Pertraction of neodymium
M. Toure, G. Borda, D. Ode, J. Duhamet, S Pellet-Rostaing

To cite this version:

HAL Id: cea-02492580
https://hal-cea.archives-ouvertes.fr/cea-02492580
Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PERTRACTION OF NEODYMIUM

1,2 TOURE Moussa / 1G. BORDA ; 1D. ODE ; 1J. DUHAMET ; 2S. P-ROSTAING

1 CEA, DEN, DTEC, SGCS, F-30207 Bagnols-sur-Cèze, France
2 ICSM, UMR5257, LTSM, F-30207 Bagnols-sur-Cèze
Presence of rare earth elements (REE) in permanent magnets

<table>
<thead>
<tr>
<th>Elements</th>
<th>Nd</th>
<th>Dy</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>23-25</td>
<td>3.5-5</td>
<td>0.05-5</td>
</tr>
</tbody>
</table>

Others: Gd; Tb

Prakash and al. ERES2014

NdFeB
Volume = 0.22 cm³

AlNiCo 5-7
Volume = 14 cm³

Source: amold magnetics

Volume needed to generate a field of 1000 gauss from 5 mm of a pole of the magnet

The demand for Nd will rise by 700% over the next 25 years.

Some applications of permanent magnets (NdFeB):

- Phones
- Loud speakers
- Microphones
- Wind turbines
- Generators
Why rare earth’s recycling?

Source: Report on Critical Raw Materials for the EU (May 2014)

Targets: Ores and Waste Electrical and Electronic Equipment (WEEE)
Global potential of REE recycling from magnets

<table>
<thead>
<tr>
<th>REE application</th>
<th>Estimated REE stocks in 2020 (tons)</th>
<th>Estimated average lifetime (years)</th>
<th>Estimated REE old scrap in 2020 (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnets</td>
<td>300,000.00</td>
<td>15</td>
<td>20,000.00</td>
</tr>
</tbody>
</table>

Koen and al. JOCP 51(2013) 1-22

Supply security; no thorium issues.
Solvent extraction (SX) for rare earth recycling

Advantages of solvent extraction
- Separation of compounds: with similar properties (REE; Ta-Nb),
- High purity of final products: REE (for optical and electronic products).

Others processes after leaching
- Selective precipitation/electrodeposition,
- Separation by ion exchange.

Some of SX process equipments: Pulsed column; Centrifugal extractors

Mixer settlers: principle

Transfer of interest solute from aqueous phase to the solvent by mixing and settling of two phases.

Drawbacks related with conventional equipments:
- Impossible to use very emulsive solvents:
 - which extends the time of settling,
- Density difference required for phases separation:
 - Using of diluent which can cause:
 - third phase formation (avoid by adding a modifier in some cases);
 - and a large volume of solvent in the process
- Pertraction avoids the settling step and offers the possibility to operate without diluent
Contents

Pertraction: principle - interface stabilisation – advantages/drawbacks

Solvent L for neodymium's extraction: selection criteria

Neodymium's extraction: mechanism

Neodymium's extraction: temperature effect

Recycle of REE: from magnets

Taylor Dispersion Analysis (TDA): for neodymium's diffusion coefficient determination in aqueous and solvent L phases

Neodymium's extraction by pertraction: experiments and mass transfer simulation

General conclusion
Pertraction: principle

Solvent wets the hydrophobic membrane pores

Interface solvent – aqueous phase takes place at the pore mouth of the membrane

Mass transfer is governed by:
 - Solute diffusion
 - ΔC as driving force
Pertraction: solvent – aqueous interface stabilisation

Critical pressure

For maintain interface immobilized at pore mouth of the membrane:

\[(P_{aq} - P_{org}) < \Delta P_c\]

\[\Delta P_c = (P_{aq} - P_{org}) = \frac{2\sigma \cos \theta}{R}\]

\(\sigma\) interfacial tension; \(\theta\) wetting angle; \(R\) pores radius
Pertraction: solvent – aqueous interface stabilisation

By hydrostatic pressure

With low pressure drop related to fluid flow ~75.92 x 10^{-5} bar

\[P_i = \rho_i \times g \times h_i \]

\[\Delta P = (P_{\text{aq}} - P_{\text{org}}) \]

\[i = \text{aq or org} \]
Pertraction : advantages / drawbacks

advantages

- Possibility to use incompatible phases systems with conventional equipments:
 - Using very emulsive solvents
 - Operating without diluent
 - No density difference is requered

- Settling step is avoid
- Simple implementation
- Scale up without major difficulty

Drawbacks

- Reduction of mass transfer related to the presence of the membrane
- Fouling problems of the membrane
Solvent for neodymium’s extraction: selection criteria

Selectivity

Distribution coefficient (K_D)

$$K_D = \frac{[C]_{\text{org}}}{[C]_{\text{aq}}}$$

Separation Factor ($SF_{M1/M2}$)

$$SF_{M1/M2} = \frac{K_D(M1)}{K_D(M2)}$$

Back-extraction; solvent: solubility, flash point and cost.

