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Abstract: The combination of temporal chirp with a simple chromatic aberration known as
longitudinal chromatism leads to extensive control over the velocity of laser intensity in the
focal region of an ultrashort laser beam. We present the first implementation of this effect on a
femtosecond laser. We demonstrate that by using a specially designed and characterized lens
doublet to induce longitudinal chromatism, this velocity control can be implemented independent
of the parameters of the focusing optic, thus allowing for great flexibility in experimental
applications. Finally, we explain and demonstrate how this spatiotemporal phenomenon evolves
when imaging the ultrashort pulse focus with a magnification different from unity.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Control and manipulation of laser beams has a broad realm of applications in many different fields.
Well-known examples of spatial shaping are the Airy beam [1,2] or the Bessel beam [3,4]. For
ultrashort laser pulses, such shaping is possible spatio-temporally, i.e. by introducing correlations
between the temporal and spatial degrees of freedom of the electric field that are non-separable
[5–8]. Here we discuss the so-called flying focus effect whereby the velocity of the light intensity
peak formed within the focal region of a broadband laser pulse can be arbitrarily different than
the speed of light via very simple spatio-temporal shaping [9,10]. This recently identified effect
has many potential scientific applications such as ionization waves of arbitrary velocity [11–13],
Raman amplification in a plasma [14], particle acceleration [15], and photon acceleration [16].
The flying focus (also referred to as the "sliding focus") has been demonstrated on a laser system
with sub-picosecond duration [10] using a diffractive lens to induce spatio-temporal couplings,
a scheme well-suited to the rather narrow spectral width of such a laser. We present here an
implementation of this effect more appropriate for femtosecond laser beams, which exploits
the chromatic properties of a special lens doublet rather than those of a diffractive lens. A key
advantage of this configuration is that the shaping is induced independently of the focusing optic,
allowing for more flexibility in applications of this effect.

2. Overview of the flying focus

The flying focus requires the spatio-temporal coupling called pulse-front curvature (PFC) in
the near-field. For a collimated beam, a PFC α is defined by a radially varying group delay of
GD(r) = αr2. Such a pulsed beam has a "global" duration (related to the spatially-integrated
duration) which we define as τp = αw2

i , with wi the collimated beam radius. As will be illustrated
in this manuscript, the α parameter is useful for optical design, but τp is really the key quantity
characterizing the spatio-temporal coupling of the beam, which is considered severe when τp is
much larger than the local Fourier-transform limited duration τF of the pulse.

In the spectral domain, this coupling is equivalent to a frequency-varying radius of curvature
of the beam spatial phase: the beam wavefront is spatially flat at the central laser frequency
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ω0, but its curvature 1/R varies linearly with the frequency offset δω = ω − ω0 within the
bandwidth of the pulse, 1/R = 2cαδω/ω0 [9]. When such a beam is focused, the spatio-temporal
coupling therefore turns into longitudinal chromatism (LC): the best-focus position z0 varies
according to frequency as z0(ω) = 2cf 2αδω/ω0 (f is the focal length of the focusing optic), or
equivalently z0(ω) = τpzRδω (zR is the Rayleigh length of the focused beam formed by the central
frequency ω0). As a result, such a beam exhibits an extended frequency-integrated Rayleigh
length, ze

R/zR = τp∆ω, with ∆ω ∝ 1/τF the spectral width of the broadband beam, and τp∆ω � 1
defining a strongly coupled beam.
The combination of the longitudinal separation of the frequencies in focus and a frequency-

