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ABSTRACT

Context. In the cooling process of a non-accreting neutron star, the composition and properties of the crust are thought to be fixed at the
finite temperature where nuclear reactions fall out of equilibrium. A lower estimate for this temperature is given by the crystallization
temperature, which can be as high as ≈7 × 109 K in the inner crust, potentially leading to sizeable differences with respect to the
simplifying cold-catalyzed matter hypothesis.
Aims. We extend a recent work on the outer crust to the study of the crystallization of the inner crust and the associated composition
in the one-component plasma approximation.
Methods. The finite temperature variational equations for non-uniform matter in both the liquid and the solid phases are solved using
a compressible liquid-drop approach with parameters optimized on four different microscopic models that cover current uncertainties
in nuclear modeling.
Results. We consider the effect of the different nuclear ingredients with their associated uncertainties separately: the nuclear equation
of state, the surface properties in the presence of a uniform gas of dripped neutrons, and the proton shell effects arising from the ion
single-particle structure. Our results suggest that the highest source of model dependence comes from the smooth part of the nuclear
functional.
Conclusions. We show that shell effects play an important role at the lowest densities close to the outer crust, but the most important
physical ingredient to be settled for a quantitative prediction of the inner crust properties is the surface tension at extreme isospin
values.
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1. Introduction

The essential input determining the composition of the outer crust
of a cold non-accreting neutron star (NS) under the cold-catalyzed
matter hypothesis is given by the masses of the atomic nuclei,
which are confined to the crystalline ion sites. These masses
are experimentally measured to a high level of accuracy, mean-
ing that the properties of the outermost layers of the crust are
precisely known (Blaschke & Chamel 2018). However, for the
regions deeper inside the star, matter becomes so neutron rich that
experimental data are not available, and model dependence arises.
The uncertainty due to modeling becomes a critical aspect in the
inner crust, which extends from≈300 m below the surface to about
1 km in depth; in this region, neutrons drip off nuclei, forming a
gas. This situation cannot be reproduced in the laboratory.

In the inner crust regime, the properties of matter depend
on the energetics of both neutron matter and extremely exotic
neutron-rich nuclei, which can only be accessed by nuclear
modeling. In turn, the masses of dripline nuclei as calculated
by nuclear models depend on the bulk properties of asymmet-
ric nuclear matter1 as expressed by the so-called nuclear equa-
tion of state (EoS), but also on the details of nuclear structure.
These include surface properties arising from the finite size of

1 The asymmetry we refer to is in terms of the neutron-to-proton ratio.

the nucleus, as well as shell corrections arising from the under-
lying single-particle structure of the nuclei.

In recent years, huge progress has been made in constrain-
ing the properties of the nuclear EoS from astrophysical obser-
vations, ab initio calculations, and nuclear experiments, see
Burgio & Fantina (2018) for a recent review. It is therefore inter-
esting to study how much these constraints affect the uncertain-
ties in predicting the composition of the inner crust.

An additional complication arises from the fact that the crust
of a NS is unlikely to be in full thermodynamic equilibrium at
zero temperature. In reality, NSs are born hot, and if their core
cools down sufficiently rapidly, the composition might be frozen
at a finite temperature, see for instance Goriely et al. (2011).
Deviations from the ground-state composition in the cooled crust
around the neutron-drip density have previously been considered
in Bisnovatyi-Kogan & Chechetkin (1979), but simple extrapo-
lations of semi-empirical mass formulas were used at that time.
The value of the freeze-out temperature is difficult to evalu-
ate, but a lower limit is given by the crystallization temperature
because we can expect that nuclear reactions are fully inhibited
in a Coulomb crystal.

