Hydration sequence of swelling clays exchanged with mixed alkali/alkali-earth cations

M. Jullien, F. Salles, Olivier Bildstein, J.-M. Douillard, B. Prelot, J. Jazac, H. van Damme

To cite this version:

HAL Id: cea-02509260
https://hal-cea.archives-ouvertes.fr/cea-02509260
Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Swelling clays can absorb/adsorb a great quantity of water inside the interlayer space and the mesoporosity. This adsorbed quantity of water is strongly dependent on the nature of the interlayer cation. In order to probe the hydration sequence in clays as a function of the relative humidity (RH), XRD measurements, water adsorption and calorimetry, thermoporometry and electrical conductivity results are coupled with electrostatic calculations.

Aim of this study:
(i) determination of the hydration sequence of swelling clays as a function of the nature of the interlayer cations
(ii) To elucidate the mobility process of the interlayer cations as a function of the hydration state

Material and Method

Experiments

- Study the “clay-water” system by looking at the modifications of water properties
 - “water inside clays” is different from liquid water (or free water!)
- Thermoporometry + calorimetric technique sensitive to phase transitions of fluid confined in the porosity
 - towards a step-by-step model for the hydration
- Originality of these experiments: investigation of swelling material & various RH

Introduction and Principle

- Study the “clay-water” system by looking at the modifications of water properties
 - “water inside clays” is different from liquid water (or free water!)
- Thermoporometry + calorimetric technique sensitive to phase transitions of fluid confined in the porosity
 - towards a step-by-step model for the hydration
- Originality of these experiments: investigation of swelling material & various RH

Results and Interpretation

- Quantify the evolution of the mesopore size as a function of RH
- Discuss these results in terms of the sequence of clay hydration
- Comprehensive determination of clay hydration sequence for Na-Ca montmorillonite

Hydration Sequence

- RH<10%
- RH~0%
- RH<20%
- RH<40%
- RH<60%
- RH<75%
- RH<80%
- RH<90%
- RH>90%

Diffusion coefficients at 20°C

- Comparison between evolution of d_{001} from X-ray diffraction (see Ferrage et al., 2005) and evolution of the diffusion coefficients

Evolution of the mobility is impacted by both the interlayer space opening and the hydration status of the extra-framework cation

Conclusion

- Sequence of hydration is depending on the interlayer cation nature.
- High mobility/diffusion of the smaller cations confirms the weak interactions existing between the hydrated Li$^+$ and Na$^+$ compared to the others cations.
- In the case of the mixture Na/Ca cations, Ca$^{2+}$ is hydrated at lower RH than the Na$^+$ cation as confirmed by adsorption calorimetry

Diffusion Coefficient (m²/s)

\[D = \frac{\sigma k T}{(z^2 e^2 c)} \]

- D is the diffusion coefficient
- σ is the conductivity
- k the Boltzmann constant & T the temperature
- z the charge of the species & e the electrical charge
- c the concentration of the species

The concentration of cations is estimated from the specific surface areas calculated from water adsorption isotherm.