varying arrival time, described by the group delay dispersion (GDD) φ2, produces the flying focus
effect where within the extended focal region the intensity peak of the pulse can travel at velocities
radically different from c [9–11]. This concept is shown schematically in Figs. 1(a)–1(c) for three
snapshots at increasing z position. The case with only temporal chirp in Fig. 1(a) still retains
an intensity peak velocity of c, but with both LC and temporal chirp the velocity is different
than c. In Fig. 1(b), the shorter wavelengths are focused at greater z and also arrive at later time
(corresponding to positive LC and positive chirp), so the intensity peak—which occurs at the
confluence of the waist position for a given wavelength and the arrival time of the wavelength at
that position—traces a path that has a velocity lower than c. For comparison, the speed of light c
can be seen by the dotted arrow, which traces the arrival position of any single color across the
snapshots. If the arrival time of the colors (chirp) is reversed by changing the sign of φ2 (e.g. by
changing the position of a grating in a compressor or stretcher), then the velocity of the intensity
peak becomes greater than c as shown in Fig. 1(c), or even negative depending on the magnitude
of the chirp (i.e. backwards propagation, which has already been demonstrated experimentally
[10,12]).

Fig. 1. Conceptual explanation of the flying focus effect. (a) Temporal intensity profile of
an ultrashort beam with temporal chirp only, at three positions around the focus. The color
code indicates the instantaneous frequency of the pulse, and the brightness its instantaneous
intensity. (b) Same representation, now for a beam with both LC and temporal chirp. The
velocity of the intensity peak formed by this beam around focus is indicated by the slope of
the solid arrow, and is in this case lower than the speed of light (indicated by the slope of the
dashed arrow). When the chirp is reversed (c) the flying focus velocity is larger than c.

The expected velocity of the intensity peak was derived in Saint-Marie et al. [9], and is
reproduced here:

vff =
c

1 + φ2ω0
2αf 2

, (1)

or with the substitutions τp = αw2
i and zR = 2cf 2/ω0w2

i :

vff =
c

1 + cφ2
zRτp

. (2)
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Equation (2) is important for understanding the scaling in a range of scenarios, described in
later sections. These relations are a result of simple linear calculations based on the arrival
time and waist position of the different frequencies, but more rigorous calculations using the
Fourier-transform of the spatio-spectral field agree very well with the simple result [9].
We must note that the flying focus is physically different from the so-called diffraction-free

space-time wave packets [17] shown recently to also travel at controllable velocities in free space
and in transparent materials [18,19], and to maintain their non-diffractive nature for tens of
meters [20,21]. In the flying focus scheme, the velocity different than c is only present within the
extended focal region, and although the flying focus has an extended Rayleigh length, there is no
diffraction-free nature of the beam outside of this region.

3. Different scenarios for producing the flying focus

Three possible experimental configurations to generate a focused beam with LC are shown in
Figs. 2(a)–2(c). The case of Fig. 2(a) uses a diffractive focusing element that inherently focuses
different wavelengths to different longitudinal positions. In this case, the effective coupling
parameter α is given by α = 1/2cf , which produces the relationship vff = c/(1 + ω0φ2c/f ) for
the flying focus velocity [10] when the fixed α is inserted in Eq. (1). This results in a limited
freedom to control the beam parameters: the coupling parameter α is entirely imposed by the
focal length of the diffractive lens at the central frequency. This is quite similar to the very simple
case of an ultrashort pulse being focused by a chromatic lens [22], except that the diffractive
optic can produce a much larger chromatism.

Fig. 2. Production of LC is possible by focusing with a diffractive lens (a), where the
spatio-temporal coupling and focal length are related, or by combining an optic that induces
PFC on a collimated beam with an achromatic focusing optic (b). In this second case, the
induced LC/PFC can be tuned independently from the focal length of the focusing optic.
Using a diffractive optic and re-focusing with a different focal length (c) can change the
parameters, but restrictions still persist.

In the case of Fig. 2(b), PFC is first induced on the collimated beam by a dedicated chromatic
optical system, and the beam is then focused by an independent achromatic focusing optic. This
scenario now produces the previous relationship of Eq. (1) [9] where the coupling parameter α
and the focal length f are independent of each other. The advantage of this case is that there
is more freedom to control all beam parameters. An experiment might require a given waist
w0 in-focus, pulse duration τ in-focus, and vff, and all of these parameters can be controlled
independently via the choice of φ2, f , and α (or equivalently φ2, zR, and τp from the perspective
of Eq. (2)). Note especially that α can even be negative in this case, which is not possible with a
diffractive lens.
One may imagine that re-focusing a pulse originally focused by a diffractive optic (Fig. 2(c))

may allow for the same flexibility as that in Fig. 2(b), but that is not the case. We will measure and
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discuss the general effect of imaging a flying focus in a later section, albeit using an independent
chromatic optical system and not a diffractive lens. This later discussion will explain why there
is not increased flexibility in the case of Fig. 2(c).

