Skip to Main content Skip to Navigation
Conference papers

In-situ characterization of ion-irradiation creep of micrometric SiC fibers

Abstract : SiC based compositesSiC fibers embedded in a SiC matrixare among the most promising structural materials for future nuclear applications. However, the characterization of third generation SiC fibers under in-core relevant conditions remains seldom and scattered among the literature. In this work, we investigate the mechanical behavior of these fibers under ion-irradiation. With this purpose, an innovative approach is taken with an experimental facility called MiniMecaSiC (Fig. 1a,b). This equipment is dedicated to in-situ ion-irradiation tensile creep tests of micrometric single SiC fibers. These tests have been carried out in a wide range of temperatures and loads. This method has been used to study accurately different irradiation-enhanced creep regimes of single SiC fibers under relevant in-core-like conditions (Fig. 1c). It has been found that irradiation induces the time-dependent deformation of the fibers under loadings where thermal creep is negligible. We report the influence of the temperature, ion-flux and applied load to the irradiation creep phenomena. Tests at low temperatures present greater deformation than tests at high temperatures. For the latter, the irradiation strain rate is proportional to the ion-flux intensity and has square root dependence with the applied load (Fig. 1d).
Complete list of metadata
Contributor : amplexor amplexor Connect in order to contact the contributor
Submitted on : Monday, February 24, 2020 - 2:56:17 PM
Last modification on : Thursday, October 7, 2021 - 3:20:08 PM


  • HAL Id : cea-02489535, version 1


Jf. Huguetgarcia, A. Jankowiak, S. Miro, T. Vandenberghe, C. Grygiel, et al.. In-situ characterization of ion-irradiation creep of micrometric SiC fibers. Creep 2015, May 2015, Toulouse, France. ⟨cea-02489535⟩



Record views