Leaching of radio-oxidized poly(ester urethane) water-soluble molecules characterization

E. Fromentin, M. Pielawski, D. Lebeau, S. Esnouf, M. Ferry, F. Cochin, N. Caron, S. Legand

To cite this version:

HAL Id: cea-02489486
https://hal-cea.archives-ouvertes.fr/cea-02489486
Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Leaching of radio-oxidized poly(ester urethane): water-soluble molecules characterization

E. Fromentin1*, M. Pielawski1, D. Lebeau1, S. Esnouf1, M. Ferry1, F. Cochin2, N. Caron3 and S. Legand1

1 CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette, France.
2 AREVA NC DOR/RDP, 1 place Jean Millier, F-92084 La Défense Cedex, France.
3 CEA, DEN, DPC, F-91191 Gif-sur-Yvette, France.

13th Tihany Symposium on Radiation Chemistry
29th August-3rd September 2015
INTRODUCTION

Long-term degradation (≈ 1,000 years): radiolysis *and* alkaline hydrolysis

Question: what is the effect of water-soluble products on the radionuclides mobility?
Considered polymer

- Poly(ester urethane) (PUR)
- Used as glove for glove boxes

Composed of 3 segments issued from these molecules:

- **Hard segment**
 - 4,4’-methylene diphenyl diisocyanate
 - 25.5% \(w\)

- **Extender**
 - 1,4-butandiol
 - + 8.9% inorganic fillers
 - + 1.8% cross linking agents
 - + 0.4% pigments

- **Soft segment**
 - poly(1,4-butylene adipate)
 - 63.4% \(w\)
Objectives

- Characterizing and quantifying water-soluble molecules created by the alkaline hydrolysis of the non-irradiated and irradiated PUR at different doses

- Understanding the degradation mechanisms
 - PUR under radiolysis
 - Irradiated PUR under hydrolysis

- Identifying the products than can complex with the radionuclides

- Being able to model the complexant release kinetics
Objectives

Characterizing and quantifying water-soluble molecules created by the alkaline hydrolysis of the non-irradiated and irradiated PUR at different doses

Understanding the degradation mechanisms
- PUR under radiolysis
- Irradiated PUR under hydrolysis

Identifying the products that can complex with the radionuclides

Being able to model the complexant release kinetics
A two-step preparation

1st step: PUR is irradiated under air using γ rays by IONISOS (60Co source), dose rate: $\sim 0.7\ \text{kGy.h}^{-1}$, doses: 4 MGy ($\sim 8$ months irradiation) and 10 MGy (~ 20 months irradiation)

2nd step: non-irradiated and irradiated PUR is then hydrolyzed and the pH is maintained constant = leaching

Filtrations

Cementitious water composition:
0.25 mol/L NaOH, 10^{-3} mol/L Ca(OH)$_2$ and 41.10$^{-3}$mol/L NaCl
RESULTS AND DISCUSSION

Analytical approach

<table>
<thead>
<tr>
<th>Leachate</th>
<th>Total Organic Carbon analysis</th>
<th>TOC analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted analyses of low molecular weight molecules (< 2 000 Da)</td>
<td>Targeted analyses of high molecular weight molecules</td>
<td></td>
</tr>
</tbody>
</table>
| Organic acids **IC** | Volatile and semi-volatile organic molecules **GC-MS** | Other organic molecules **LC-MS MS-MS** | Weight average molecular **SEC**
RESULTS AND DISCUSSION

Analytical approach

Leachate

Total Organic Carbon analysis

TOC analyzer

Targeted analyses of **low** molecular weight molecules

(< 2000 Da)

Organic acids

IC

Volatile and semi-volatile organic molecules

GC-MS

Targeted analyses of **high** molecular weight molecules

Other organic molecules

LC-MS

MS-MS

Weight average molecular

SEC
Material balances obtained for leachates in **pure water**:

- **0 MGy**: 0.26 mol C/kg of PUR
- **4 MGy**: 8.53 mol C/kg of PUR
- **10 MGy**: 17.7 mol C/kg of PUR