Fantina et al. (2020) recently studied the crystallization of
the outer crust of a non-accreting unmagnetized NS in the one-
component plasma (OCP) approximation using the microscopic
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HFB-24 nuclear mass model based on deformed Hartree–
Fock–Bogoliubov calculations (Goriely et al. 2013). The under-
lying functional BSk24 has also recently been used to determine
the ground-state composition and the EoS in all regions of a non-
accreting NS by Pearson et al. (2018). We here extend the work
of Pearson et al. (2018) and Fantina et al. (2020) by calculating
the crystallization temperature and the associated composition in
the inner crust in the OCP approximation. To this end, we solve
the variational equations for non-uniform matter within the com-
pressible liquid-drop (CLD) approach presented in Carreau et al.
(2019). This formalism is presented in Sect. 2. The use of the
CLD approach additionally allows us to address the question
of the model dependence of the results. In this semi-classical
approach, shell effects are added to the smooth EoS functional
using the Strutinsky integral method, as explained in Sect. 3.
This allows an independent variation of the bulk parameters,
the surface parameters, and the shell effects, and a comparison
of the relative importance of the three different microscopic
ingredients. This is discussed in Sect. 4 by considering four
different realistic microscopic functionals providing compara-
bly good reproduction of various experimental and theoretical
nuclear data, taken from Goriely et al. (2013) and Pearson et al.
(2018). In particular, we show that the uncertainties associated
with the nuclear model lead to an uncertainty in the crystalliza-
tion temperature that can exceed 40% in the innermost layers of
the crust. This variation in the crystallization temperature might
have important implications not only for the static properties
of the crust, such as its composition, but also for the cooling
timescale of young NSs, as discussed by Gnedin et al. (2001;
see their Figs. 6 and 7). Finally, we present our conclusions in
Sect. 5.

The freezing of the crust composition at a finite tempera-
ture also implies that an important contribution of impurities is
expected at each depth, which is important for transport properties
(see e.g. Schmitt & Shternin 1961 and Gourgouliatos & Esposito
2013 for recent reviews). Indeed, we have observed that the energy
difference between local minima is typically much lower than the
thermal energy at the crystallization point. Our formalism can be
extended to account for this distribution of nuclei, following an
approach similar to that of Fantina et al. (2020) for the outer crust.
This extension allows a microscopic evaluation of the nuclear dis-
tribution and the associated impurity factor. It will be presented
in a forthcoming paper.

2. Model of the inner crust

In the homogeneous matter limit, an EoS model corresponds to
a given free energy functional for bulk nuclear matter at pro-
ton (neutron) density np(nn) and temperature T , fb(nB, δ,T ), with
nB = np + nn, δ = (nn −np)/nB and fb the free energy per baryon.
We used the four different functionals of the BSk family taken
from Goriely et al. (2013): BSk22, BSk24, BSk25, and BSk26.
These models were chosen because they all provide excellent fits
to the 2016 Atomic Mass Evaluation (AME; Wang et al. 2017),
are compatible both with ab initio and NS mass constraints,
and explore a relatively large domain in the symmetry energy
parameters (consistent with existing experimental constraints),
which constitute the most important part of the EoS uncer-
tainty (Pearson et al. 2014, 2018). Moreover, full mass tables
obtained by deformed Hartree–Fock–Bogoliubov (HFB) calcu-
lations have been published for these models2.

2 The mass tables are available on the BRUSLIB online database
http://www.astro.ulb.ac.be/bruslib/ (Xu et al. 2013).

After we defined the EoS model, we obtained the equi-
librium configuration of inhomogeneous dense matter in the
inner crust in full thermodynamic equilibrium at temperature T
and baryon density nB following Lattimer & Swesty (1991) and
Gulminelli & Raduta (2015), who extended the variational for-
malism of Baym et al. (1971a) and Douchin & Haensel (2001)
to finite temperature.

We used the Lagrange multipliers technique to minimize the
free-energy density in a Wigner–Seitz cell of volume V with the
constraint of a given baryon density nB. The auxiliary function
to be minimized reads

F =
Fi

V
+

(
1 −

A
n0V

)
Fg + Fe − µnB, (1)

where Fg = ng fb(ng, 1,T )+ngmnc2 (Fe) is the free energy
density3 of a pure uniform neutron (electron) gas at density ng
(ne), and the bulk interaction between the nucleus and the neu-
tron gas is treated in the excluded volume approximation. As dis-
cussed by Pearson et al. (2012), minimizing F at fixed baryon
density is practically equivalent to minimizing the Gibbs free
energy G at fixed pressure. The term Fi corresponds to the free
energy of a fully ionized atom of mass number A, atomic number
Z, and density n0, including the Coulomb (nuclear) interaction
with the electron (neutron) gas, and is given by (see Chap. 2 in
Haensel et al. 2007)

Fi =
(
Zmp + (A − Z)mn

)
c2 + Fnuc + F id

i + F int
i , (2)

where mn(p) is the neutron (proton) mass, c is the speed of light,
Fnuc is the free energy associated with the nuclear and electro-
static interactions among nucleons, F id

i is the non-interacting
(“ideal”) contribution to the ion free energy, and F int

i accounts
for Coulomb electron–ion and electron–electron interactions.

