K. Kaneko and F. Rodríguez-reinoso, Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019.

Y. Fang, J. A. Powell, E. Li, Q. Wang, Z. Perry et al., Catalytic reactions within the cavity of coordination cages, Chem. Soc. Rev, vol.48, pp.4707-4730, 2019.

Y. Wang and C. Wöll, Chemical Reactions at Isolated Single-Sites inside Metal-Organic Frameworks, Catal. Lett, vol.48, pp.2201-2222, 2018.

R. J. Hooley, Rings and Things: The Magic of Building Self-Assembled Cages and Macrocycles, Inorg. Chem, vol.57, pp.3497-3499, 2018.

S. Ma and . Perman, Elaboration and Applications of Metal-Organic Frameworks, 2017.

Y. Lin, C. Kong, Q. Zhang, and L. Chen, Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage, Adv. Energy Mater, vol.7, p.1601296, 2017.

S. M. Rogge, A. Bavykina, J. Hajek, H. Garcia, A. I. Olivos-suarez et al., Metal-organic and covalent organic frameworks as single-site catalysts, Chem. Soc. Rev, vol.46, pp.3134-3184, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01840159

C. Gao, J. Wang, H. X. Xu, and Y. J. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts, Chem. Soc. Rev, vol.46, pp.2799-2823, 2017.

Y. B. Huang, J. Liang, X. S. Wang, and . R. Cao, Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions, Chem. Soc. Rev, vol.46, pp.126-157, 2017.

L. Zhu, X. Q. Liu, H. L. Jiang, and L. B. Sun, Metal-Organic Frameworks for Heterogeneous Basic Catalysis, Chem. Rev, vol.117, pp.8129-8176, 2017.

J. L. Zhuang, A. Terfort, and C. Wöll, Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review, Coord. Chem. Rev, vol.307, pp.391-424, 2016.

J. W. Liu, L. F. Chen, H. Cui, J. Y. Zhang, L. Zhang et al., Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev, vol.43, pp.6011-6061, 2014.

T. R. Cook, Y. Zheng, and P. J. Stang, Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis and Functionality of Metal-Organic Materials, Chem. Rev, vol.113, pp.734-777, 2013.

M. P. Suh, H. J. Park, T. K. Prasad, and D. Lim, Hydrogen Storage in Metal-Organic Frameworks, Chem. Rev, vol.112, pp.782-835, 2012.

Y. Inokuma, M. Kawano, and M. Fujita, Crystalline Molecular Flasks, Nature Chem, vol.3, pp.349-358, 2011.

M. T. Kapelewski, T. Run?evski, J. D. Tarver, H. Z. Jiang, K. E. Hurst et al., Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-dobc) at Near-Ambient Temperature, Chem. Mater, vol.30, pp.8179-8189, 2018.

K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch et al., Carbon Dioxide Capture in Metal-Organic Frameworks, Chem. Rev, vol.112, pp.724-781, 2012.

M. Hoshino, A. Khutia, H. Xing, Y. Inokuma, and M. Fujita, The crystalline sponge method updated, IUCr J, vol.3, pp.139-151, 2016.

W. J. Gee, The growing importance of crystalline molecular flasks and the crystalline sponge method, Dalton Trans, vol.46, pp.15979-15986, 2017.

M. Sarakha, M. Bolte, and H. D. Burrows, Electron-Transfer Oxidation of Chlorophenols by Uranyl Ion Excited State in Aqueous Solution. Steady-State and Nanosecond Flash Photolysis Studies, J. Phys. Chem. A, vol.104, pp.3142-3149, 2000.

H. D. Burrows and T. J. Kemp, The Photochemistry of the Uranyl Ion, Chem. Soc. Rev, vol.3, pp.139-165, 1974.

A. B. Yusov and V. P. Shilov, Reduction of the photo-excited uranyl ion by water, Russ. Chem. Bull, vol.49, pp.285-290, 2000.

X. Deng, Z. Li, and H. Garcia, Visible Light Induced Organic Tranformations over Metal-Organic-Frameworks (MOFs), Chem. Eur. J, vol.28, pp.11189-11209, 2017.

