D. L. Morse and J. W. Evenson, Welcome to the glass age, Int. J. Appl. Glass Sci, vol.7, pp.409-412, 2016.

A. Varshneya, Fundamentals of Inorganic Glasses, vol.570, 1994.

J. C. Mauro, Decoding the glass genome, Curr. Opin. Solid State Mater. Sci, vol.22, pp.58-64, 2018.

S. Gin, An international initiative on long-term behavior of high-level nuclear waste glass, Mater. Today, vol.16, pp.243-248, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00864925

I. W. Donald, Waste Immobilization in Glass and Ceramic based Hosts, 2010.

W. E. Lee, M. I. Ojovan, M. C. Stennett, and N. C. Hyatt, Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram, vol.105, pp.3-12, 2006.

F. Angeli, P. Jollivet, T. Charpentier, M. Fournier, and S. Gin, Structure and chemical durability of lead crystal glass, Environ. Sci. Technol, vol.50, pp.11549-11558, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02388823

J. T. Van-elteren, M. Grilc, M. P. Beeston, M. S. Reig, and I. Grgic, An integrated experimental-modeling approach to study the acid leaching behavior of lead from sub-micrometer lead silicate glass particles, J. Hazard. Mater, vol.262, pp.240-249, 2013.

G. P. Morin, N. Vigier, and A. Verney-carron, Enhanced dissolution of basaltic glass in brackish waters: impact on biogeochemical cycles, Earth Planet. Sci. Lett, vol.417, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01769728

A. W. Walton, P. Schiffman, and G. L. Macpherson, Alteration of hyaloclastites in the HSDP 2 phase 1 drill core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite, Geochem. Geophys. Geosyst, vol.6, p.27, 2005.

B. C. Bunker, Molecular mechanisms for corrosion of silica and silicate-glasses, J. Non-Cryst. Solids, vol.179, pp.300-308, 1994.

F. Bouyer, G. Geneste, S. Ispas, W. Kob, and P. Ganster, Water solubility in calcium aluminosilicate glasses investigated by first principles techniques, J. Solid State Chem, vol.183, pp.2786-2796, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00547893

P. Zapol, H. Y. He, K. D. Kwon, and L. J. Criscenti, First-principles study of hydrolysis reaction barriers in a sodium borosilicate glass, Int. J. Appl. Glass Sci, vol.4, pp.395-407, 2013.

J. C. Phillips, Topology of covalent non-crystalline solids. 1. Short-range order in chalcogenide alloys, J. Non-Cryst. Solids, vol.34, pp.153-181, 1979.

M. Bauchy, Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: a review, Comput. Mater. Sci, vol.159, pp.95-102, 2019.

J. C. Mauro, Topological constraint theory of glass, Am. Ceram. Soc. Bull, vol.90, pp.31-37, 2011.

I. Pignatelli, A. Kumar, M. Bauchy, and G. Sant, Topological control on silicates' dissolution kinetics, Langmuir, vol.32, pp.4434-4439, 2016.

T. Oey, Topological controls on the dissolution kinetics of glassy aluminosilicates, J. Am. Ceram. Soc, vol.100, pp.5521-5527, 2017.

O. Tandre, Rate controls on silicate dissolution in cementitious environments, RILEM Tech. Lett, 2017.

T. Oey, The role of the network-modifier's field-strength in the chemical durability of aluminoborate glasses, J. Non-Cryst. Solids, vol.505, pp.279-285, 2019.

N. Mascaraque, M. Bauchy, and M. M. Smedskjaer, Correlating the network topology of oxide glasses with their chemical durability, J. Phys. Chem. B, vol.121, pp.1139-1147, 2017.

N. Mascaraque, Dissolution kinetics of hot compressed oxide glasses, J. Phys. Chem. B, vol.121, pp.9063-9072, 2017.

F. Devreux and M. Kolb, Kinetics of leaching near the percolation threshold, J. Non-Cryst. Solids, vol.242, pp.14-18, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00007028

M. Micoulaut and Y. Yue, Material functionalities from molecular rigidity: Maxwell's modern legacy, MRS Bull, vol.42, pp.18-22, 2017.

M. Bauchy and M. Micoulaut, Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids, J. Non-Cryst. Solids, vol.357, pp.2530-2537, 2011.

M. Bauchy, M. J. Qomi, C. Bichara, F. J. Ulm, and R. J. Pellenq, Nanoscale structure of cement: viewpoint of rigidity theory, J. Phys. Chem. C, vol.118, pp.12485-12493, 2014.

M. Micoulaut, Constrained interactions, rigidity, adaptative networks, and their role for the description of silicates, Am. Miner, vol.93, pp.1732-1748, 2008.

Y. Vaills, T. Qu, M. Micoulaut, F. Chaimbault, and P. Boolchand, Direct evidence of rigidity loss and self-organization in silicate glasses, J. Phys, vol.17, pp.4889-4896, 2005.

H. Liu, Predicting the dissolution kinetics of silicate glasses by topologyinformed machine learning, npj Mater. Degrad, vol.3, pp.1-12, 2019.

M. Fournier, Glass dissolution rate measurement and calculation revisited, J. Nucl. Mater, vol.476, pp.140-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998436

J. P. Icenhower and C. I. Steefel, Experimentally determined dissolution kinetics of SON68 glass at 90 degrees C over a silica saturation interval: evidence against a linear rate law, J. Nucl. Mater, vol.439, pp.137-147, 2013.

S. Gin, X. Beaudoux, F. Angeli, C. Jegou, and N. Godon, Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, J. Non-Cryst. Solids, vol.358, pp.2559-2570, 2012.

T. Oey, Rate controls on silicate dissolution in cementitious environments, RILEM Tech. Lett, vol.2, pp.62-73, 2017.

P. Guo, B. Wang, M. Bauchy, and G. Sant, Misfit stresses caused by atomic size mismatch: the origin of doping-induced destabilization of dicalcium silicate, Cryst. Growth Des, vol.16, pp.3124-3132, 2016.

K. Yang, Prediction of the Young's modulus of silicate glasses by topological constraint theory, J. Non-Cryst. Solids, vol.514, pp.15-19, 2019.

A. Pelmenschikov, H. Strandh, L. G. Pettersson, and J. Leszczynski, Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: ab initio calculations of a single water attack onto the (001) and (111) beta-cristobalite surfaces, J. Phys. Chem. B, vol.104, pp.5779-5783, 2000.

F. Pacaud, J. M. Delaye, T. Charpentier, L. Cormier, and M. Salanne, Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field, J. Chem. Phys, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01570528

A. Perez, Comparing the reactivity of glasses with their crystalline equivalents: the case study of plagioclase feldspar, Geochim. Et. Cosmochim. Acta, vol.254, pp.122-141, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02372340

M. Debure, P. Frugier, L. De-windt, and S. Gin, Dolomite effect on borosilicate glass alteration, Appl. Geochem, vol.33, pp.237-251, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00822035

F. Angeli, T. Charpentier, D. De-ligny, and C. Cailleteauz, Boron speciation in soda-lime borosilicate glasses containing zirconium, J. Am. Ceram. Soc, vol.93, pp.2693-2704, 2010.

E. M. Pierce, Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4)-malinkoite (NaBSiO4) join, Geochim. Cosmochim. Acta, vol.74, pp.2634-2654, 2010.

J. C. Maxwell, On the calculation of the equilibrium and stiffness of frames, Philos. Mag, vol.27, pp.294-299, 1864.

J. C. Mauro, P. K. Gupta, and R. J. Loucks, Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids, J. Chem. Phys, vol.130, 2009.