Viscosity

As low as possible for minimize pressure drop and enhance mass transfer at aqueous and organic interface:

Fick’s first law

$$J = -D \nabla c$$

Stokes-Einstein

$$D = \frac{k_B T}{R_h 6 \pi \eta}$$

- k_B: Boltzmann constant
- η: viscosity of solvent
- R_h: hydrodynamic radius of solvent complexes

Conditions:
- Batch process at $T(°C)$, Time, O/A

Diagram:
- org: organic phase
- aq: aqueous phase
- M1: component (extractant)
- M2: component (neutralizer)
Neodymium’s extraction: mechanism

The main mechanisms for neodymium extraction

\[M_{aq}^{m+} + m\text{HL} \rightleftharpoons ML_n + mH_{aq}^{+} \]

By ion exchange

\[M_{aq}^{m+} + mA_{aq}^- + nL \rightleftharpoons ML_n A_m \]

By solvation

Marcus and al. have described the four mechanisms in solvent extraction:
« Ion Exchange and Solvent Extraction of Metal Complexes, Wiley-Interscience, 1969 »
Neodymium’s extraction: mechanism

\[\text{Nd}^{3+} + 3\text{NO}_3^- + n\text{L}_{\text{free}} \leftrightarrow \text{NdL}_n(\text{NO}_3)_3 \]

Law of mass action

\[K_{\text{ex}}^{\text{app}} \frac{[\text{NdL}_n(\text{NO}_3)_3]}{[\text{Nd}^{3+}].[\text{NO}_3]^3.[\text{L}]_n^{\text{free}}} = \frac{K_D}{[\text{NO}_3]^3.[\text{L}]_n^{\text{free}}} \]

Slope analysis technique

\[\log K_D = n \log [\text{L}]_n^{\text{free}} + 3 \log [\text{NO}_3] + \log K_{\text{ex}}^{\text{app}} \]

\[y = A \times x + B \]

Experimental conditions

\[[\text{HNO}_3] = 0.1 \text{ M} ; [\text{NaNO}_3] = 2.5 \text{ M} ; [\text{Nd}] = 6.1 \times 10^{-3} \text{ M} ; A/O = 1 ; T = 20-22^{\circ}\text{C} \]

\[\log (K_D) = f(\log [\text{L}]_n^{\text{free}}) \]
Neodymium’s extraction:

Neodymium’s extraction equilibrium:

\[\text{Nd}^{3+} + 3\text{NO}_3^- + 3\text{L} \leftrightarrow \text{NdL}_3\left(\text{NO}_3\right)_3 \]

Confirm by mass spectroscopy (ESI-MS)

ESI-MS: Mass Spectroscopy by Electrospray Ionization

Graph:

- \(\log K_D \) vs. \(\log \left[\text{L}_{\text{free}} \right] \text{mol.L}^{-1} \)
- Equation: \(Y = 2.9 \pm 0.1X - 0.77 \pm 0.06 \)
- \(R^2 = 0.99622 \)
Neodymium’s extraction: temperature effect

Experimental conditions
\([\text{HNO}_3] = 0.1 \, \text{M} ; \,[\text{NaNO}_3] = 2.5 \, \text{M} ; \,[\text{Nd}] = 6.10^{-3} \, \text{M} ; \, \text{A/O}=1\)

\[K_D = f(T^\circ \text{C})\]

Exothermic extraction with \(K_D \in [14 - 5]\)
Neodymium’s extraction: temperature effect