Q. Wang, Q. Gao, A. M. El-anizi, A. Nafady, and S. Ma, Recent advances in MOF-based photocatalysis: Environmental remediation under visible light, Inorg. Chem. Front, vol.7, pp.300-339, 2020.

F. M. Khandan, D. Afzali, G. Sargazi, and M. Gordan, Novel uranyl-curcumin-MOF photocatalysts with high-performance photocatalytic activity toward the degradation of phenol red from aqueous solution: Effective synthesis route, design and a controllable systematic study, J. Mater. Sci.: Mater. Electron, vol.29, pp.18600-18613, 2018.

H. Li, X. Zeng, H. Wu, X. Jie, S. Zheng et al., Incorporating Guest Molecules into Honeycomb Structures Constructed from Uranium(VI) Polycarboxylates: Structural Diversity and Photocatalytic Activity for the Degradation of Organic Dyes, Cryst. Growth Des, vol.15, pp.10-13, 2015.

W. Yang, W. Tiang, X. Liu, L. Wang, and Z. Sun, Syntheses, Structures, Luminescence and Photocatalytic Properties of a Series of Uranyl Coordination Polymers Cryst, Growth Des, vol.14, pp.5904-5911, 2014.

Y. Hou, X. Xu, N. Xing, F. Bai, S. Duan et al., Photocatalytic Application of 4f-5f Inorganic-Organic Frameworks: Influence of the Lanthanide Contraction on the Structure and Functional Properies of Uranyl-Lanthanide Complexes, vol.79, pp.1304-1315, 2014.

P. A. Kolinko, T. N. Fillipov, D. V. Kozlov, and V. N. Parmon, Ethanol vapour photocatalytic oxidation with uranyl-modified titania under visible light: Comparison with silica and alumina, J. Photochem. Photobiol. A: Chem, vol.250, pp.72-77, 2012.

K. Wang and J. Chen, Extended Structures and Physicochemical Properties of Uranyl-Organic Compounds Acc, Chem. Res, vol.44, pp.531-540, 2011.

V. Krishna, V. S. Kamble, N. M. Gupta, and P. Selvam, Uranyl-Anchored MCM-41 as a Highly Efficient Photocatalyst in the Oxidative Destruction of Short-Chain Linear Alkanes: An in-situ FTIR Study, J. Phys. Chem. C, vol.112, pp.15832-15843, 2008.

Z. Liao, G. Li, M. Bi, J. Chen, and . Preparation, Structures and Photocatalytic Properies of Three New Uranyl-Organic Assembly Compounds, Inorg. Chem, vol.47, pp.4844-4853, 2008.

Z. Yu, Z. Liao, Y. Jiang, G. Li, and J. Chen, Water Insoluble Ag-U-Organic Assemblies with Photocatalytic Activity, Chem. Eur. J, vol.11, pp.2642-2650, 2005.

J. A. Nieweg, K. Lemma, B. G. Trewyn, V. S. Lin, .. Bakac et al., Mesoporous Silica-Supported Uranyl: Synthesis and Photoreactivity, Inorg. Chem, vol.44, pp.5641-5648, 2005.

H. D. Burrows, M. Da, and G. Miguel, Applications and limitations of uranyl ion as a photophysical probe, Adv. Coll. Interf. Sci, pp.485-496, 2001.

D. Zhang, T. K. Ronson, and J. R. Nitschke, Functional Capsules via Subcomponent Self-Assembly, Acc. Chem. Res, vol.51, pp.2423-2436, 2018.

M. Yoshizawa, M. Tamura, and M. Fujita, Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis, Science, vol.312, pp.251-254, 2006.

D. Fiedler, D. H. Leung, R. G. Bergman, and K. N. Raymond, Selective Molecular Recognition, C-H Bond Activation and Catalysis in Nanocale Reaction Vessels, Acc. Chem. Res, vol.38, pp.351-360, 2005.

L. Shao, F. Zhai, Y. Wang, G. Yue, Y. Li et al., Assembly of porphyrin-based uranium organic frameworks with (3,4)-connected pto and tbo topologies, Dalton Trans, vol.48, pp.1595-1598, 2019.

