Hydration sequence of swelling clays exchanged with mixed alkali/alkali-earth cations
M. Jullien, F. Salles, O. Bildstein, J.-M. Douillard, B. Prelot, J. Jazac, H. van Damme

To cite this version:

HAL Id: cea-02509260
https://hal-cea.archives-ouvertes.fr/cea-02509260
Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HYDRATION SEQUENCE of SWELLING CLAYS EXCHANGED with MIXED ALKALI/ALKALI-EARTH CATIONS

F. Salles¹, O. Bildstein², J.M. Douillard³, B. Prelot¹, J. Zajac¹, M. Jullien³ and H. Van Damme⁴

(1) ICGM, Université Montpellier – France (2) CEA, DEN, LMTE – Cadarache – 13108 St Paul lez Durance – France (3) Ecogeosafe – Aix-en-Provence (4) ESPCI – 75231 Paris -France

Introduction and Principle

Swelling clays can adsorb/adsorb a great quantity of water inside the interlayer space and the mesoporosity. This adsorbed quantity of water is strongly dependent on the nature of the interlayer cation. In order to probe the hydration sequence in clays as a function of the relative humidity (RH), XRD measurements, water adsorption and calorimetry, thermoporometry and electrical conductivity results are coupled with electrostatic calculations.

Aim of this study :

(i) determination of the hydration sequence of swelling clays as a function of the nature of the interlayer cations

(ii) To elucidate the mobility process of the interlayer cations as a function of the hydration state

Material and Method

Experiments

Purified and exchanged powders of montmorillonites (Mont) from the MX80 bentonite (octahedral substitutions - saturated with a large majority of Na as interlayer cations)

Conductivity is measured in the frequency range (10⁶ Hz – 10⁷ Hz) at different temperatures (200°C-50°C for dry state and -120°C-20°C for hydrated state) with a Novocontrol impedancemeter

Results and Interpretation

Hydration Sequence

- **Osmotic swelling in mesopores**
 - Free water is observed in mesopores only starting at RH > 90% in Li- and Na-montmorillonites

- **Sequence of hydration is depending on the interlayer cation nature**
 - Interlayer space is never completely filled by water at RH<97% for all samples except Cs+ montmorillonite

- **Diffusion coefficients at 20°C**

\[
D = \frac{\sigma kT}{(z^2 e^2 c)}
\]

\(D\) is the diffusion coefficient
\(\sigma\) is the conductivity
\(k\) the Boltzmann constant & \(T\) the temperature
\(z\) the charge of the species & \(e\) the electrical charge
\(c\) the concentration of the species
The concentration of cations is estimated from the specific surface areas calculated from water adsorption isotherm

Comparison between evolution of adsorption from X-ray diffraction (see Ferrage et al., 2005) and evolution of the diffusion coefficients

Evolution of the mobility is impacted by both the interlayer space opening and the hydration status of the extra-framework cation

Conclusion

- **Sequence of hydration is depending on the interlayer cation nature.**
- **High mobility/diffusion of the smaller cations confirms the weak interactions existing between the hydrated Li⁺ and Na⁺ compared to the others cations.**
- **In the case of the mixture Na/Ca cations → Ca⁺⁺ is hydrated at lower RH than the Na⁺ cation as confirmed by adsorption calorimetry**