Depending on the phase, either solid or liquid, different
expressions enter the ideal F id

i and non-ideal F int
i free energy

terms in addition to the finite-size contribution, which is com-
mon to both phases. The full expressions for the different terms
can be found in Fantina et al. (2020). The most important term
determining the transition from the liquid to the solid phase
is F id

i , specifically, the zero-point quantum-vibration term in
the solid phase, and the translational term in the liquid phase.
Exchange and polarization corrections are found to have no
effect in the density and temperature regime we studied here and
are therefore neglected. We also ignore the possible presence of
free protons, which are expected to be negligible in the low tem-
peratures and proton fractions that characterize the inner crust
around the crystallization point.

The nuclear free energy Fnuc is the same in the liquid and
solid phases, and it is calculated in the CLD approximation,

FCLD
nuc = A fb(n0, I,T ) + Fsurf+curv + FCoul, (3)

where the bulk neutron–proton asymmetry is given by
I = 1 − 2Z/A.

Assuming spherical geometry, we write the Coulomb energy
as

FCoul =
3
5

e2

r0

Z2

A1/3 , (4)

3 We use capital letters for the energy per ion: F is the ion free energy.
Small letters stand for the energy per baryon: f is the free energy per
baryon. The notation F stands for the free energy density.
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Table 1. Surface and curvature parameters optimized to reproduce the
crust–core transition properties of functionals BSk22, BSk24, BSk25,
and BSk26.

p σ0 bs σ0,c β
(MeV fm−2) (MeV fm−2)

BSk22 3.0 0.99785 23.073 0.10403 1.0717
BSk24 3.0 0.98636 36.227 0.09008 1.1631
BSk25 3.0 0.98964 47.221 0.08902 1.1483
BSk26 3.0 0.98797 34.346 0.10985 1.0609

with r0 = (4πn0/3)−1/3, n0 the (average) baryon density inside
the ion, e the elementary charge, and the surface and curvature
free energies as in Newton et al. (2013),

Fsurf+curv = 4πr2
0σsA2/3 + 8πr0σs

σ0,c

σ0
α

(
β −

1 − I
2

)
A1/3, (5)

with α = 5.5. The expression for the surface tension σs is given
in Lattimer & Swesty (1991) and is suggested from Thomas–
Fermi calculations in the Wigner–Seitz cell in the free neutron
regime,

σs = σ0
2p+1 + bs

(Z/A)−p + bs + (1 − Z/A)−p h(T ). (6)

In Eqs. (5) and (6), the surface and curvature parameters σ0,
bs, σ0,c, and β govern the surface properties of nuclei at moder-
ate asymmetries below the onset of neutron drip. Following the
same strategy as in Carreau et al. (2019), they can be fixed by
fitting the T = 0 limit of Eq. (3) to a given mass table. For this
study, we have built full fourth-order extended Thomas–Fermi
(ETF) mass tables for each of the functionals BSk22, BSk24,
BSk25, or BSk26, and fit the parameters of Eq. (6) to the ETF
results4. The function h effectively accounts for the excitation
of surface modes at finite temperature, h(T > Tc) = 0 and

h(T ≤ Tc) =

(
1 −

(
T
Tc

)2
)2

, see Eq. (2.31) of Lattimer & Swesty
(1991). Because the critical temperature Tc is of the order of
Tc ≈ 1.75 × 1011 K and the crystallization temperature is lower
than 1010 K in the inner crust, h ≈ 1 and the excitation of surface
modes can thus be neglected.

Finally, the p parameter determines the behavior of the sur-
face tension at high isospin above the neutron-drip transition
and effectively accounts for the nuclear interaction between the
nucleus and the surrounding neutron gas, which can be mod-
eled as a surface effect. We fixed it to reproduce the crust–core
transition density for the four BSk functionals considered. The
same value p = 3.0 is seen to provide a good reproduction
of the transition points of the different functionals. These latter
were obtained by Pearson et al. (2019) using the same method
as in Ducoin et al. (2007), with the transition taking place when
homogeneous NS matter becomes unstable against finite-size
fluctuations. The corresponding optimized surface and curva-
ture parameters are displayed in Table 1 (see also Table 14
of Pearson et al. 2018).

