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Abstract (138 words) 
 

The aggregation of the protein a-Synuclein (a-Syn) leads to different synucleinopathies. We 

recently showed that structurally distinct fibrillar a-Synuclein polymorphs trigger either 

Parkinson’s Disease or Multiple System Atrophy hallmarks in vivo. Here, we establish 

structural-molecular basis for these observations. We show that distinct fibrillar a-Syn 

polymorphs bind to and cluster differentially at the plasma membrane in both primary 

neuronal cultures and organotypic hippocampal slice cultures from wild-type mice. We 

demonstrate a polymorph-dependent and concentration-dependent seeding. We show a 

polymorph-dependent differential synaptic re-distribution of a3-Na+/K+-ATPase, GluA2-

AMPA and GluN2B-NMDA receptors but not GluA1-AMPA and mGluR5 receptors. We 

also demonstrate polymorph-dependent alteration in neuronal network activity upon seeded 

aggregation of a-Syn. Our findings bring new insight into how distinct a-Syn polymorphs 

differentially bind to and seed monomeric a-Syn aggregation within neurons, thus affecting 

neuronal homeostasis through the redistribution of synaptic proteins.  

 

Keywords: a-Synuclein fibrillar polymorphs, protein-protein interaction, membrane protein 

clustering, seeding, synaptic function 
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Introduction 
 

Synucleinopathies are a class of neurodegenerative diseases that have in common the 

aggregation of the protein a-Synuclein (a-Syn). They comprise Parkinson’s disease (PD) 

without or with dementia, Dementia with Lewy bodies (DLB), Multiple System Atrophy 

(MSA), Gaucher disease (Wong & Krainc, 2017; Melki, 2015). It has been proposed that 

different synucleinopathies are the consequence of the aggregation of a-Syn into high 

molecular weight assemblies that possess distinct intrinsic structures (Melki, 2017, 2015). 

Indeed, a-Syn chameleon property yields multiple conformations allowing the formation of 

fibrillar assemblies with distinct structures and surfaces that dictate their growth and clearance 

propensities. Experimental evidence for polymorphs-pathology interdependence came from 

recent works (Peelaerts et al, 2015; Bousset et al, 2013; Guo et al, 2013; Prusiner et al, 2015) 

where different a-Syn fibrillar polymorphs injection in rodent brains yielded phenotypes 

characteristic of PD and MSA.  

 

The distinct intrinsic architectures different a-Syn polymorphs possess is due to the different 

amino acid stretches involved in their amyloid core (Bousset et al, 2013). Given that different 

amino acid stretches are involved in distinct a-Syn polymorphs amyloid core (Verasdonck et 

al, 2016; Bousset et al, 2013), those they expose at their surfaces also differ (Melki, 2018). 

The tip and the side surfaces of pathogenic a-Syn fibrillar assemblies possess have to be 

considered separately. The growing ends define the rate at which they elongate by recruitment 

of monomeric a-Syn in conformations that can establish highly complementary interactions. 

The amino acid stretches exposed on the sides of distinct a-Syn polymorphs define what 

membranous components, in particular plasma membrane proteins, they can interact with. 

Recent studies reported the interaction of exogenous fibrillar a-Syn with extracellularly 

exposed membrane proteins (Shrivastava et al, 2015; Holmes et al, 2013). The presence of 

those protein partners and their abundance on neuronal plasma membrane define the tropism 

of distinct a-Syn polymorphs toward cell populations within the central nervous system.  

 

After binding and take up of fibrillar a-Syn, seeding occurs (Brundin et al, 2010). This is 

accompanied in cell cultures and in vivo by post-translational modifications ranging from 

proteolytic cleavages to phosphorylation, ubiquitination etc. of newly aggregated endogenous 

a-Syn. Efficient seeding of neuronal a-Syn by exogenous fibrils has been demonstrated 
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(Volpicelli-Daley et al, 2011). Organotypic slice cultures represent a powerful alternative to 

primary neuronal cultures as they allow assessing seeding and propagation of infectious 

proteins in a context where neuronal circuits are maintained partially intact. Organotypic 

slices have been indeed widely used to study prion pathology (Goniotaki et al, 2017; Falsig et 

al, 2012; Sonati et al, 2013). Here we show that five distinct fibrillar a-Syn polymorphs 

