. Nelson, Control variates for quantile estimation, Proceedings of the 1987 Winter Simulation Conference, pp.434-444, 1987.

D. Jones, M. Schonlau, and W. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, p.1673460, 1998.

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 1991.

D. K. Lin, A new class of supersaturated design, Technometrics, vol.35, pp.28-31, 1993.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Comput. Statist. Data Anal, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

B. L. Nelson, Control variates remedies, Oper. Res, vol.38, pp.974-992, 1990.

W. T. Nutt and G. B. Wallis, Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties, Reliab. Eng. Syst. Safety, vol.83, pp.57-77, 2004.

J. Oakley, Estimating percentiles of uncertain computer code outputs, Appl. Statist, vol.53, pp.83-93, 2004.

M. S. Oh and J. O. Berger, Adaptive importance sampling in Monte Carlo integration, J. Stat. Comput. Simul, vol.41, pp.143-168, 1992.

A. Petruzzi, F. D'auria, J. Micaelli, A. De-crecy, and J. Royen, The BE-MUSE programme (Best-Estimate Methods-Uncertainty and Sensitivity Evaluation), Proceedings of the Int. Meet. on Best-Estimate Methods in Nuclear Installation Safety Analysis, vol.1, pp.225-235, 2004.

P. Ranjan, D. Bingham, and G. Michailidis, Sequential experiment design for contour estimation from complex computer codes, 2008.

C. R. Rao, Linear Statistical Inference and Its Applications, 1973.

R. Y. Rubinstein, Simulation and the Monte Carlo Method, 1981.

B. Rutherford, A response-modeling alternative to surrogate models for support in computational analyses, Reliab. Eng. Syst. Safety, vol.91, pp.1322-1330, 2006.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statist. Sci, vol.4, p.1041765, 1989.

M. Schonlau, W. J. Welch, and R. Tibshirani, Screening the input variables to a computer model via analysis of variance and visualization, Screening Methods for Experimentation and Industry, Drug Discovery and Genetics, vol.58, p.1379242, 1996.

E. Vazquez and M. Martinez, Estimation of the volume of an excursion set of a Gaussian process using intrinsic kriging, J. Statist. Plann. Inference, 2008.

E. Volkova, B. Iooss, and F. Van-dorpe, Global sensitivity analysis for a numerical model of radionuclide migration, from the RRC "Kurchatov Institute" radwaste disposal site, Stoch. Environ. Res. Risk Assess, vol.22, pp.17-31, 2008.

C. Cannamela, S. Cadarache-den/dec/sesc/lsc-13108, and . France,