The quality and flexibility of the parameterization Eq. (6)
was in particular verified by Newton et al. (2013), showing that
the seminal crust composition of Baym et al. (1971b) can be
indeed reproduced with it.

4 The ETF mass tables of the models BSk22, BSk24, BSk25, and
BSk26 are given as supplementary material to this work.

Within the CLD approximation, at a given baryon density
and temperature, the nuclear free energy Fnuc solely depends
on the three parameters (A, I, n0), while the global free energy
density additionally depends on the electron and free neutron
densities, ne = np and ng. The equilibrium configuration is
thus obtained by independent variations of the auxiliary func-
tion Eq. (1) with respect to the five variables A, I, n0, np, and ng
using the baryon density constraint,

nB = ng +
A
V

(
1 −

ng

n0

)
. (7)

This leads to the following system of coupled differential
equations:
∂(Fi/A)
∂A

= 0, (8)

2
A

(
∂Fi

∂I
−

np

1 − I
∂Fi

∂np

)
+ ∆mn,pc2 = µtot

e , (9)

Fi

A
+

1 − I
A

∂Fi

∂I
= µ −

Pg

n0
, (10)

n0
2 ∂(Fi/A)

∂n0
= Pg, (11)

where µtot
e is the electron chemical potential including the rest

mass (see, e.g., Sect. 2.3.1 in Haensel et al. 2007), ∆mn,p is the
neutron–proton mass difference, the gas pressure is given by
Pg = ngµ−Fg, and the baryon chemical potential µ = µtot

B −mnc2

results

µ =
2npn0

n0(1 − I) − 2np

∂(Fi/A)
∂ng

+
dFg

dng
· (12)

In our parameterization, the in-medium modification of the
surface energy arising from the external gas is governed by a
single parameter p that does not depend on the external neutron
density, but only on the global asymmetry. Then ∂Fi/∂ng = 0
and the baryon chemical potential can be identified with the
chemical potential of the gas µg ≡ dFg/dng.

At each value of the baryon density nB and temperature T ,
the system of coupled differential equations Eqs. (8)–(11) was
numerically solved as in Carreau et al. (2019). Specifically, we
solved the coupled equations using the expressions of F id

i and
F int

i of the liquid phase, yielding the optimal liquid composition
Xliq = (Aliq, Iliq, n0,liq, ng,liq) and the associated free energy den-
sity Fliq. Then, for the same composition Xliq, we calculated the
free energy density assuming a solid phase Fsol. The lowest tem-
perature for which Fliq ≥ Fsol is identified as the crystallization
temperature Tm corresponding to the baryon density under study.

3. Inclusion of shell effects

In the CLD approach, shell effects, which have been known
since the pioneering work of Baym et al. (1971a) to be essen-
tial for correctly evaluating the outer-crust composition in the
T = 0 limit, are lost. In this same limit, the microscopic calcu-
lations of Chamel (2006) and Chamel et al. (2007) have shown
that the neutron-shell effects become vanishingly small beyond
the neutron-drip point, but proton shell effects persist in the inner
crust. These shell corrections have been calculated using the
Strutinsky integral method in Pearson et al. (2018) for the same
functionals as we used here. We therefore added these correc-
tions5 to the CLD free energy, Eq. (3). In this way, we recovered
5 Updated tables containing the ETFSI energy thus the shell correc-
tions for the BSk22, BSk24, BSk25, and BSk26 are given as supple-
mentary material in Pearson et al. (2019).
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Fig. 1. Equilibrium value of the proton number Z as a function of baryon
density in the inner crust at zero temperature for the BSk22 (panel a),
BSk24 (panel b), BSk25 (panel c), and BSk26 (panel d) CLD models,
with (solid lines) and without (dash-dotted lines) shell effects. See text
for details.

the expected appearance of the magic numbers in the compo-
sition for the inner crust, as shown in Fig. 1, where results for
the composition at zero temperature for the CLD calculations
(dash-dotted lines) are compared with those including Strutinsky
shell corrections for the corresponding functional (solid lines).
Indeed, the continuous smooth behavior of Z in the inner crust
obtained in the CLD approach disappears when shell effects
are added. In particular, remarkable stability at Z = 40 (Z =
40 and Z = 20) is seen for the BSk24 and BSk26 (BSk22)
model, in very good agreement with Pearson et al. (2018; see
their Fig. 12). A small difference only appears for the BSk25
model, reflecting the limitations of the CLD approach. For this
functional, after the plateau at Z = 50, also obtained with
the ETF calculations of Pearson et al. (2018) including proton
shell effects with the Strutinsky integral method (ETFSI) for
the same functional, Z drops to Z = 40 in our case, while
increasing values of Z are observed in Pearson et al. (2018).
However, Pearson et al. (2019) found a secondary minimum at
Z = 40, and the free-energy per nucleon difference between the
two minima is about 10−3 MeV.