K. Hu, Z. Huang, Z. Zhang, L. Mei, B. Qian et al., Actinide-based Porphyrinic MOF as Dehydrogenation Catalyst, Chem. Eur. J, vol.24, pp.16766-16769, 2018.

F. Hu, Z. Di, P. Lin, P. Huang, M. Wu et al., An Anionic Urnaium-Based Metal-Organic Framework with Ultralarge Nanocages for Selective Dye Adsorption, Cryst. Growth Des, vol.18, pp.576-580, 2018.

K. Hu, X. Jiang, C. Wang, L. Mei, Z. Xie et al., Solvent-dependent Synthesis of Porous Anionic Uranyl-organic Frameworks Featuring Highly Symmetrical (3,4)-connected ctn or bor Topology for Selective Dye Adsorption, Chem. Eur. J, vol.23, pp.529-532, 2017.

P. Li, N. A. Vermeulen, C. D. Malliakas, D. A. Gomez-gualdron, A. J. Howarth et al., Bottom-up construction of a superstructure in a porous uranium-organic crystal, vol.356, pp.624-627, 2017.

P. Li, N. A. Vermeulen, X. R. Gong, C. D. Malliakas, J. F. Stoddart et al., Design and synthesis of a water-stable anionic uranium-based metal-organic framework (MOF) with ultra large pores, Angew. Chem., Int. Ed, vol.128, pp.10514-10518, 2016.

Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu et al., Umbellate Distortions of the Uranyl Coordination Environment Result in a Stable and Porous Polycatenated Framework that can Effectively Remove Cesium from Aqueous Solutions, J. Am. Chem. Soc, vol.137, pp.6144-6147, 2015.

N. Ahmad, A. H. Chugtai, H. A. Younus, and F. Verpoort, Discrete metal-carboxylate self-assembled cages: Design, synthesis and applications, Coord. Chem. Rev, vol.280, pp.1-27, 2014.

P. Thuéry and J. Harrowfield, Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species, Dalton. Trans, vol.46, pp.13660-13667, 2017.

J. Su and J. Chen, MOFs of Uranium and the Actinides, Struct. Bond, vol.163, pp.265-296, 2015.

T. Loiseau, I. Mihalcea, N. Henry, and C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev, pp.69-109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01780303

M. B. Andrews and C. L. Cahill, Uranyl-Bearing Hybrid Materials: Synthesis, Speciation and Solid State Structures, Chem. Rev, vol.113, pp.1121-1136, 2013.

P. A. Giesting and P. C. Burns, Uranyl-organic complexes: structure symbols, classification of carboxylates, and uranyl polyhedral geometries, Crystallogr. Rev, vol.12, pp.205-255, 2006.

T. Zheng, Q. Wu, Y. Gao, D. Gui, S. Qiu et al., Probing the Influence of Phosphonate Bonding Modes to Uranium(VI) on Structural Topology and Stability: A Complementary Experimental and Computational Investigation, Inorg. Chem, vol.54, pp.3864-3874, 2015.

W. Yang, F. Yi, T. Tian, W. Tian, and Z. Sun, Structural Variation within Heterometallic Uranyl Hybrids based on Flexible Alkyldiphosphonate Ligands, Cryst. Growth Des, vol.14, pp.1366-1374, 2014.

T. G. Parker, J. M. Cross, M. J. Polinski, J. Liu, and T. E. Albrecht-schmitt, Ionothermal and Hydrothermal Flux Syntheses of Five New Uranyl Phosphonates, Cryst. Growth Des, vol.14, pp.228-235, 2014.

T. Tian, W. Yang, H. Wang, S. Dang, and Z. Sun, Flexible Diphosphonic Acids for the Isolation of Uranyl Hybrids with Heterometallic U(VI)=O-Zn(II) Cation-Cation Interactions, Inorg. Chem, vol.52, pp.8288-8290, 2013.

