H. Matzke, Radiation enhanced diffusion in UO2 and, p.378, 1983.

). Pu, Radiation Effects and Defects in Solids, vol.75, issue.7, pp.317-325

A. Michel, C. Sabathier, G. Carlot, O. Kaïtasov, S. Bouffard et al., An in situ TEM study of the evolution of Xe bubble 381 populations in UO2, NIMB, vol.272, issue.2, pp.218-221, 2012.

R. S. Nelson, The stability of gas bubbles in an irradiation 383 environment, Journal of Nuclear Materials, vol.31, issue.2, pp.153-161, 1969.

L. Noirot, MARGARET: An Advanced Mechanistic Model of Fission 385, 2006.

, Gas Behavior in Nuclear Fuel, Journal of Nuclear Science and Technology, vol.386, issue.9, p.43

D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.

K. C. Russell, The theory of void nucleation in metals, Metallurgica, vol.390, issue.10, 1978.

C. Sabathier, A. Michel, G. Carlot, G. Martin, S. Maillard et al., , p.392

C. Fortuna, F. Kaitasov, O. Oliviero, E. Garcia, and P. , In-situ TEM 393 observation of nano-void formation in UO2 under irradiation, NIMB, vol.326, p.6, 2014.

C. Sabathier, L. Vincent, P. Garcia, F. Garrido, G. Carlot et al., , p.396

P. Martin and C. Valot, In situ TEM study of temperature-induced 397 fission product precipitation in UO2. Nuclear Instruments and Methods in 398, Physics Research Section B: Beam Interactions with Materials and Atoms, vol.399, issue.2, pp.3027-3032, 2008.

D. Schwen, M. Huang, P. Bellon, and R. Averback, Molecular 401 dynamics simulation of intragranular Xe bubble re-solution in UO2, JNM, vol.402, issue.1, pp.35-39, 2009.

D. Simeone, L. Luneville, and Y. Serruys, Cascade fragmenta-404 tion under ion beam irradiation: A fractal approach, Phys. Rev. E, vol.82, issue.1, p.405, 2010.

R. Skorek, Étude par Dynamique d'Amas de l'influence des défauts 407 d'irradiation sur la migration des gaz de fission dans le dioxyde d'uranium, 2013.

J. Soullard, High voltage electron microscope observations of 410 UO2, JNM, vol.135, issue.2-3, p.14, 1985.

J. Turnbull, The distribution of intragranular fission gas bubbles 412 in UO 2 during irradiation, JNM, vol.38, issue.2, pp.203-212, 1971.

L. Van-brutzel and M. Rarivomanantsoa, Molecular dynamics 414 simulation study of primary damage in UO2 produced by cascade overlaps, 415 JNM, vol.358, issue.2-3, pp.209-216, 2006.

L. Van-brutzel, M. Rarivomanantsoa, and D. Ghaleb, Displace-417 ment cascade initiated with the realistic energy of the recoil nucleus in UO2 418 matrix by molecular dynamics simulation, JNM, vol.354, issue.1-3, pp.28-35, 2006.

E. Vathonne, Étude par calcul de structureélectronique des dégâts 420 d'irradiation dans le combustible nucléaire UO2 : comportement des 421 défauts ponctuels et gaz de fssion, 2014.

M. S. Veshchunov, On the theory of fission gas bubble evolution 423 in irradiated UO2 fuel, Journal of Nuclear Materials, vol.277, issue.1, pp.67-81, 2000.

. Ziegler and L. Biersack, SRIM: The stopping and range of ions, 2012.

, Snapshots at various fluencies of the simulated (with R T EM = 0.30, 0.35, 0.40 nm) and measured size distributions, Figure, vol.5