To analyze the effect of the shell corrections in the free
energy, we plot in Fig. 2 the free energy density as a func-
tion of Z for different densities in the inner crust and for
three selected temperatures. We note that as expected, the pure
CLD results are close to those including zero-temperature shell
corrections only for closed-shell configurations, while remark-
able differences exist for all other values of Z. This confirms
the importance of properly accounting for the shell structure.
The increasing discrepancy at kBT = 1 MeV, with kB the
Boltzmann constant, is instead due to an overestimation of the
shell corrections, which are expected to be wiped out at (high
enough) finite temperature, as we discuss next.

A study of the temperature dependence of shell effects within
the finite-temperature extended Thomas–Fermi plus Strutinsky
integral approach (TETFSI) using the BSk14 functional was

performed in Onsi et al. (2008), where it was shown that proton
shell corrections decrease substantially around kBT = 1 MeV
(see their Tables III–V). This is shown in Fig. 3, where we com-
pare for three different temperatures the proton value Z in the
inner crust as obtained in our CLD model without shell effects
(solid line), with the results of Onsi et al. (2008) with (TETFSI,
squares) and without (TETF, stars) shell effects.

At relatively high temperature, our CLD results are in excel-
lent agreement with the more microscopic TETF results of
Onsi et al. (2008), for which shell corrections are also neglected.
It is clearly seen that the discontinuous behavior in Z persists
until kBT ≈ 1 MeV, when the TETFSI results follow the same
smooth trend as the TETF and our CLD results. At low temper-
ature and high density, higher values of Z are obtained in the
CLD calculations than in the TETF ones, showing the limits of
the model. A precision of about 10−4 MeV fm−3 is necessary to
define the correct minimum (see Fig. 2).

In view of the observed temperature dependence of
shell effects in the microscopic calculations, we introduce
a temperature-dependent factor to the zero-temperature shell
corrections in the free energy of our CLD model,

Fnuc = FCLD
nuc + Esh(Z,T = 0)x(T ), (13)

where

x(T ) ≡
(
1 −

2
π

arctan(λT )
)
. (14)

The coefficient λ can thus be determined by two parameters, T0
and x(T0), such that

λ =
1
T0

tan
(
π

2
(1 − x)

)
. (15)

We fixed T0, which represents the temperature at which shell
effects vanish, and x(T0) to reproduce the TETFSI results of
Onsi et al. (2008; see also Fig. 3), yielding kBT0 = 1 MeV and
x(T0) = 0.02. This is of course a very rough treatment of the
temperature dependence of shell effects, but we show in the next
section that the difference in the results obtained with or without
this temperature dependence is smaller than the uncertainty due
to our imperfect knowledge of the smooth part of the nuclear
functional.

4. Numerical results

For each BSk functional, the density domain ranging from the
onset of neutron drip to the transition to homogeneous matter
was explored. At each density, we progressively decreased the
temperature from a high value such that matter is in a liquid state,
until the inequality Fliq(Tm) ≥ Fsol(Tm) was verified. The corre-
sponding value of Tm thus yields the crystallization temperature
at that density.

The behavior of the crystallization temperature as a func-
tion of the baryon density is displayed in Fig. 4 for the model
BSk25, in comparison with the estimation from Haensel et al.
(2007) obtained in the limit of a pure Coulomb plasma,

Tm ≈
(Ze)2

kBaNΓm
K. (16)

In this equation, the mean ion-coupling parameter at the
crystallization point is defined as Γm = (Ze)2/(kBaNTm) ≈ 175
for a classical OCP, and aN = (4π/(3V))−1/3 with V = A(1 −
ng/n0)/(nB − ng).
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Fig. 2. Free energy density as a function of the proton number Z for the BSk24 CLD model for different temperatures kBT = 0 MeV (left panels),
kBT = 0.1 MeV (central panels), and kBT = 1 MeV (right panels), and densities nB = 3 × 10−4 fm−3 (top panels), nB = 10−3 fm−3 (middle panels),
and nB = 10−2 fm−3 (bottom panels). In each panel, dash-dotted (solid) lines correspond to the calculations including temperature-independent
(temperature-dependent) shell effects, and dotted lines represent the results without shell effects. See text for details.