Law of mass action

\[K_{ex}^{app} = \frac{K_D}{[NO_3]^3 \cdot [L]^3} \]

\[\Rightarrow \ln K_{ex}^{app} = \frac{-\Delta H_{ext}^0}{R} \times \frac{1}{T} + \frac{\Delta S_{ext}^0}{R} + 3\ln[NO_3] + 3\ln[L] \]

\[
\begin{array}{c|c|c|c}
1/T (K^{-1}) & Ln(K_{ex}^{app}) & \\
\hline
3.00x10^{-3} & 1.4 & \\
3.15x10^{-3} & 1.6 & \\
3.30x10^{-3} & 1.8 & \\
\end{array}
\]

\[Y = 2752 \pm 12 X - 6.59 \pm 0.04 \]

\[R^2 = 0.99997 \]

\[\Delta H_{ext}^0 = -22.9 \text{ kJ.mol}^{-1} \]
Recycle of REE

Experimental conditions

\[[\text{HNO}_3] = 0.1 \text{ M} ; \ [\text{NaNO}_3] = [0.5 \text{ - } 3] \text{ M} ; \ A/O=1 \]

<table>
<thead>
<tr>
<th>Elements /g.L(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd</td>
</tr>
<tr>
<td>0.3</td>
</tr>
</tbody>
</table>

waste model of magnets
NO$_3^-$ favors extraction of Nd, Pr, Dy and Fe
Solvent L extracts significantly Nd, Pr, Dy with K_D ∈ [7 – 12]
Fe is the main impurity with $K_D < 2.5$
Recycle of REE
Separation factors *versus* [NaNO$_3$]

<table>
<thead>
<tr>
<th>[NaNO$_3$] / mol.L$^{-1}$</th>
<th>3</th>
<th>[NaNO$_3$] / mol.L$^{-1}$</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Nd/Fe</td>
<td>5.44</td>
<td>SF Nd/Pr</td>
<td>1.039</td>
</tr>
<tr>
<td>SF Nd/Ni</td>
<td>116.037</td>
<td>SF Nd/Dy</td>
<td>2.17</td>
</tr>
<tr>
<td>SF Nd/Co</td>
<td>154.03</td>
<td>SF Pr/Dy</td>
<td>2.088</td>
</tr>
<tr>
<td>SF Nd/B</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

>Selective extraction of REE at NaNO$_3$ (3M) and possibility to separate them each other at NaNO$_3$ (0.5M)

REE back-extraction can be made at low acidity.
Recycle of REE

Scheme of process

Co-extraction of REE

HNO₃ + NaNO₃

Aqueous phase (Nd, Pr, Dy, Fe, Co, Ni, B)

Effluents (Fe, Co, Ni, B, NO₃⁻)

Back-extraction REE

Distilled water

Dy₂O₃

Pr₂O₃

Nd₂O₃

Calcination

Solvent traitement

Liquid-liquid extraction equipment with required stages
Taylor Dispersion Analysis (TDA) : for neodymium’s diffusion coefficient determination in aqueous and solvent L phases

solvent L name is not mentioned here for confidential aspect

1,2TOURE Moussa / 1G. BORDA ; 1D. ODE ; 1J. DUHAMET ; 2S. P-ROSTAING

Collaboration with 3J. CHAMIEH ; 3H. COTTET

1 CEA, DEN, DTEC, SGCS, F-30207 Bagnols-sur-Cèze, France
2 ICSM, UMR5257, LTSM, F-30207 Bagnols-sur-Cèze
3 IBMM, UMR 5247-UM2, DSBC, place Eugène Bataillon CC 017, 34095 Montpellier Cedex 5, France
Taylor Dispersion Analysis (TDA)

Capillary electrophoresis (CE) for TDA

Theory

Taylor – Aris – Golay equation

\[H = \frac{2D}{u} + \frac{R_c^2 u}{24D} \]

Axial diffusion

\[H = \frac{l_D \sigma^2}{t_R^2} \]

H : Plate height
\(t_D \) : average elution time
\(\sigma^2 \) : Variance of the elution profile
U : linear velocity
R_c : capillary radius
ID : capillary Length to the detector

Reduced to:

\[D = \frac{R_c^2}{24\sigma^2 t_R} \]

Validity:

Satisfied if:
\[\frac{Dt_R}{R_c^2} \geq 1.25 \]

Satisfied if:
\[Pe = \frac{R_c u}{D} \geq 40 \]

Taylor Dispersion

\[u(r) \]

Poiseuille flow

Molecular diffusion

Convection + Molecular diffusion

Capillary

Buffer+solute

Buffer

Polyimide coating

Capillary e = 400 \(\mu \)m

100 \(\mu \)m

UV cell

C^4D cell

Pump

PC

P= mbar
Taylor Dispersion Analysis (TDA)