4. Measurement of the chromatic lens system

In order to generate PFC on the collimated beam in our experiment, we use a doublet consisting of
thick lenses of focal length 298mm and -291mm (at the central wavelength of 800 nm) composed
of glasses S-TIM-2 and PSK53A respectively, separated by a distance of ∼ 2mm in order to
essentially act as a telescope (Fig. 3(a)). This combination of one converging and one diverging
lens made of different glasses was designed to result in an infinite radius of curvature at the center
wavelength of 800 nm (i.e. the beam remains collimated at this wavelength with a magnification
close to 1), with as well a minimal spherical aberration. But because the discrepancy between
the group velocities of the two glasses is different from that between their phase velocities, the
output beam still accrues a quadratically-varying group-delay according to the distance from the
center of the lens system, which is exactly PFC, and again precisely equivalent to the imparted
curvature depending on frequency. The detailed design of this optic is presented in Sainte-Marie
et al. [9], and it is important to note that a doublet of lenses having the same curvature but with
the materials exchanged would impart a PFC α of the opposite sign.

Fig. 3. Creation of PFC on a collimated beam using a chromatic afocal system of lenses
made with different glasses, shown in (a). The PFC is characterized using an INSIGHT
device, with the measured spatial phase profiles at two frequencies at the edge of the laser
bandwidth (frequencies marked in red in (b)) shown in (c–d). The relationship of wavefront
curvature to frequency is approximately linear corresponding to a PFC parameter α of
5.9 fs/cm2, shown in (e).

The effect of the doublet was characterized with an INSIGHT device [23], which provides the
complete spatio-spectral properties of the output laser beam in amplitude and phase. We used
the ∼24 fs pulses delivered by the UHI100 laser source at CEA-Saclay, with a beam apertured
to roughly 4 cm diameter in order to avoid clipping in the specific version of the INSIGHT
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device used. The full spectrum is shown in Fig. 3(b) as deduced from the spatial integration of
the INSIGHT measurements. Frequency-resolved spatial wavefronts of the beam are shown in
Fig. 3(c) and Fig. 3(d), at angular frequencies of 2.27×1015 rad/s and 2.47×1015 rad/s (830 nm
and 762 nm) respectively.

It is clear that the curvature of the beam wavefront is inverted from one extreme of the spectrum
to the other. The chromatism is found by calculating the inverse of the radius of curvature at each
frequency, related to the Zernike polynomial defocus term, which should be linear in frequency
according to 1/R = 2cαδω/ω0. The design value of the PFC α of 5.9 fs/cm2 agrees very well
with the measured data according to the linear curve shown in Fig. 3(e). This corresponds to a
global duration τp ' 95 fs for a beam of 4 cm radius. Note that this is a much lower value than
the PFC produced by the diffractive optic used in Froula et al. [10] with f = 511mm, which
amounts to 326 fs/cm2. Using such PFC values on broadband femtosecond laser pulses would
lead to considerable intensity reduction at focus, of the order of 10−4 with a 4 cm beam diameter
and τF = 24 fs, while it is only of the order of 10−1 in the scheme presented here.