The qualitative behavior of the CLD calculation is very
similar to the one obtained in Haensel et al. (2007) apply-
ing Eq. (16) to the ground-state composition obtained in the
Douchin & Haensel (2001) CLD model. Conversely, the calcu-
lation assuming temperature-independent shell effects exhibits
discontinuities similar to those obtained considering the ground-
state composition of the microscopic Hartree–Fock calculation
of Negele & Vautherin (1973; see Fig. 3.17 of Haensel et al.
2007). These discontinuities are however considerably smoothed
out if the expected modification of the shell structure with tem-
perature is taken into account (full line in Fig. 4). It is seen that
the simple expression Eq. (16) gives a fairly good estimation of
the crystallization temperature, except at the highest densities.
Haensel et al. (2007) argued that setting Γm = 175 is not reliable
in the densest region of the crust because the amplitude of zero-
point quantum vibrations of ions becomes very large and even
comparable to the lattice spacing. This effect is treated as a small
correction in the derivation of the analytical formula, Eq. (16),
while it is naturally included in our formalism.

The dependence on the nuclear model employed is further
explored in Figs. 5 and 6, which show the transition tempera-
ture and the equilibrium value of the ion atomic number, respec-
tively, for the three different models BSk22, BSk24, and BSk26.
The same qualitative trends as in Fig. 4 can be observed. In
particular, the discontinuous behavior of the crust composition
obtained when the zero-temperature composition is assumed is
considerably smoothed out if a temperature dependence of the
shell effects is introduced, with a global result very close to the
CLD prediction. However, the different nuclear models lead to
predictions that progressively diverge with increasing depth, the
crystallization temperature differing by up to 40% at the highest
density close to the crust–core transition.

This model dependence arises from the lack of experimen-
tal and theoretical constraints for very neutron-rich nuclei and
nuclear matter. Equation (3) shows that this concerns the bulk
properties, that is, the nuclear EoS of asymmetric matter, and
surface properties, that is, the surface tension of extremely
neutron-rich nuclei. To progress on this issue, it is important to
know the relative weight of the bulk and surface properties in
determining the uncertainties in the inner-crust properties.

To this aim, we repeated the CLD calculations with the
four different EoSs and fixed the surface properties following
Carreau et al. (2019) by fitting only the experimentally measured
masses of the spherical magic and semi-magic nuclei 40,48Ca,
48,58Ni, 88Sr, 90Zr, 114,132Sn, and 208Pb. The p parameter gov-
erning the behavior of the surface tension, Eq. (6), at extreme
isospin values is completely unconstrained by this fit. It was
kept fixed to the constant value p = 3, which was seen to
lead to a good reproduction of the core–crust transition point
(see Table 1), and was also suggested in the seminal work
by Ravenhall et al. (1983). The resulting models then differ in
their bulk properties, but correspond to comparable surface prop-
erties consistent with experimental data, but unconstrained in the
extreme neutron-rich regime.

The predictions for the crystallization temperature with the
BSk22, BSk24, and BSk25 CLD models are shown in panel a
of Fig. 7 (dash-dotted lines), while the associated equilibrium
value of Z is reported in panel b. The width of the bands can
be interpreted as an estimate of the uncertainty on the respective
observables because of our incomplete knowledge of the nuclear
EoS. In the same figure, solid lines represent the CLD results
that we showed in Figs. 4–6, with surface parameters optimized
on ETF calculations performed up to the respective driplines.
A systematic difference can be observed between the two bands:
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Fig. 3. Equilibrium value of proton number Z as a function of baryon
density in the inner crust for the BSk14 functional for different tem-
peratures: kBT = 0 MeV (panel a), kBT = 0.1 MeV (panel b), and
kBT = 1 MeV (panel c). Solid lines correspond to the CLD model cal-
culations without shell effects, and square (star) symbols correspond to
the TETFSI (TETF) results from Onsi et al. (2008). See text for details.

systematically higher Z values are obtained when surface tension
of neutron-rich nuclei is optimized on the microscopic models,
and this difference obviously reflects on the crystallization tem-
perature, which roughly scales a Z5/3 (see Eq. (16)).

