L. Kollár, G. Keglevich, ;. Müller, and D. , Vogt in Phosphorus Chemistry: Catalysis and Material Science Applications, Müller in Phosphorus Ligand Effects in Homogeneous Catalysis: Design and Synthesis, vol.110, 2010.

M. J. Burk, J. E. Feaster, R. L. Harlow, ;. T. Clark, and C. R. Landis, Tetrahedron: Asymmetry, vol.2, pp.2344-2354, 1991.

D. Joly, P. Bouit, M. ;. Hissler, W. Duffy, P. Delaunay et al., J. Mater. Chem. C, vol.4, pp.10718-10735, 2014.

O. Fadhel, M. Gras, N. Lemaitre, V. Deborde, M. Hissler et al., Adv. Mater, vol.20, pp.1-5, 2009.

P. Hindenberg and C. Romero-nieto, Synlett, vol.27, pp.2293-2300, 2016.

A. Hindenberg, F. López-andarias, A. Rominger, C. De-cózar, ;. E. Romero-nieto et al., Eur. J. Inorg. Chem, vol.23, pp.1519-1528, 2017.

). P. Hindenberg, J. Zimmermann, G. Hernandez-sosa, C. Romero-nieto, ;. E. Regulska et al., , vol.48, p.12803, 2019.

M. Grzybowski, M. Taki, K. Senda, Y. Sato, T. Ariyoshi et al., Angew. Chem. Int. Ed, vol.57, pp.10137-10141, 2018.

C. Müller, D. Wasserberg, J. J. Weemers, E. A. Pidko, S. Hoffmann et al., Chem. Eur. J, vol.13, pp.4548-4559, 2007.

L. Nyulászi, T. Veszprémi, and J. Réffy, All the measured ?-ionization energies (thus ?-orbital energies) are matching, J. Phys. Chem, vol.97, pp.4011-4015, 1993.

J. A. Sklorz, S. Hoof, N. Rades, N. De-rycke, L. Könczöl et al., Chem. Eur J, vol.21, pp.11096-11109, 2015.

S. Sarkar, J. D. Protasiewicz, and B. D. Dunietz, J. Phys. Chem. Lett, vol.9, pp.3567-3572, 2018.

K. Dimroth, Top. Curr. Chem, vol.38, pp.1-147, 1973.

P. Roesch, J. Nitsch, M. Lutz, J. Wiecko, A. Steffen et al., Eur. J. Inorg. Chem, vol.53, pp.13235-13245, 2014.

J. Huang, J. Tarábek, R. Kulkarni, C. Wang, M. Dra?ínský et al., Chem. Eur. J, vol.25, pp.12342-12348, 2019.

N. Hashimoto, R. Umano, Y. Ochi, K. Shimahara, J. Nakamura et al., J. Am. Chem. Soc, vol.140, pp.2046-2049, 2018.

M. Bruce, G. Meissner, M. Weber, J. Wiecko, and C. Müller, Eur. J. Inorg. Chem, pp.1719-1726, 2014.

L. E. Broeckx, S. Güven, F. J. Heutz, M. Lutz, D. Vogt et al., Chem. Eur. J, vol.19, pp.13087-13098, 2013.

Z. Varga, C. Müller, and L. Nyulászi, Struct. Chem, vol.28, pp.1243-1253, 2017.

, this arrangement is calculated at several levels of theory to be higher in energy (although by less than 0.5 kcal/mol) than the "propeller" arrangement of the three aryl-groups (see 3a vs

K. Dimroth and W. Städe, Angew. Chem, p.966, 1968.

L. Nyulaszi, T. Veszpremi, J. Phys, ). L. Chem-;-b, and . Nyulaszi, Top. Heterocyc. Chem, vol.100, pp.27-83, 1996.

Z. Wang and P. V. Schleyer, Helv. Chim. Acta, vol.84, pp.1578-1600, 2001.

H. S. Rzepa and K. Y. Taylor, J. Chem. Soc., Perkin Trans. 2, pp.1499-1501, 2002.

K. A. Starzewski and H. Bock, J. Am. Chem. Soc, vol.98, pp.8486-8494, 1976.

). A. Schweig, W. Schäfer, and K. Dimroth, Angew. Chem. Int. Ed. Engl, vol.11, pp.3743-3746, 1972.

;. Bruker, . Apex2, and S. Saint, Bruker AXS Inc, 2013.

G. M. Sheldrick and A. Cryst, , vol.71, pp.3-8, 2015.

. A. Platon, A. Spek, and . Cryst, , vol.65, pp.148-155, 2009.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

K. Martin, V. G. Morokuma, G. A. Zakrzewski, P. Voth, J. J. Salvador et al., , 2013.

A. D. Becke, J. , ;. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, vol.98, pp.785-789, 1988.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J. Molec. Graphics, vol.14, pp.33-38, 1996.