(Fibrils, Ribbons, Fibrils-91, Fibrils-65 and Fibrils-110) bind to and cluster differentially at 

the plasma membrane in both primary neuronal cultures and organotypic hippocampal slice 

cultures from wild-type mice. We demonstrate a polymorph-dependent and concentration-

dependent seeding. We prove that a fibrillar polymorph’s initial binding and clustering to the 

plasma membrane is tightly linked to subsequent pS129-a-Syn aggregates accumulation. We 

also report a fibrillar polymorph-dependent differential synaptic re-distribution of a3-subunit 

of Sodium/Potassium-ATPase (a3-NKA), GluA2 subunit containing α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (GluA2-AMPA) receptors and GluN2B-subunit containing 

N-methyl-D-aspartate (GluN2B-NMDA) receptors. We also demonstrate fibrillar 

polymorphs-dependent alteration in neuronal network activity upon seeded aggregation of a-

Syn. Altogether, our findings suggest that distinct a-Syn fibrillar polymorphs differentially 

affect neuronal homeostasis.  

 

Results  

Differential a-Syn fibrillar polymorphs binding and clustering on primary neuronal 

cultures 

We previously demonstrated the ability of monomeric a-Syn to assemble into fibrillar 

polymorphs that differ through the conformation the protein adopts within the fibrils and the 

packing of a-Syn molecules within the fibrils under different experimental conditions (Makky 

et al, 2016; Bousset et al, 2013; Verasdonck et al, 2016). The resulting pure polymorphs 

differ in their shape on transmission electron micrographs (Figure 1A, top row). The 

polymorphs were fragmented so that they have the same average length (Figure 1A, bottom 

row, 1B). They possess distinct limited proteolytic patterns, with the exception of Fibrils and 

Fibrils-65, because they expose differently proteinase K cleavage sites (Figure 1C). These 

proteolytic patterns can be compared to “fingerprints” reflecting the different conformations 

a-Syn molecules adopt within distinct fibrillar polymorphs. They also exhibit distinct 

physical and pathogenic properties (Peelaerts et al, 2015; Makky et al, 2016).  
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To determine to what extent the intrinsic structure of fibrillar a-Syn polymorphs affect 

binding to neurons, we exposed primary neurons at DIV 21 (Days In Vitro) to identical 

concentrations of ATTO-550 labeled Fibrils, Ribbons, Fibrils-91, Fibrils-65 and Fibrils-110 

(50nM) (Makky et al, 2016) for 5min or 60min. At these time points, most of the fibrillar a-

Syn remain bound to the plasma membrane (Shrivastava et al, 2015). The cultures were next 

immunolabeled for Homer to identify excitatory synapses along the dendrites (Figure 2A). 

The images reveal striking differences. Fibrils-91 bound to neurons with a much better 

efficiency as compared to the polymorph Fibrils (3 fold- difference; Figure 2A, Row 1 and 

3). In contrast, Fibrils-65 and Fibrils-110 bound to neurons with much less efficiency than a-

Syn polymorph Fibrils. Ribbons bound to neurons with an efficiency significantly higher than 

that of Fibrils but lower than that of Fibrils-91. The “fluorescence of a-Syn cluster”, 

indicative of the size of the cluster, and the “number of a-Syn clusters per µm2”, 

characteristic of density, were quantified (Figure 2B and C, respectively). The size of a-Syn 

Ribbons clusters was larger than that of the fibrillar polymorph Fibrils (Figure 2B), whereas 

both exhibited similar density (Figure 2C). In contrast, the size and density of a-Syn Fibrils-

91 clusters were significantly larger than those of a-Syn polymorph Fibrils. Both the binding 

efficiency and the density of the cluster Fibrils-65 and Fibrils-110 formed on neurons were 

significantly lower than those of the polymorph Fibrils. 

