L. La-sfds, , 2015.

, Analytical results for uniform laws and Gaussian kernels

M. , Numerical tests: Convergence rates function of the input parameter. MC method comparison for different discretizations

, DGSM estimation from kriging JdS de la SFdS, p.35, 201532-06-02.

I. Références, A. Sobol, and . Gresham, On an alternative global sensitivity estimators, Proceedings of SAMO 1995, pp.40-42, 1995.

A. Kiparissides, Global Sensitivity Analysis Challenges in Biological Systems Modeling, Industrial & Engineering Chemistry Research, vol.48, pp.7168-7180, 2009.

S. Kucherenko, Monte Carlo evaluation of derivative-based global sensitivity measures, Reliability Engineering & System Safety 94, vol.7, pp.1135-1148, 2009.

B. Iooss, Some new insights in derivative-based global sensitivity measures, Proceedings of SPAM11 & ESREL 2012 Conference, 2012.

M. Lamboni, Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests, Mathematics and Computers in Simulation, vol.87, pp.45-54, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00666473

S. Touzani and D. Busby, Screening Method Using the Derivative-based Global Sensitivity Indices with Application to Reservoir Simulator, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00789807

O. Roustant, Crossed-derivative based sensitivity measures for interaction screening, Mathematics and Computers in Simulation, vol.105, pp.105-118, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00845446

S. Kucherenko and S. Song, Derivative-based global sensitivity measures as bounds on variance-based global sensitivity indices, Mathematics and Computers in Simulation, 2014.

S. Kucherenko and B. Iooss, Derivative based global sensitivity measures, ArXiv e-prints, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079358

A. Saltelli, Global sensitivity analysis: the primer, 2008.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), 2005.

E. Volkova, B. Iooss, and F. Van-dorpe, Global sensitivity analysis for a numerical model of radionuclide migration from the RRC Kurchatov Institute radwaste disposal site, Stochastic Environmental Research and Risk Assessment, vol.22, pp.1436-3240, 2008.

H. Liu, Y. Tangn, and H. H. Zhang, A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables, Computational Statistics & Data Analysis, vol.53, pp.853-856, 2009.

L. Lantuéjoul and N. Desassis, Simulation of a Gaussian random vector: A Propagative version of the Gibbs sampler, 2012.