It is important to stress that the bulk parameters of the BSk
functionals were precisely fit to the properties of finite nuclei and
ab initio neutron-matter calculations, see Goriely et al. (2013).
The residual uncertainty in the nuclear EoS is not negligible,
but its consequence is less important than the uncertainties on
the surface energy for neutron-rich nuclei close to neutron drip.
The latter can then be considered as the key physical quantity
determining the crust composition and crystallization tempera-
ture. It is also interesting to observe the anti-correlation between
the symmetry energy coefficients and the crystallization temper-
ature in the inner crust. Indeed in this regime, the higher the
symmetry energy at saturation, the lower the crystallization tem-
perature, with Esym = 32 MeV, Esym = 30 MeV, and Esym =
29 MeV for BSk22, BSk24, and BSk25, respectively.

In Fig. 8 we report the band for the CLD results with sur-
face parameters optimized on ETF calculations, and we show the
results with temperature-independent (temperature-dependent)
shell corrections as dash-dotted (solid) lines. Except for BSk25
under the extreme and quite unrealistic hypothesis that shell
effects are not affected by temperature, all calculations with
shell effects fit in the CLD band. This indicates that simple
CLD modeling could be sufficient to study crust properties at
crystallization.

Finally, the variation of the proton fraction Yp (or, equiva-
lently, of the electron fraction Ye = Yp) with temperature in the
inner crust is shown in Fig. 9. Four different densities are consid-
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Fig. 4. Crystallization temperature Tm (panel a) and equilibrium value
of Z at T = Tm (panel b) as a function of baryon density in the inner
crust for the BSk25 CLD model. Dash-dotted (solid) lines correspond
to the calculations including temperature-independent (temperature-
dependent) shell effects. Results without shell effects are shown as dot-
ted lines. Thick lines give self-consistent results for the crystallization
temperature, and thin lines in the panel a correspond to the approximate
expression Eq. (16). See text for details.
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Fig. 5. Crystallization temperature Tm as a function of baryon den-
sity in the inner crust for the BSk22 (panel a), BSk24 (panel b),
and BSk26 (panel c) CLD models. In each panel, dash-dotted (solid)
lines correspond to the calculations including temperature-independent
(temperature-dependent) shell effects. Results without shell effects are
also shown (dotted lines). See text for details.

ered. The equilibrium proton fraction at crystallization (marked
by the solid symbols) tends to be lower than the prediction for
fully catalyzed matter at T = 0. The effect is negligible in the
densest part of the inner crust close to the crust–core transition,
where the catalyzed matter hypothesis appears well justified.
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Fig. 6. Equilibrium value of proton number Z as a function of baryon
density in the inner crust at the crystallization temperature for the
BSk22 (panel a), BSk24 (panel b), and BSk26 (panel c) CLD mod-
els. In each panel, dash-dotted (solid) lines correspond to the calcula-
tions including temperature-independent (temperature-dependent) shell
effects. Results without shell effects are also shown (dotted lines). See
text for details.
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Fig. 7. Crystallization temperature Tm (panel a) and equilibrium value
of Z (panel b) as a function of baryon density in the inner crust for
BSk22, BSk24, and BSk25 CLD models with surface parameters fitted
to spherical nuclei (dash-dotted lines), or to associated ETF calculations
(solid lines). Gray bands represent extrema. See text for details.

Conversely, a sizeable difference is observed in the proximity
of the outer crust close to the drip point. In Fig. 9, the four BSk
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Fig. 8. Crystallization temperature Tm (panel a) and equilibrium value
of Z (panel b) as a function of baryon density in the inner crust. The
gray band corresponds to extrema for the BSk22, BSk24, and BSk25
CLD models with surface parameters fitted to associated ETF calcu-
lations. Solid (dash-dotted) lines represent the calculations for BSk22,
BSk24, BSk25, and BSk26 CLD models with temperature-dependent
(temperature-independent) shell corrections. See text for details.
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Fig. 9. Proton fraction Yp as a function of temperature for different
values of the baryon density: nB = 3 × 10−4 fm−3 (cell 1), nB =
5 × 10−4 fm−3(cell 2), nB = 10−3 fm−3 (cell 3), and nB = 10−2 fm−3

(cell 4). Gray bands represent minima and maxima of CLD calculations
for the different BSk functionals including temperature-dependent shell
corrections. Circles, stars, triangles, and squares correspond to crys-
tallization temperature for BSk22, BSk24, BSk25, and BSk26, respec-
tively. See text for details.