P. Thuéry, M. Nierlich, B. W. Baldwin, N. Komatsuzaki, and T. Hirose, A metal-organic molecular box obtained from self assembling around uranyl ions, J. Chem. Soc. Dalton Trans, pp.1047-1048, 1999.

B. T. Mcgrail, L. S. Pianowski, and P. C. Burns, Photochemical Water Oxidation and Origin of Nonaqueous Uranyl Peroxide Complexes, J. Am. Chem. Soc, vol.136, pp.4797-4800, 2014.

S. G. Thangavelu and C. L. Cahill, Uranyl-Promoted Peroxide Generation: Synthesis and Characterisation of Three Uranyl Peroxo, Complexes. Inorg. Chem, vol.54, pp.4208-4221, 2015.

J. Qiu and P. C. Burns, Clusters of Actinides with Oxide, Peroxide or Hydroxide Bridges, Chem. Rev, vol.113, pp.1097-1120, 2013.

J. Qiu, J. Ling, L. Jouffret, R. Thomas, J. E. Szymanowski et al., Water soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters, Chem. Sci, vol.5, pp.303-310, 2014.

L. S. Natrajan, Developments in the Photophysics and Photochemistry of Actinide Ions and their Coordination Compounds, Coord. Chem. Rev, vol.256, pp.1583-1603, 2012.

P. Thuéry and J. Harrowfield, Anchoring Flexible Uranyl Dicarboxylate Chains through Stacking Interactions of Ancillary Ligands on the Chiral U(VI) Centres, CrystEngComm, vol.18, pp.3905-3918, 2016.

P. Thuéry and B. Masci, Self Assembly of an Octa-uranate Cage Complex with a Rigid Bis-Catechol Ligand, Supramol. Chem, vol.15, pp.95-99, 2003.

P. Thuéry, M. Nierlich, J. Harrowfield, and M. Ogden, Phenoxide complexes of f-elements, Calixarenes, 2001.

Z. Asfari, V. Böhmer, J. Harrowfield, and J. Vicens, , pp.561-582, 2001.

J. Lee, J. T. Brewster, B. Ii;-song, V. M. Lynch, I. Hwang et al., Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage, Chem. Commun, vol.54, pp.9422-9425, 2018.

A. Immirzi, G. Bombieri, S. Degetto, and G. Marangoni, The crystal and molecular structure of pyridine-2,6-dicarboxylatodioxouranium(VI) monohydrate, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem, vol.31, pp.1023-1028, 1975.

A. S. Jayasinghe, D. K. Unruh, A. Kral, A. Libo, and T. Z. Forbes, Structural Features in Metal?Organic Nanotube Crystals That Influence Stability and Solvent Uptake, Cryst. Growth Des, vol.15, pp.4062-4070, 2015.

P. Thuéry, Y. Atoini, and J. Harrowfield, Tubelike Uranyl-Phenylenediacetate Assemblies from Screening of Ligand Isomers and Structure-Directing Counterions, Inorg. Chem, vol.58, pp.6550-6564, 2019.

D. K. Unruh, K. Gojdas, A. Libo, and T. Z. Forbes, Development of Metal-Organic Nanotubes Exhibiting Low Temperature, Reversible Exchange of Confined "Ice Channels, J. Am. Chem. Soc, vol.135, pp.7398-7401, 2013.

I. Mihalcea, N. Henry, and T. Loiseau, Revisiting the Uranyl-phthalate System: Isolation and Crystal Structures of Two Types of Uranyl-Organic Frameworks (UOF), Cryst. Growth Des, vol.11, pp.1940-1947, 2011.

S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf et al., Highly Porous Uranyl Selenate Nanotubes, J. Am. Chem. Soc, vol.127, pp.1072-1073, 2005.

S. V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I. G. Tananaev et al., Nanoscale tubules in uranyl selenates, Angew. Chem. Int. Ed, vol.44, pp.1134-1136, 2005.

M. A. Aranda, A. Cobeza, S. Bruque, D. M. Poojary, and A. Clearfield, Polymorphism and Phase Transition in Nanotubular Uranyl Phenylphosphonate: (UO2)3(HO3PC6H5)2(O3PC6H5)2.H2O, Inorg. Chem, vol.37, pp.1827-1832, 1998.