 

In the primary hippocampal neuronal cultures, 80-85% synapses are excitatory. We therefore 

assessed the partial co-localization/apposition of a-Syn fibrillar polymorphs with the 

excitatory synapse marker, Homer. Nearly 15-25% of the clusters of the fibrillar a-Syn 

polymorphs that bound efficiently to neurons (e.g. Fibrils, Ribbons and Fibrils-91) co-

localized with excitatory synapses (Figure 2D), independent from the exposure time (5min or 

60min). The figure was smaller, 0-12% co-localization with Homer for the two fibrillar 

polymorphs (Fibrils-65 and 110) that bound significantly less efficiently to neurons. This is in 

line with our previous study where we reported that a-Syn Fibrils form clusters at both 

synaptic and extra-synaptic and also on axon and dendrites (Supplementary Figure 1) 

(Shrivastava et al, 2017, 2015). Our observations undoubtedly demonstrate that distinct a-

Syn fibrillar polymorphs bind to and cluster on neuron plasma membrane to different extents. 

We therefore conclude from these observations that the amino acid stretches exposed at the 

surfaces of distinct pathogenic a-Syn fibrillar assemblies define the efficiency with which 

they bind to neuronal plasma membranes. 
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Nanoscopic properties of fibrillar a-Syn fibrillar polymorph clusters on neuronal 

membrane 

Confocal imaging and threshold-based analysis (Figure 2) are biased towards larger clusters 

and provide no information about diffused single-molecules (non-clustered) and molecules 

forming nanoclusters. These limitations are solved by the use of super-resolution imaging. We 

therefore performed Stochastic Optical Reconstruction Microscopy (STORM) on fixed 

neurons exposed to the different fibrillar a-Syn polymorphs (50nM, 60min) labeled with 

ATTO-647N dye, as in a previous study (Shrivastava et al, 2015). Representative rendered 

images of the fibrillar polymorphs Fibrils, Fibrils-91 and Ribbons.with a pointing accuracy of 

10nm are shown (Figure 3A, upper row). Density-based spatial clustering of applications 

with noise (DBSCAN), a point-detection based clustering algorithm, was employed to confine 

analysis to authentic clusters (Ester et al, 1996; Malkusch & Heilemann, 2016) (Figure 3A, 

bottom row). The density of the polymorphs Fibrils and Ribbons bound to neurons (single 

molecule detections per µm2) (Figure 3B) were similar but smaller (1.5 fold lower) than that 

observed for Fibrils-91 (Figure 3B). Albeit this, as much as 90% of all single molecule 

detections events for all three a-Syn fibrillar polymorphs were localized within the clusters 

identified by DBSCAN (Figure 3C). These observations clearly indicate that a-Syn fibrillar 

polymorphs have a high propensity to form clusters on the plane of the plasma membrane. 

Cumulative distribution of area of all clusters (n=Fibrils: 7681, Ribbons: 4600, Fibrils-91: 

8672) show a wide distribution. The distribution reveals significant differences between the 

clusters the three fibrillar polymorphs form (Figure 3D). Compared to Fibrils, the polymorph 

Ribbons populates small sized clusters (area < 5000 nm2). The polymorph Fibrils-91, 

populates very large clusters (>200000 nm2) that are neither observed for Fibrils nor Ribbons. 

 

We further performed Single Particle Tracking (SPT) of a-Syn fibrillar polymorphs on the 

plasma membrane of live neurons using STORM (SPT-STORM). For this pre-formed a-Syn 

fibrillar polymorphs were labeled using Photoactivable Janelia Farm 647 Dye (Grimm et al, 

2016). This powerful imaging approach allowed us to track the dynamic behavior of 

thousands of a-Syn single fibrillar particles on neuron membranes and quantify their 

dynamics prior to clusters formation. The measurements were performed within 10-min after 

exposure of neurons to a-Syn-polymorphs (50nM) to track specifically membrane bound 

assemblies. Representative images (Figure 3E) show single particle trajectories of a-Syn 
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Fibrils-91 at two magnifications. By using variational Bayesian treatment of hidden Markov 

models (Persson et al, 2013) that combine information from thousands of short single-particle  

trajectories, 3-diffusive states of a-Syn were extracted with confidence. Particles in state 1 

represents fast diffusing, most likely, one fibril; particles in state 2 exhibit intermediate 

diffusion velocity, they diffuse as small complexes; particles in state 3 are characterized by 

slow-diffusion velocity, they represent clustered a-Syn fibrillar assemblies (Figure 3F-G). 

