Hydration sequence of swelling clays exchanged with mixed alkali/alkali-earth cations

M. Jullien, F. Salles, Olivier Bildstein, J.-M. Douillard, Bénédicte Prélot, J. Jazac, H. van Damme

To cite this version:

HAL Id: cea-02509260
https://hal-cea.archives-ouvertes.fr/cea-02509260
Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Swelling clays can absorb/adsorb a great quantity of water inside the interlayer space and the mesoporosity. This adsorbed quantity of water is strongly dependent on the nature of the interlayer cation. In order to probe the hydration sequence in clays as a function of the relative humidity (RH), XRD measurements, water adsorption and calorimetry, thermoporometry and electrical conductivity results are coupled with electrostatic calculations.

Aim of this study: (i) determination of the hydration sequence of swelling clays as a function of the nature of the interlayer cations

(ii) To elucidate the mobility process of the interlayer cations as a function of the hydration state

Material and Method

Experiments

- Study the “clay-water” system by looking at the modifications of water properties
 - “water inside clays” is different from liquid water (or free water)

- Thermoporometry = calorimetric technique sensitive to phase transitions of fluid confined in the porosity
 - 2 nm < Pore radius < 50 nm (mesoporosity)

- Originality of these experiments: investigation of swelling material & various RH

Results and Interpretation

- Comprehensive determination of clay hydration sequence for Na-Ca montmorillonite

- Diffusion coefficients at 29°C

- Evolution of the mobility is impacted by both the interlayer space opening and the hydration status of the extra-framework cation

Conclusion

- Sequence of hydration is depending on the interlayer cation nature.
- High mobility/diffusion of the smaller cations confirms the weak interactions existing between the hydrated Li⁺ and Na⁺ compared to the others cations.
- In the case of the mixture Na/Ca cations, Ca²⁺ is hydrated at lower RH than the Na⁺ cation as confirmed by adsorption calorimetry.