Material balances obtained for leachates in **cementitious water**:

- **0 MGy**: 20.2 mol C/kg of PUR
- **4 MGy**: 26.1 mol C/kg of PUR
- **10 MGy**: 29.5 mol C/kg of PUR

There is a need to investigate the leachates by other analytical techniques.
Molecules detected in the 10 MGy irradiated PUR leachate in pure water

- Some molecules are directly identifiable in the polymer formula:
 - pentanoic acid
 - butanoic acid
 - propionic acid
 - 1,4-butanediol
 - 4,4′-diaminodiphenylmethane

- Other molecules are due to chain scission or chain ends radio-oxidation, or due to ester groups hydrolysis and rearrangements.

Alcohols
- 1,3-propanediol
- 1,2-butanediol
- 2-hexanol
- 3-hydroxytetrahydrofuran
- 2-hydroxytetrahydrofuran

Lactones
- gamma-butyrolactone
- gamma-valerolactone
- delta-valerolactone
- ethylene carbonate
- 1,6-dioxacyclododecan-7,12-dione
- 5-hydroxymethylidihydrofuran-2-one

Linear Esters
- propyl propanoate
- propyl 3-methylbutanoate
- diisopropyl adipate
- 4-hydroxybutylacrylate
- dipropyl hexanedioate
- cyclobutyl hexanoate
- propyl butanoate
- 1,4-diacetoxybutane
Molecules detected in the 10 MGy irradiated PUR leachate in pure water

- Some molecules are directly identifiable in the polymer formula:
 - **pentanoic acid**
 - **butanoic acid**
 - **propionic acid**
 - **1,4-butanediol**
 - **4,4'-diaminodiphenylmethane**

- Other molecules are due to chain scission or chain ends radio-oxidation, or due to ester groups hydrolysis and rearrangements.

Soft segment
- **1,3-propanediol**
- **1,2-butanediol**
- **3-hydroxytetrahydrofuran**
- **2-hexanol**
- **1-hydroxypropan-2-one**
- **ethyleneglycol**
- **1,2-butanediol**

Extender
- **gamma-butyrolactone**
- **gamma-valerolactone**
- **delta-valerolactone**
- **ethylene carbonato**
- **1,6-dioxacyclododecan-7,12-dione**
- **5-hydroxymethylidihydrofuran-2-one**

Hard segment
- **4-hydroxybutylacrylate**
- **dipropyl hexanedioate**
- **1,4-diacetoxybutane**

Alcohols
- **propyl propanoate**
- **diisopropyl adipate**
- **cyclobutyl hexanoate**

Linear esters
- **propyl 3-methylbutanoate**
An example of a degradation mechanism:
Goals of the study:

- Characterizing and quantifying water-soluble molecules created by the alkaline hydrolysis of the non irradiated and irradiated PUR
- Understanding the degradation mechanisms
 - PUR under radiolysis
 - Irradiated PUR under hydrolysis

Ionic chromatography + TOC analyzer = material balance, but the material balances are not complete. **Solution** → developing other analytical techniques such as:

- Gas chromatography coupled with mass spectrometry
Results:

- New molecules detected: the knowledge of released molecules is improved
- Identification of the molecules origin
 - Fragments of the polymer formula
 - Compounds obtained by chain scission, chain ends oxidation, ester groups hydrolysis or/and rearrangements

=> Better understanding of the mechanisms of irradiation and of leaching

Perspectives:

- Quantifying the molecules detected by GC-MS
- Identifying the molecules that can complex with the radionuclides
- Following the complexant release kinetics

=> Irradiated PURm hydrolysis mechanisms to be proposed
Thank you for your attention.

ACKNOWLEDGMENT

This work has been financed by AREVA.

Thanks to S.Rouif (IONISOS) for her helpful collaboration during irradiation.

Thanks to V. Dauvois, E. Zerki, M. Tabarant, S.Sandirin, J.L. Roujou, A.Turban, D. Durand for their ideas and technical help.

Do you have any questions?