Capillary electrophoresis (CE) for TDA

Theory

Taylor – Aris –Golay equation

\[H = \frac{2D}{u} + \frac{R_c^2 u}{24D} \]

Axial diffusion

\[H = \frac{I_D \sigma^2}{t_R^2} \]

\(H \): Plate height
\(t_\text{D} \): average elution time
\(\sigma^2 \): Variance of the elution profile
\(u \): linear velocity
\(R_c \): capillary radius
\(I_D \): capillary length to the detector

Reduced to:

\[D = \frac{R_c^2}{24\sigma^2} t_R \]

Validity:

Satisfied if:

\[\frac{D t_R}{R_c^2} \geq 1.25 \]

Satisfied if:

\[Pe = \frac{R_c u}{D} \geq 40 \]
Taylor Dispersion Analysis (TDA)

Capillary electrophoresis (CE) for TDA

Theory

Taylor – Aris –Golay equation

\[H = \frac{2D}{u} + \frac{R_c^2 u}{24D} \]

Axial diffusion

\[H = \frac{I_D \sigma^2}{t_R^2} \]

\(H \): Plate height
\(t_D \): average elution time
\(\sigma^2 \): Variance of the elution profile
\(u \): linear velocity
\(R_c \): capillary radius
\(I_D \): capillary length to the detector

Reduced to:

\[D = \frac{R_c^2}{24\sigma^2} t_R \]

In practice, D is calculated by fitting the experimental profile with a Gauss error function for determine \(\sigma \) and \(t_R \):

\[\frac{C}{C_0} = \frac{1}{2} \pm \frac{1}{2} \text{erf} \left[\frac{(t - t_R)}{\sigma \sqrt{2}} \right] \]
Taylor Dispersion Analysis (TDA)

Capillary electrophoresis (CE) for TDA

Theory

Taylor – Aris –Golay equation

\[H = \frac{2D}{u} + \frac{R_c^2 u}{24D} \]

Axial diffusion

\[H = \frac{t_D \sigma^2}{2t_R^2} \]

\(H \) : Plate height
\(t_D \) : average elution time
\(\sigma^2 \) : Variance of the elution profile
\(u \) : linear velocity
\(R_c \) : capillary radius
\(t_R \) : Length to the detector

Reduced to:

\[D = \frac{R_c^2}{24\sigma^2 t_R} \]

Validity:

Satisfied if:

\[\frac{Dt_R}{R_c^2} \geq 1.25 \]

Satisfied if:

\[Pe = \frac{R_c u}{D} \geq 40 \]

Advantages of TDA

Simple ;
Fast ;
Low sample volume (0.7 nL) ;
Taylor Dispersion Analysis (TDA)

Neodymium's diffusion coefficient in aqueous phase

Validity

\[Pe \in [255 - 276] \geq 40 \]
\[\tau \in [66.2 - 71.9] > 1.25 \]
Taylor Dispersion Analysis (TDA)

Neodymium’s diffusion coefficient in aqueous phase

\[D_{\text{Nd}} \in [5.99 - 5.52] \times 10^{-10} \text{ m}^2\text{.s}^{-1} \]

with RSD < 3%

Same order of magnitude as the one calculated with Nernst–Einstein equation

\[D_0 = 6.16 \times 10^{-10} \text{m}^2\text{.s}^{-1} \] (with conductivity of Nd \(\sigma = 69.4 \mu\text{S}\text{.cm}^{-1} \))
Taylor Dispersion Analysis (TDA)

Neodymium’s diffusion coefficient in solvent L phase

Validity

Pe = 1910 ≥ 40
τ = 9.58 ≥ 1.25
Taylor Dispersion Analysis (TDA)
Neodymium’s diffusion coefficient in solvent L phase

at 1 g.L⁻¹ with UV-Vis and C⁴D detectors

<table>
<thead>
<tr>
<th>D / 10⁻¹⁰ m².s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C⁴D</td>
</tr>
<tr>
<td>1.33</td>
</tr>
</tbody>
</table>

with UV-Vis detector

<table>
<thead>
<tr>
<th>[Nd] / g.L⁻¹</th>
<th>D / 10⁻¹⁰ m².s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.13</td>
</tr>
<tr>
<td>8</td>
<td>0.88</td>
</tr>
<tr>
<td>21</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Neodymium’s extraction by pertraction

with solvent L which name is not mentioned here for confidential aspect
Pertraction : experimental module