D. Grohol and A. Clearfield, Alkali-Ion-Catalysed Transformation of Two Linear Uranyl Phosphonates into a Tubular One, J. Am. Chem. Soc, vol.119, pp.9301-9302, 1997.

D. M. Poojary, A. Cabeza, M. A. Aranda, S. Bruque, and A. Clearfield, Structure Determination of a Complex Tubular Uranyl Phenylphosphonate, (UO2)3(HO3PC6H5)2(O3PC6H5)2.H2O, from Conventional X-ray Powder Diffraction Data, Inorg. Chem, vol.35, pp.1468-1473, 1996.

D. M. Poojary, D. Grohol, and A. Clearfield, Synthesis and X-ray Powder Structure of a Novel Porous Uranyl Phenylphosphonate Containing Unidimensional Channels Flanked by Hydrophobic Regions, Angew. Chem. Int. Ed, vol.34, pp.1508-1510, 1995.

P. Thuéry and B. Masci, Uranyl-Organic Frameworks with 1,2,3,4-Butanetetracarboxylate and 1,2,3,4-Cyclobutanetetracarboxylate Ligands, Cryst. Growth Des, vol.8, pp.3430-3436, 2008.

C. L. Cahill and L. A. Borkowski, Structural Chemistry of Inorganic Actinide Compounds

S. V. Krivovichev, P. C. Burns, and . Tananaev, , 2007.

P. Thuéry, Y. Atoini, and J. Harrowfield, Chiral Discrete and Polymeric Uranyl Ion Complexes with (1R,3S)-(+)-Camphorate Ligands: Counterion-Dependent Formation of a Hexanuclear Cage, Inorg. Chem, vol.58, pp.870-880, 2019.

P. Thuéry and J. M. Harrowfield, Chiral One-to Three-dimensional Uranyl-organic Assemblies from (1R,3S)-(+)-Camphoric acid, CrystEngComm, vol.16, pp.2996-3004, 2014.

P. Thuéry, A Nanosized Uranyl Camphorate Cage and its Use as a Building Unit in a Metal-Organic Framework, Cryst. Growth Des, vol.9, pp.4592-4594, 2009.

P. Thuéry, Solvothermal Synthesis and Crystal Structure of Uranyl Complexes with 1,1-Cyclobutanedicarboxylic and (1R,3S)-(+)-Camphoric Acids-Novel Chiral Uranyl-Organic Frameworks, Eur. J. Inorg. Chem, pp.3646-3651, 2006.

P. Thuéry, C. Villiers, J. Jaud, M. Ephritikhine, and B. Masci, Uranyl-Based Metallamacrocycles: Tri-and Tetranuclear Complexes with (2R,3R,4S,5S)-Tetrahydrofurantetracarboxylic Acid, J. Am. Chem. Soc, vol.126, pp.6838-6839, 2004.

P. Thuéry, Y. Atoini, and J. Harrowfield, Functionalized Aromatic Dicarboxylate Ligands in Uranyl-Organic Assemblies: the Cases of Carboxycinnamate and 1,2-/1,3-Phenylenedioxydiacetate, Inorg. Chem, vol.59, 2020.

P. O. Adelani and T. E. Albrecht-schmitt, Heterobimetallic Copper(II) Uranyl Carboxyphenylphosphonates, Cryst. Growth Des, vol.11, pp.4676-4683, 2011.

P. Thuéry, Y. Atoini, and J. Harrowfield, 1,3-Adamantanedicarboxylate and 1,3-Adamantanediacetate as Uranyl Ion Linkers: Effect of Counterions, Solvents and Differences in Flexibility, Eur. J. Inorg. Chem, pp.4440-4449, 2019.

P. Thuéry, Y. Atoini, and J. Harrowfield, Closed Uranyl-Dicarboxylate Oligomers: A Tetranuclear Metallatricycle with Uranyl Bridgeheads and 1,3-Adamantanedicarboxylate Linkers, Inorg. Chem, vol.57, pp.7932-7939, 2018.

