P. Fauvet, Nuclear corrosion science and engineering, pp.679-728, 2012.

P. Fauvet, Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants, Journal of Nuclear Materials, vol.375, p.52, 2008.

J. Decours, J. C. Decugis, R. Demay, M. Pelras, and G. Turluer, Austenitic stainless steels -assessment of progress in materials performance for reprocessing applications, Technical Committee Meeting on Materials Reliability in the Back-end of the Nuclear Fuel Cycle, 1986.

G. Pinard-legry, M. Pelras, and G. Turluer, Corrosion resistance of metallic materials for use in nuclear fuel reprocessing. A Working Party Report on Corrosion in the Nuclear Industry, 1989.

M. Leduc, M. Pelras, J. Sannier, G. Turluer, and R. Demay, Etudes de corrosion sur les matériaux destinés aux usines de retraitement, Recod, vol.87, 1987.

G. Pinard-legry, M. Pelras, and G. Turluer, Corrosion resistance of metallic materials for use in nuclear fuel reprocessing, Eurocorr, vol.87, 1987.

R. Robin, V. Spagnol, and F. Miserque, Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid, Journal of Nuclear Materials, vol.375, pp.65-71, 2008.

H. Chauve, R. Demay, J. Decours, M. Pelras, and J. Simonnet, Construction materials for spent fuel reprocessing plants, pp.19-21, 1986.

H. Chauve, J. Decours, R. Demay, M. Pelras, J. Simonnet et al., Zirconium use for large process components, Technical Committee Meeting on Materials Reliability in the Back-end of the Nuclear Fuel Cycle, 1986.

M. Leduc, A. L. Duigou, and M. Pelras, The use of zirconium in nitric environment -corrosion studies, 4th Symposium on Ti and Zr Industrial Applications (ASTM B.10), 1984.

P. Fauvet and G. Pinard-legry, Corrosion aspects in reprocessing technology, Eurocorr, vol.92, 1992.

Q. T. Tran and V. Bague, A method to determine the intergranular corrosion rate of stainless steel in concentrated nitric acid, 2006.

V. Bague, S. Chachoua, Q. T. Tran, and P. Fauvet, Determination of the long-term intergranular corrosion rate of stainless steel in concentrated nitric acid, Journal of Nuclear Materials, vol.392, pp.396-404, 2009.

B. Gwinner, Corrosion intergranulaire dans l'acide nitrique des aciers inoxydables austénitiques non sensibilités, vol.107, pp.441-443, 2010.

R. Tricot, Résistance à la corrosion des alliages de titane, de zirconium ou de tantale, Matériaux et Techniques, vol.7, pp.297-307, 1987.

M. Pourbaix, Atlas d'équilibres électrochimiques à 25°C, Gauthier-Villars & Cie, 1963.

J. Schosger, Contribution à la connaissance du comportement de l'acier Z3 CN 18-10 dans l'acide nitrique concentré, chaud et confiné, 1996.

F. Balbaud, Cathodic reactions involved in corrosion processes occurring in concentrated nitric acid at 100 degrees C, European Journal of Inorganic Chemistry, vol.4, pp.665-674, 2000.

D. Sicsic, F. Balbaud-célérier, and B. Tribollet, Mechanism of Nitric Acid Reduction and Kinetic Modelling, Eur. J. Inorg. Chem, pp.6174-6184, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110076

R. Lange, On the kinetics of the nitrate reduction in concentrated nitric acid, Electrochemistry Communications, vol.29, pp.25-28, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00803492

A. J. Bard and L. R. Faulkner, Electrochemical methods: fondamentals and applications, 2001.

D. Briggs and M. P. Seah, Practical surface analysis, vol.1, 1990.

M. P. Seah, Quantitative Electron spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Path in solids, Surf. Interface Anal, vol.1, issue.2, 1979.

B. Hirschorn, Determination of effective capacitance and film thickness from constant-phase-Proceedings of Global, 2015.

, Electrochimica Acta, vol.55, pp.6218-6227, 2010.

M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, C. Sanchez-sanchez et al., Influence of a passive layer on the kinetics of an electron transfer reaction, 17th Topical Meeting of the International Society of Electrochemistry, 2015.

S. P. Tanuma, C. J. Powell, and D. R. Penn, Calculations Inelastic Mean Free Paths. 5 Data for 14 Organic Compounds over the 50-2000 eV Range, Surf. Interface Anal, vol.21, p.165, 1994.

W. H. Gries, A universal Predictive Equation for the Inelastic Mean Free Pathlengths of X-ray Photoelectrons and Auger Electrons, Surf. Interface Anal, vol.24, p.38, 1996.

D. D. Macdonald, The history of the Point Defect Model for the passive state: A brief review of film growth aspects, Electrochimica Acta, vol.56, pp.1761-1772, 2011.

M. M. Lohrengel, Thin Anodic Oxide Layers On Aluminum And Other Valve Metals -High-Field Regime, Materials Science & Engineering R-Reports, vol.11, pp.243-294, 1993.

C. Vittoz, P. Fauvet, and B. Fieulaine, Zirconium corrosion in nitric acid containing traces of hydrofluoric acid, Eurocorr, 2011.