5. Measurement of the flying focus

We create the flying focus using the full 6.5 cm diameter (wi = 3.25 cm) UHI100 beam. This 100
TW beam was heavily attenuated to ≈ 100 nJ in this instance to avoid any risk of damage to optics
or detectors, and focused by an off-axis parabola of focal length f0 = 1.1m. The experimental
schematic can be seen in Fig. 4(a), with the chromatic doublet placed before the large focusing
optic, which is displayed as a lens for convenience. Not shown in the schematic are the grating
compressor and deformable mirror, both upstream from the experimental area. The grating
compressor is used to tune the chirp of the test laser pulse, and the deformable mirror is used
to optimize the spatial focal spot (optimized when the doublet is not installed). Note that for
experiments at high power, B-integral effects in the doublet would become a major concern in
this scheme: since this doublet produces a collimated beam, these could then be avoided by
simply moving it before the compressor, into the uncompressed beam (for a small enough α to
avoid accumulated spatio-temporal couplings in the compressor).
The first confirmation of the presence of the chromatism imparted on the laser pulses is the

comparison between the optimized focal spot with the doublet installed with the full spectrum
and only a narrow part of the spectrum in identical conditions, shown in the insets of Fig. 4(b).
The spot size in the right inset, where the full bandwidth is present, has increased at the same
z position compared to the left inset since not all colors are in best focus with the LC present.
This increase of time-integrated beam waist is a characteristic signature of LC in focus [11]. In
contrast, it is important to emphasize that for a chirped beam, the instantaneous beam waist at the
intensity peak of the beam is not increased compared to the case of the LC-free beam. This is
because at any position along the extended Rayleigh length ze

R, this intensity peak is formed by
the fraction of pulse bandwidth that is at its best focus at this particular position.

The flying focus effect is resolved in time by overlapping the test beam with a Fourier-transform-
limited probe beam (shown in pink in Fig. 4, but having the same spectrum as the test beam)
provided by an independent compressor, and performing spectral interferometry [24] in the focus
of the test beam. The spectral interferometry is achieved by placing a 50/50 beamsplitter at
the focus of the test beam in the experimental chamber so that the collimated probe beam is
overlapped with the focus of the test beam. This plane is then imaged to the slit of an imaging
spectrometer with a magnification of M = 1, using two achromatic doublet lenses of focal length
f1 = f2 = 250mm separated by a distance f1 + f2 (Fig. 4(a)). We discuss in a following section
the case when f2 is increased and the magnification is larger than 1.

The test and probe must have a time delay ∆t on the spectrometer slit, shown schematically in
Fig. 4(c) along with the spatial format of the two beams on the slit. The intensity on the slit is
resolved spectrally, where the spectral interferences will only take place in the region along y
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Fig. 4. Experimental setup to induce and measure the flying focus effect (a), drawn with
f1 = f2, with more details in the text, and insets (b) showing the increase in the focal spot size
with the doublet installed (left inset: only central wavelength using a bandpass filter, right
inset: full bandwidth). The test and probe have a time delay, shown left in (c) along with
the format on the spectrometer slit (center) of the two beams and the position of the fringes
when dispersed within the spectrometer (right). The analysis procedure involves taking the
spectral fringes and Fourier transforming to time. Experimental spectral fringes at three
different positions of the last lens are shown on the left in (d), with the insets emphasizing
the different fringe spacing, along with the data Fourier transformed to time on the right,
showing a velocity different than c. The important measured quantities dt, dz, and τ are
shown on the right in panel (d), with dz according to the positions in each subpanel.

where both the test and probe are present. These spectral interferences contain information of
the arrival time of the test relative to the probe. This can be seen when analyzing the spectral
interferometry signal S between a known probe pulse Êprobe and a delayed unknown test beam
Êtest:

Ŝ(ω) =
��Êprobe(ω) + Êtest(ω)e−i(ω∆t)��2. (3)

If the applied delay ∆t is large compared to the duration of both pulses, then taking the Fourier
transform of Ŝ(ω) to go in the time domain, and considering only the peak at positive times, leads
to the processed signal:

S(t) =
{
Fω→t

[
Ŝ(ω)

]}
+∆t ∝ Eprobe(t) ⊗ Etest(t − ∆t). (4)

This corresponds to the convolution of the temporal fields of the probe and test pulses. If the
probe pulse is much shorter than the test pulse, then this is a good approximation of the temporal
profile of the test pulse. This is the case here, as the probe pulse is close to Fourier-transform
limited, while the test pulse is strongly chirped. From this function, we can determine both the