P. Thuéry and J. Harrowfield, Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate, CrystEngComm, vol.17, pp.4006-4018, 2015.

P. Thuéry, E. Rivière, and J. Harrowfield, Uranyl-and Uranyl-3d-Block-Cation Complexes with 1,3-adamantanedicarboxylate: Crystal Structures, Luminescence and Magnetic Properties, Inorg. Chem, vol.54, pp.2838-2850, 2015.

J. Heine and K. Müller-buschbaum, Engineering metal-based luminescence in coordination polymers and metal-organic frameworks, Chem. Soc. Rev, vol.42, pp.9232-9242, 2014.

P. Thuéry, Y. Atoini, and J. Harrowfield, Zero-, mono-and diperiodic uranyl ion complexes with the diphenate dianion: Influences of transition metal ion coordination and differential U VI chelation, Dalton Trans, vol.49, pp.817-828, 2020.

P. Thuéry, Y. Atoini, and J. Harrowfield, Counterion-Controlled Formation of an Octanuclear Uranyl Cage with cis-1,2-Cyclohexanedicarboxylate Ligands, Inorg. Chem, vol.57, pp.6283-6288, 2018.

P. Thuéry and J. Harrowfield, Tetrahedral and cuboidal clusters in Complexes of Uranyl and Alkali or Alkaline-Earth Metal Ions with rac-and (1R,2R)-trans-1,2-Cyclohexanedicarboxylate, Cryst. Growth Des, vol.17, pp.2881-2892, 2017.

P. Thuéry and J. Harrowfield, Coordination Polymers and Cage-Containing Frameworks in Uranyl Ion Complexes with rac-and (1R,2R)-trans-1,2-Cyclohexanedicarboxylates: Consequences of Chirality, Inorg. Chem, vol.56, pp.1455-1469, 2017.

P. Thuéry and J. Harrowfield, 2+ as Linkers or Counterions in Uranyl-Organic Species with cis-and trans-1,2-Cyclohexanedicarboxylate Ligands, Cryst. Growth Des, vol.18, pp.5512-5520, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Crown Ethers and their Alkali Metal Ion Complexes as Assembler Groups in Uranyl-Organic Coordination Polymers with cis-1,3-, cis-1,2-and trans-1,2-Cyclohexanedicarboxylates, Cryst. Growth Des, vol.18, pp.3167-3177, 2018.

P. Thuéry, Y. Atoini, and J. Harrowfield, Uranyl-Organic Coordination Polymers with trans-1,2-, trans-1,4-and cis-1,4-Cyclohexanedicarboxylates: Effects of Bulky PPh4 + and PPh3Me + Counterions, Cryst. Growth Des, vol.18, pp.2609-2619, 2018.

L. A. Borkowski and C. L. Cahill, Crystal Engineering with the Uranyl Cation I. Aliphatic Carboxylate Coordination Polymers: Synthesis, Crystal Structures, and Fluorescent Properties, Cryst. Growth Des, vol.6, pp.2241-2247, 2006.

P. Thuéry and J. Harrowfield, A New Form of Triple-stranded Helicate found in Uranyl Complexes of Aliphatic ?,?-Dicarboxylates, Inorg. Chem, vol.54, pp.10539-10541, 2015.

P. Thuéry, Y. Atoini, and J. Harrowfield, Favoring Framework Formation through Structure-Directing Effects in Uranyl Ion Complexes with 1,2,3,4-(Cyclo)butanetetracarboxylate, Ligands. Cryst. Growth Des, vol.19, pp.4109-4120, 2019.

S. Pasquale, S. Sattin, E. C. Escudero-adan, M. Martinez-belmonte, and J. De-mendoza, Giant regular polyhedra from calixarene carboxylates and uranyl, Nature Commun, vol.3, pp.785-791, 2012.

D. S. Kemp and K. S. Petrakis, Synthesis and Conformational Analysis of cis,cis-1,3,5-Trimethylcyclohexane-1,3,5-tricarboxylic Acid, J. Org. Chem, vol.46, pp.5140-5143, 1981.