Hollow fiber : hydrophobic polypropylene membrane

<table>
<thead>
<tr>
<th>property</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (L)</td>
<td>0.25</td>
<td>m</td>
</tr>
<tr>
<td>Internal radius (R_{int})</td>
<td>0.9×10^{-3}</td>
<td>m</td>
</tr>
<tr>
<td>Thickness (e)</td>
<td>0.4×10^{-3}</td>
<td>m</td>
</tr>
<tr>
<td>Tortuosity (τ)</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Volume</td>
<td>0.635×10^{-6}</td>
<td>m3</td>
</tr>
<tr>
<td>Interfacial area</td>
<td>1.148×10^{-3}</td>
<td>m2</td>
</tr>
<tr>
<td>Interfacial volumic area</td>
<td>230</td>
<td>m2.m$^{-3}$</td>
</tr>
<tr>
<td>Porosity (ε)</td>
<td>80</td>
<td>%</td>
</tr>
<tr>
<td>Pore radius (R_p)</td>
<td>100</td>
<td>nm</td>
</tr>
</tbody>
</table>

From Alting (France)
Pertraction: experimental module

Glass potting around the fiber

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length ((L_p))</td>
<td>0.26</td>
<td>m</td>
</tr>
<tr>
<td>Internal radius ((R_{intp}))</td>
<td>2.5 (\times 10^{-3})</td>
<td>m</td>
</tr>
<tr>
<td>Volume</td>
<td>4.984 (\times 10^{-6})</td>
<td>m(^3)</td>
</tr>
</tbody>
</table>

Low interfaciale volumic area 230 m\(^2\).m\(^{-3}\)
Pertraction: experimental set-up

Co-current contact – recycle mode

Diagram:
- **Solvent Reservoir**
- **Charge Reservoir**
- **Pressure gauge**
- **Teflon tube** $\Phi_{\text{int}} = 0.3 \text{ mm}$
- **Peristaltic pump**
- **Rotary piston pump**
- **Hollow fiber module**
Pertraction: experimental conditions

Hollow fiber module

ΔP = 0.07 bar

Reynolds number and pressure drop

<table>
<thead>
<tr>
<th></th>
<th>Reynolds number</th>
<th>Pressure drop (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aqueous</td>
<td>solvent</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>75.92x10^{-5}</td>
<td>0.029x10^{-5}</td>
</tr>
</tbody>
</table>

Charge: HNO₃ + NaNO₃ + Nd
Vol = 22 mL

Solvent (L)
Volume = 20.7 mL

40 mL.h⁻¹
Pertraction: experimental conditions

Hollow fiber module

ΔP = 0.07 bar

Residence time

<table>
<thead>
<tr>
<th>Residence time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Reservoir</td>
</tr>
<tr>
<td>33.02</td>
</tr>
<tr>
<td>fibre</td>
</tr>
<tr>
<td>0.95</td>
</tr>
</tbody>
</table>

Equilibrium reaction

\[\text{Nd}^{3+} + 3\text{NO}_3^- + 3\text{L} \rightleftharpoons \text{NdL}_3(\text{NO}_3)_3 \]

Sample (200 µL) at regular time intervals

Charge: HNO₃ + NaNO₃ + Nd
Vol = 22 mL

40 mL h⁻¹

Solvent (L)
Volume = 20.7 mL
Pertraction : experimental results

Aqueous samples are analysed by ICP-OES to estimate the concentration of Nd ions. Their concentration in solvent L phase is determined by mass balance described below:

\[V_{aq} \cdot X_e + V_{org} \cdot Y_e = V_{org} \cdot Y_1 + V_{aq} \cdot X_1 \]

\[V_{aq} \cdot X_e - \sum V_{pe} \cdot X_{n-1} = V_{org} \cdot Y_n + [V_{aq} - (n-1) \cdot V_{pe}] \cdot X_n \]

V: volume of phases (mL), org (solvent L) and aq (aqueous);
V_{pe}: volume of each aliquot (mL);
X: concentration of Nd ions in aqueous phase (g.L^{-1}), inlet (e) and n for the others aliquots;
Y: concentration of Nd ions in solvent L phase (g.L^{-1}), inlet (e) and n for the others aliquots.
Pertraction : experimental results

Nd concentration profile in aqueous and organic phases versus time :

Equilibrium is reached after 2500 minutes (42h) with K_D (Nd) = 16,1±0,1
Pertraction : mass transfer simulation