Research Article Vol. 28, No. 4 / 17 February 2020 / Optics Express 4894

arrival time of the test pulse relative to the probe (i.e. deviations from the experimental imposed
delay ∆t, due to the flying focus effect), and its duration (within the approximation specified
above). The processed data also has information on the phase of the test beam, but because we
are interested in the dynamics of the intensity, we do not include that in the analysis.
We then scan the position of the second imaging lens, and therefore the position z relative to

the best focus that is being imaged onto the spectrometer slit. This is not rigorously equivalent to
moving the spectrometer through the focal region, but the slight divergence of the probe due to
translation of the second lens has a negligible effect on the results. Finally, by calculating the
relative arrival time of the test to the probe at different z positions we can deduce the velocity of
the intensity of the test beam.
Example results for one chirp setting (φ2 = +20000 fs2, M = 3) are shown in Fig. 4(d). The

left panels display raw experimental interferograms (i.e. Ŝ(ω)) for three different z positions, with
the insets showing the different fringe spacing resulting from the variation of the delay between
the probe and test beams, due to their different velocities. After Fourier-transforming to time in
the right panel of Fig. 4(d) (displaying |S(t)|2), we can see the relative arrival time of the test to
the probe for these different z positions deviating from the imposed ∆t. Knowing the distance we
have moved the lens dz and the change in the relative arrival time dt, the velocity of the intensity
peak can be found via the relation

vff =
c

1 + c dt
dz
. (5)

It is clear that if the arrival time does not change (dt = 0), then the test beam is traveling at the
same velocity as the probe, c, but if the arrival time varies over z, then the test beam intensity is
traveling at a velocity different from c. We note that what we measure here is the velocity of
the intensity peak formed by the shaped beam within the Rayleigh range. This is not a phase
velocity, but might be considered as some sort of group velocity, with the distinction being rather
subtle—as discussed in Section 6 of Sainte-Marie et al. [9].
The results of such velocity measurements are shown in Fig. 5(a), as a function of chirp.

The velocities range from 0.77c to 2.45c and agree relatively well with the prediction of Eq.
(1). It is due to the measurement technique that as the velocity becomes larger the calculated
velocity will have much more absolute error, even with a fixed error in the measurement of dt
(i.e. σvff = v2ffσdt/dz). The range of φ2 was limited by the spectral resolution of the spectrometer,
where at higher chirps information was lost due to the spectral fringe spacing approaching the
pixel size.
Using the same processed interferograms as for the velocity calculations, we measure the

duration of the intensity peak formed around focus. The results of this analysis for different
chirps are displayed as dots in Fig. 5(b), showing durations that always remain below ∼2.2 ps
for the chirp range investigated here. An interesting and important feature is that the obtained
durations are significantly lower than the local duration τe of the chirped pulse before focusing,
shown as a solid line of Fig. 5(b). This is because for a fixed applied chirp φ2, the duration
τ of a pulse increases with its spectral width ∆ω: τ ∝ ∆ω if φ2 � 1/∆ω2. In the presence
of LC in the focal region, the on-axis beam bandwidth ∆ω′ ∝ 1/τp is reduced compared to
the full spectral width ∆ω ∝ 1/τF of the initial beam—an effect that is clearly observed in the
spectral data of Fig. 4(d). As a result, the local pulse duration is also reduced compared to τe by
a factor ∆ω/∆ω′ = τp/τF = 2.6 (αw2

i /τF = 5.9 × 3.252/24 = 2.6). This agrees well with the
measurement results in our case (dashed line in Fig. 5(b)). This shorter local duration within the
focal region, compared to the duration of the unfocused chirped pulse, is a key characteristic
signature of the flying focus effect [9,11].
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Fig. 5. Results of velocity (a) and pulse duration (b) measurements as a function of chirp,
for two different magnifications of the imaging system (see text), M = 1 and M = 3. The
analytic relationships from Eqs.(1)–(2) are shown as lines for each case in (a). The lines in
(b) are based on the bandwidth corresponding to τF = 24 fs (solid) and the corresponding
bandwidth reduced by a factor of 2.6 (dashed).