P. Thuéry and . Highly, Adjustable Coordination System: Nanotubular and Molecular Cage Species in Uranyl Ion Complexes with Kemp's, Triacid. Cryst. Growth Des, vol.14, pp.901-904, 2014.

P. Thuéry, Increasing Complexity in the Uranyl Ion-Kemp's Triacid System: From One-and Two-Dimensional Polymers to Uranyl-Copper(II) Dodeca-and Hexadecanuclear Species, Cryst. Growth Des, vol.14, pp.2665-2676, 2014.

P. Thuéry and J. Harrowfield, Uranyl Ion Complexes with all-cis 1,3,5-Cyclohexanetricarboxylate: Unexpected Framework and Nanotubular Assemblies, Cryst. Growth Des, vol.14, pp.4214-4225, 2014.

P. Thuéry and J. Harrowfield, Two-dimensional assemblies in f-element ion (UO2 2+ , Yb 3+ ) complexes with two cyclohexyl-based polycarboxylates, Polyhedron, vol.98, pp.5-11, 2015.

J. Harrowfield and P. Thuéry, Tripodal, and Discoidal Coordination Modes of Kemp's Triacid Anions, Eur. J. Inorg. Chem, vol.2020
URL : https://hal.archives-ouvertes.fr/cea-02464545

D. Caulder and K. N. Raymond, Supermolecules by Design, Acc. Chem. Res, vol.32, pp.975-982, 1999.

S. M. Jansze, G. Cecot, M. D. Wise, K. O. Zhurov, T. K. Ronson et al., Ligand Aspect Ratio as a Decisive Factor for the Self-Assembly of Coordination Cages, J. Am. Chem. Soc, vol.138, pp.2046-2054, 2016.

E. C. Constable, Expanded ligands-An assembly principle for supramolecular chemistry, Coord. Chem. Rev, vol.252, pp.842-855, 2008.

P. Thuéry and J. Harrowfield, Uranyl Ion-Containing Polymeric Assemblies with cis/trans Isomers of 1,2-, 1,3-and 1,4-Cyclohexanedicarboxylates, Including a Helical Chain and a Sixfold-Interpenetrated Framework, Cryst. Growth Des, vol.20, pp.262-273, 2020.

P. Thuéry and J. Harrowfield, Variations on the Honeycomb Topology: from Triangular-and Square-Grooved Networks to Tubular Assemblies in Uranyl Tricarballylate Complexes, Cryst. Growth Des, vol.17, pp.963-966, 2017.

G. Demazeau, Solvothermal Processes: Definition, Key Factors Governing the Involved Chemical Reactions and New Trends, Z. Naturforsch, vol.65, pp.999-1006, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517547

G. Demazeau, Solvothermal reactions: An original route for the synthesis of novel materials, J. Mater. Sci, vol.43, pp.2104-2114, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00269253

P. Thuéry, Y. Atoini, and J. Harrowfield, Structure-directing effects of coordinating solvents, ammonium and phosphonium counterions in uranyl ion complexes with 1,2-, 1,3-and 1,4-phenylenediacetate, Inorg. Chem, vol.59, pp.2503-2518, 2020.

K. P. Carter, M. Kalaj, A. Kerridge, and C. L. Cahill, Probing hydrogen and halogen-oxo interactions in uranyl coordination polymers: a combined crystallographic and computational study, CrystEngComm, vol.20, pp.4916-4925, 2018.

K. P. Carter, M. Kalaj, and C. L. Cahill, Harnessing uranyl oxo atoms via halogen bonding interactions in molecular uranyl materials featuring 2,5-di-iodobenzoic acid and N-donor capping ligands, Inorg. Chem. Front, vol.4, pp.65-78, 2017.

M. Kalaj, K. P. Carter, and C. L. Cahill, Isolating Equatorial and Oxo Based Influences on Uranyl Vibrational Spectroscopy in a Family of Hybrid Materials Featuring Halogen Bonding Interactions with Uranyl Oxo Atoms, Eur. J. Inorg. Chem, pp.4702-4713, 2017.