CLD models are considered, and for each density, the disper-
sion in their predictions is represented by the gray bands. These
bands become thinner than the width of the curves for the lowest
densities, meaning that the results are independent of the model.
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The decrease in proton fraction with temperature is eas-
ily understood from the weak interaction equilibrium condition
µe = µn − µp: with increasing temperature, the electron chem-
ical potential µe increases, leading to an increasing difference
between the neutron and proton chemical potentials µn and µp,
and therefore an increasing neutron-proton asymmetry. Because
of the typical timescale of the weak interaction relative to the
cooling dynamics, it is possible that the composition might be
frozen at a temperature even higher than the crystallization tem-
perature. In that case, the catalyzed matter hypothesis would not
be justified, and the electron fraction estimated at T = 0 might
lead to a significant overestimation of the effective electron frac-
tion of the crust; this conclusion does not depend on the adopted
nuclear model, and the effect is expected to be amplified in the
outer crust. We expect that this finding might affect the r-process
of NS mergers due to the increased Q-value for neutron capture,
but a quantitative statement on this point is beyond the scope of
this paper.

5. Conclusions

We have presented an extension of the recent work of
Fantina et al. (2020), addressing the crystallization tempera-
ture and associated composition of the inner crust of a non-
accreting neutron star. In particular, we have challenged the cold
catalyzed-matter hypothesis by performing consistent calcula-
tions in the liquid and solid phases to determine the crystalliza-
tion temperature of the crust in the OCP approximation and the
possible modifications with respect to the ground-state compo-
sition. To settle the model dependence of the results, four differ-
ent up-to-date nuclear functionals were considered. The crystal-
lization temperature was shown to be systematically lower than
the analytic expectation from Haensel et al. (2007) based on a
pure Coulomb plasma. The deviation is negligible close to the
neutron-drip point, but it can be as high as 30% in the deepest
layers. Despite this fact, sufficiently high values are obtained in
the innermost part, suggesting that substantial reduction of the
shell effects should take place, and the simple CLD approxima-
tion should lead to reasonably good results. The actual impor-
tance of shell effects is affected by considerable uncertainties,
and a very crude approximation was employed in this work. Still,
the highest source of model dependence comes from the smooth
part of the nuclear functional. In particular, fully accounting for
the surface properties at extreme isospin values is seen to be
essential to fix the composition of the crust at crystallization and
the associated temperature. An underestimation of the crystal-
lization temperature of about 30% at all depths in the crust is
found if the surface tension is optimized on stable nuclei alone.

The largest uncertainties are associated with the deepest
layers of the crust. In this region, the use of different func-
tionals, which reproduce a large sample of different nuclear
data with comparable quality, lead to a variation in the estima-
tion of the crystallization temperature of about 40%. An addi-
tional source of uncertainty stems from the possible presence
of non-spherical shapes, which we neglected here. However, the
recent zero-temperature ETF studies by Martin & Urban (2015)
and Pearson et al. (2020) using the same functionals as we did
here report that non-spherical shapes only appear at densities of
about 0.05 fm−3, very close to the transition to the core, above the
density domain studied here. Moreover, the spherical geometry
is seen to prevail at all densities in the TF work by Viñas et al.
(2017), showing that the presence or absence of complex pasta

geometries at the extreme isospin ratio of the crust depends on
subtle high-order effects in the surface energy, which are beyond
the purpose of our study.

Our semi-classical formalism based on the CLD model is
only an approximation of the more complete TETFSI calcu-
lations that have been performed in Onsi et al. (2008). The
main advantage of this formalism is that the computational time
is significantly reduced in comparison with that of TETFSI
calculations, in particular when the crystallization temperature
is to be evaluated. This formalism can also be easily extended
to account for impurities, along the same line as we have done
in Fantina et al. (2020) for the outer crust. The extension to a
multicomponent plasma approach and the computation of the
impurity factor is in progress and will be presented in a forth-
coming publication.
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