E. M. Vanderwall and E. M. Whitener, Concentrated nitric and dilute hydrofluoric acid mixtures in dissolution of zirconium metal, Industrial and Engineering Chemistry, vol.51, pp.51-54, 1959.

E. M. Sutter, F. Hlawka, and A. Cornet, Comparative behavior of titanium and zirconium in hydrofluoric nitric-acid pickling solutions, Corrosion, vol.46, pp.537-544, 1990.

Z. Goncalves and H. Munzel, Dissolution kinetiks of zircaloy in HNO 3 /HF mixtures, Journal of Nuclear Materials, vol.170, pp.261-269, 1990.

F. Hlawka and E. M. Sutter, Reactivity of the surface of zirconium during pickling in nitrichydrofluoric acid, Materials and Corrosion/Werkstoffe und Korrosion, vol.42, pp.428-436, 1991.

T. Smith and G. R. Hill, A Reaction Rate Study of the Corrosion of Low-Hafnium Zirconium in Aqueous Hydrofluoric Acid Solutions, Journal of The Electrochemical Society, vol.105, p.117, 1958.

R. E. Meyer, The electrochemistry of the dissolution of zirconium in aqueous solutions of hydrofluoric acid, Journal of the Electrochemical Society, vol.111, pp.147-155, 1964.

J. Prono, Dissolution-passivation model for zirconium alloys in fluorinated media, Proc. Int, 1992.

J. Prono, Electrochimie du zirconium et de ses alliages en milieu nitrique fluoré, pp.1-175, 1993.

J. Prono, Anodic behavior of zirconium and its alloys in fluorinated nitric media dissolutionpassivation model, Journal of Applied Electrochemistry, vol.25, pp.1031-1037, 1995.

B. Pihlar and Z. Cenci?, Investigation of a zirconium electrode as a sensor for fluoride ions, Analytica Chimica Acta, vol.273, pp.267-274, 1993.

R. E. Meyer, Rotating disk study of dissolution of zirconium in HF-HNO 3, Journal of the Electrochemical Society, vol.112, p.684, 1965.

J. Vehlow, Corrosion of zircaloy-4 in H 2 SO 4 -NaF and its application for measuring the distribution pattern of fission-products in zircaloy-4 fuel hulls, Werkstoffe Und Korrosion-Materials and Corrosion, vol.36, issue.5, pp.195-202, 1985.

M. E. Straumanis, W. J. James, and W. C. Custead, The difference effect and anodic behavior of zirconium dissolving in hydrofluoric acid, Journal of the Electrochemical Society, vol.107, pp.502-506, 1960.

V. A. and Y. M. Kolotyrkin, The mechanism of the dissoluion of zirconium in acid solutions of fluorides, Dokl. Phys. Chem, vol.155, pp.384-387, 1964.

R. E. Meyer and S. M. Zettl, Rotating disk study of dissolution of zirconium in HF-H 2 SO 4, Journal of the Electrochemical Society, vol.112, p.1092, 1965.

S. Cattarin, M. Musiani, and B. Tribollet, Nb electrodissolution in acid fluoride medium -Steadystate and impedance investigations, Journal of the Electrochemical Society, vol.149, pp.457-464, 2002.

W. Klas, Bestimmung der Abtragungsraten von Zirconium, Tantal und der Legierung Tantal-40Niob in fluoridhaltiger azeotroper Salpetersäure mit Hilfe der Radiotracer-Methode, Materials and Corrosion/Werkstoffe und Korrosion, vol.42, pp.570-575, 1991.

F. E. , Effect of fluoride media on the stability of anodic ZrO 2 films, Corrosion, vol.46, pp.247-253, 1990.

G. A. El-mahdy, S. S. Mahmoud, and H. A. El-dahan, Effect of halide ions on the formation and dissolution behaviour of zirconium oxide, Thin Solid Films, vol.286, pp.289-294, 1996.

N. S. Elayathu and J. Balachandra, Studies on the passivation behaviour of some zirconium base alloys in nitric acid solution containing fluoride, J. Electrochem Soc. INDIA, pp.243-250, 1973.

H. G. Zimmermann, Pickling of zirconium alloys, Journal of Nuclear Materials, vol.11, issue.2, pp.247-248, 1964.

D. Kowalski, D. Kim, and P. Schmuki, TiO 2 nanotubes, nanochannels and mesosponge: Selforganized formation and applications, Nano Today, vol.8, pp.235-264, 2013.

P. Roy, S. Berger, and P. Schmuki, TiO2 Nanotubes: Synthesis and Applications, vol.50, pp.2904-2939, 2011.

H. K. Chen and Z. F. Gong, Oxidation behaviour of molten ZK60 and ME20 magnesium alloys with magnesium in 1,1,1,2-tetrafluoroethane/air atmospheres, Transactions of Nonferrous Metals Society of China, vol.22, pp.2898-2905, 2012.

P. Cong, J. Imai, and S. Mori, Effect of gas pressure on tribological properties and tribochemical reactions of alumina sliding against zirconia in HFC-134a, Wear, vol.249, pp.143-149, 2001.

P. Cong and S. Mori, Tribochemical effects on tribological properties of self-mated zirconia ceramic in HFC-134a gas, Tribology Letters, vol.17, pp.261-267, 2004.

R. R. Hammer, Determination of the stability constants of a number of metal fluoride complexes and their rates of formation, pp.1-111, 1979.