Continuity equation:
\[
\frac{\partial C_i}{\partial t} + \nabla \cdot (- D_i \nabla C_i + C_i V_i) = 0
\]

Assumptions:
Uniform pore size and fiber porosity throughout the fiber length
Pertraction: mass transfer simulation

Continuity equation:

\[\frac{\partial C_i}{\partial t} + \nabla \cdot (- D_i \nabla C_i + C_i V_i) = 0 \]

Assumptions:

- Uniform pore size and fiber porosity throughout the fiber length
- Laminar flow with parabolic velocity profile in two phases in the contactor
- Solute is transported by diffusion and convection in the two phases:

\[\frac{\partial C_i}{\partial t} + \nabla \cdot (- D_i \nabla C_i + C_i V_i) = 0 \]

Diffusion is the only transport mechanism in the membrane:

\[\frac{\partial C_i}{\partial t} + \nabla \cdot (- D_i \nabla C_i) = 0 \]
Complexing reaction occurs at the interface aqueous-membrane

\[\text{Nd}^{3+} + 3\text{NO}_3^- + 3\text{L} \leftrightarrow \text{NdL}_3(\text{NO}_3)_3 \]

This chemical reaction is defined by a kinetic with flux expression:

\[\phi (\text{mol.m}^{-2}.\text{s}^{-1}) = k_v \cdot \left(\left[\text{Nd}^{3+} \right]_{\text{aq}} - \left(\frac{[\text{NdL}_3(\text{NO}_3)_3]}{K_{\text{ex}} \cdot [\text{NO}_3]_\text{aq}^3 \cdot [\text{L}]^3} \right) \right) = \frac{\partial [\text{Nd}^{3+}]_{\text{aq}}}{\partial r} \bigg|_{r=r_{\text{int}}} \]

The model is solved by scilab 5.5.1 and is just optimised by one parameter \(k_v \) (m.s\(^{-1}\)) for best fitting experimental results.
Pertraction: mass transfer simulation

Simulation and prediction of Nd concentration in aqueous and solvent L phases

Input parameters

<table>
<thead>
<tr>
<th>Geometric characteristics</th>
<th>Process variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{int}</td>
<td>0.9×10^{-3} m</td>
</tr>
<tr>
<td>R_{intp}</td>
<td>2.5×10^{-3} m</td>
</tr>
<tr>
<td>ε</td>
<td>0.4×10^{-3} m</td>
</tr>
<tr>
<td>L</td>
<td>0.25 m</td>
</tr>
<tr>
<td>ε</td>
<td>80</td>
</tr>
<tr>
<td>τ</td>
<td>2</td>
</tr>
</tbody>
</table>

Neodymium’s diffusion coefficient in solvent L and aqueous phases is determined experimentally by TDA.
Simulation results were in good agreement with the experimental data for a value of $k_v = 5.10^{-7}$ m.s$^{-1}$ which validated the model assumptions. This value of k_v is maintained for predict the influence of geometric characteristics and process variables.
General conclusion

Possibility to use solvent L to selectively extract REE and separate them each other from magnets waste in nitric media;

Neodymium’s extraction mechanism:

\[\text{Nd}^{3+} + 3\text{NO}_3^- + 3L \rightleftharpoons \text{NdL}_3(\text{NO}_3)_3 \]

Exothermic reaction with \(\Delta H_{\text{ext}}^0 = -22.9 \text{ kJ.mol}^{-1} \)

Taylor Dispersion analysis for determine Nd diffusion coefficient in aqueous and organic phases with RSD \(\leq 3\% \) : simple method fast and few sample volume needed (0,7 nL);

Installation and implementation of pertraction module for Nd extraction with hydrophobic polypropylene membrane which has low interfacial volumic area 230 m\(^2\).m\(^{-3}\);

Mass transfer simulation results were in good agreement with the experimental data for a value of \(k_v = 5.10^{-7} \text{ m.s}^{-1} \) which validated the model assumptions. The value of optimise \(k_v \) is maintained for predict the influence of geometric characteristics and process variables.

Experimental determination of \(k_v \) by Rotative Membrane Cell (RSD) method
Thank to

H. Cottet; J. Chamieh; F. Gandi; G. Arrachart; S. Dourdain; V. Dubois; T. Chave; T. Davin; N. Zorz; L. Berthon; D. Maurel; O. Miolan; K. Mandrick