Comparison of the diffusion coefficients indicate that the polymorphs Fibrils and Fibrils-91 

but not Ribbons diffuse identically in all three states. This indicate that the polymorphs 

Ribbons and Fibrils/Fibrils-91 interact differentially with membrane components. Single 

molecules can exchange between diffusive states (Figure 3F), therefore we quantified the 

dwell-time of a single molecule in a given diffusive state. All a-Syn-polymorphs exhibit 

higher dwell-time in state 3 i.e. in clustered state (Figure 3H) compared to non-clustered 

states (state 1 and 2). This validates the observation that a-Syn has a high propensity to form 

clusters (Figure 3B). Interestingly, in diffusive state 3, Ribbons exhibit lower dwell-time 

values compared to Fibrils/Fibrils-91 (Figure 3H). This strongly suggests that the clusters 

Ribbons form are less stable than those Fibrils/Fibrils-91 yield. The occupancy time (i.e. the 

time spent by single particles in each diffusive state is plotted (Figure 3I). The three 

polymorphs spend less time (20%) in state 1 (as single particle) compared to state 2/3 (in a 

larger complex), indicating cluster formation following diffusion.  

 

Time-dependent endocytosis of fibrillar assemblies 

Following binding to the membrane, fibrillar a-Syn polymorphs are internalized (Flavin et al, 

2017; Abounit et al, 2016). We quantified the rate of initial endocytosis of distinct fibrillar a-

Syn polymorphs as this is key for subsequent seeding within neuronal cells. Primary mature 

neurons at DIV 21 (Days In Vitro) were exposed to fibrillar a-Syn polymorphs for 1h (50nM, 

dual labeled with biotin and ATTO488) (Figure 4A), followed by removal of unbound 

assemblies. Cells were fixed immediately (0h condition) or after 4h/8h of exposure. While 

total (surface + endocytosed) a-Syn polymorphs were detected based on ATTO488 

fluorescence, those at cell surface were detected using streptavidin-550, that binds to biotin. 

ATTO488-spots that did not co-localize with Streptavidin-550 spots depicted endocytosed 

fibrillar a-Syn. As shown in the representative example (Figure 4B), a small proportion of 

fibrillar a-Syn polymorphs were endocytosed (green only spots) within this time frame. 

Quantification showed a small but significant, time-dependent increase in the number of 
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internalized fibrillar a-Syn spots for all three polymorphs (Figure 4C). Notably for all 

fibrillar polymorphs, 5-15% spots were found endocytosed, the remaining fraction was 

localized at the plasma membrane. This contrasts with fibrillar a-Syn polymorphs differential 

binding and suggests that the rate of endocytosis of various a-Syn polymorphs of similar 

length is independent from their intrinsic structures in agreement with previous observations 

(Flavin et al, 2017).            

 

Differential seeding by fibrillar a-Syn polymorphs in primary neuronal cultures 

To determine whether the differential binding of distinct fibrillar a-Syn polymorphs reflects 

in their seeding propensity, we assessed quantitatively the aggregation of endogenous a-Syn 

using mature primary neuronal cultures. Hippocampal neurons at DIV 14, when synapses and 

spines (Ivenshitz & Segal, 2010) are formed, were exposed to the three fibrillar a-Syn 

polymorphs that bind best to neurons, e.g. Fibrils, Ribbons and Fibrils-91 for 15min (250nM). 