6. The effect of magnification

We finally investigate how the velocity of the flying focus evolves when imaging the beam focus
with different magnifications. To this end, we change the focal length of the second imaging
lens in the experimental setup of Fig. 4 to f2 = 750mm (along with the spacing of the lenses in
the telescope), leading to a magnification M = f2/f1 = 3 from the focus of the parabola to the
entrance slit of the spectrometer, instead of M = 1 in the previous measurements. The intensity
peak velocity and duration measured as a function of chirp in this case are displayed in Fig. 5 as
orange squares. The obtained velocities are now very different from the ones obtained for M = 1,
while the measured durations remain unchanged.

Measuring different velocities when using different magnifications can appear somewhat
unexpected, since the only operation between the first focus and the measurement position is
simple imaging, which does not affect the pulse velocity when applied to standard pulsed beams.
The present case is however different: as shown in Sainte-Marie et al. [9], there is no causality
relation between the intensity peaks formed by the focused LC beam along the extended Rayleigh
length. In other words, the intensity peak forming at position z2>z1 is actually not the result of
the propagation of the peak occurring earlier at position z1. As a result, there is no reason to
expect the peak velocity to be conserved upon imaging.

The evolution of the beam properties upon imaging can be derived from analytical calculations,
but can also be inferred from simple intuitive considerations. The starting point is that upon
imaging by an achromatic stigmatic optical system, the global duration τp of the pulse should be
conserved. To see how this affects the intensity peak velocity, one can look directly at Eq. (2). By
changing the focal length f2 of the last lens in our experiment, we change the Rayleigh length zR in
the focal region at the spectrometer while keeping τp fixed, thus changing in turn the flying focus
velocity. The measured velocities agree well with the prediction based on this understanding,
which produces the analytic curve for M = 3 in Fig. 5(a). Since τp remains unaffected, the
local duration at focus is not modified significantly either, as observed experimentally. Another
interpretation is that an achromatic afocal system made of two lenses of focal lengths f and f1,
which magnifies a beam by a factor f /f1, will change the PFC parameter α of a beam from α
to α(f /f1)2. The beam with a larger PFC is then focused by an optic of focal length f2, which
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produces the same results as the previous explanation when using Eq. (1) with the updated
parameters (i.e. α and f become α(f /f1)2 and f2 in Eq. (1)).

Returning to the experimental scenario of Fig. 2(c), we can now see why the imaging does not
increase the flexibility when using the diffractive lens. This is because, although the focused
beam waist w0 and flying focus velicity vff will be modified by the imaging geometry, both will
be described by the new Rayleigh range. This means that, although re-focusing can produce a
different vff and w0, they can not be tuned independently from each other. Including the pulse
duration in the focus as a constraint, then in the case of Fig. 2(c) only two of the three parameters
w0, τ, and vff can be chosen. The free parameters are still only φ2 and f (equivalently from the
perspective of Eq. (2), zR and τp are related to each other by f , τp = f /ω0zR, and therefore not
free parameters).
The conceptual understanding of the imaging of the LC/PFC underscores an important

property of spatio-temporal couplings, that when an operation is done on either time or space,
the spatio-temporal coupling causes that operation to result in changes in both time and space.
In our case this means that vff in the first focus of Fig. 4(a) can be wildly different than that
in the second focus where the measurement takes place. In fact, with a correctly chosen chirp
they can even be of opposite sign. This phenomenon is exactly what we measured in Fig. 5(a)
with the two different magnifications, albeit within a limited range of velocites. With M = 1 the
measured velocity was the same as in the first focus, but with M = 3 the measured velocity was
very different.

7. Conclusion

In conclusion, we have presented the first implementation of the flying focus effect on a
femtosecond laser system, demonstrating intensity peaks that travel at velocities up to 2.5c in
vacuum, while the local pulse duration remains below 2.2 ps. The scheme we have used, based
on a chromatic afocal doublet, provides great flexibility for experimental applications of this
effect, and can be directly applied to high-power laser systems.
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