At DIV 21, cells were fixed and immunolabeled for pS129-a-Syn using 81A antibody 

(Figure 5A). Few processes (nearly 3-5 on an 18-mm cover-slip with 100,000 cells plated) 

were pS129-a-Syn positive after exposure of neurons to the polymorphs Fibrils (Figure 5B-

C). The number of pS129-a-Syn positive processes was significantly larger upon exposure of 

neurons to the polymorph Ribbons and even larger upon exposure to the polymorph Fibrils-91 

(Figure 5B-C). The pS129-a-Syn we detected is of endogenous nature as similar results were 

obtained with exogenous fibrillar polymorphs made of an a-Syn version (a-Syn S129A) that 

cannot be phosphorylated on Serine residue 129 (Supplementary Figure 2). As expected, 

pS129-a-Syn immunoreactivities were located within axons (Figure 5D), where endogenous 

a-Syn is expressed (Unni et al, 2010). The autophagosome marker p62/Sequestosome-1 co-

localized with pS129-a-Syn bundles within the cell body (Figure 5E) but not with those in 

the axons (Figure 5E, arrows). pS129-a-Syn bundles within the cell body also co-localized 

with ubiquitin (Figure 5F). To determine whether seeding affects the integrity of neurons in 

primary cultures, neurons were stained with anti-Homer antibodies and the density of 

synapses was quantified. A slight reduction in Homer-positive synapses was observed in 

neurons where endogenous a-Syn was seeded by Fibrils-91 (Supplementary Figure 3A). 

 

1%-Sarkosyl extract was prepared from seeded neurons and analyzed on 12% SDS-PAGE gel 

without a stacking layer. Western-blot analysis revealed pS129-a-Syn immunoreactivity for 
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Ribbons and Fibrils-91 polymorphs (Figure 5G, left). Mice specific a-Syn detected 

monomeric (all conditions) as well as aggregated a-Syn (Ribbons and Fibrils-91 conditions) 

(Figure 5G, middle). Surprisingly, the immunoreactivity for Fibrils-91 was not higher than 

that of Ribbons as anticipated. This could be due to differential turnover of pS129-a-Syn 

aggregates seeded by Fibrils, Fibrils-91 and Ribbons. We conclude from these observations 

that a-Syn fibrillar polymorphs binding to neurons is key for seeding endogenous a-Syn. 

Indeed, the fibrillar polymorph that bound the best within 1h (Figure 2) seeded most after 1 

week (Figure 5).  

 

Seeded pS129-a-Syn aggregates are composed of multiple elongated intertwined 

structures 

We performed STORM imaging to visualize seeded pS129-a-Syn at higher resolution to 

determine whether they exhibit different macromolecular characteristics. Aggregated axonal 

pS129-a-Syn exhibited multiple microscopic elongated structures irrespective of the fibrillar 

polymorphs the neurons were exposed to (Figure 6A-C). The thickness of the elongated 

structures was within the range 30-40nm. We next assessed the time course of these elongated 

structures formation using the polymorph Fibrils-91, that yields the largest amount of 

pathology. Aggregated axonal pS129-a-Syn formation was imaged by STORM after 

exposure of primary neurons to fibrillar polymorphs for 2, 3 and 6 days (Figure 6D). The 

elongated structures appear as early as 2 days’ post-exposure. They are fewer in number at 2 

(Figure 6D, top panel) than 3 (Figure 6D, middle panel) and 6 (Figure 6D, bottom panel) 

days post-exposure. Quantification confirms that the number of pS129-a-Syn molecules 

(detection events) within the aggregates (Figure 6E) and the area occupied by aggregates 

(Figure 6F) increases from day 2 to 6.  STORM imaging also revealed a time-dependent 

thickening of those elongated structures with the appearance of bundles (Figure 6D, bottom 

row).  

 

Differential a-Syn fibrillar polymorphs binding and seeding in organotypic slice 

cultures  

To determine whether fibrillar a-Syn polymorphs binding to neurons and seeding in vivo 

mirrors the observations we report using primary neuronal culture, we developed an ex vivo 

organotypic hippocampal slices model. Slices, maintained for 2-weeks after plating were 

exposed for 15min to the fibrillar polymorphs Fibrils, Ribbons and Fibrils-91 labeled with 
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ATTO-550 (0.75µM). The different fibrillar a-Syn polymorphs bound to all the available 

surface of organotypic slices (Figure 7A). As for primary neuronal cultures, the polymorph 

Fibrils bound the least while the polymorph Fibrils-91 bound the most (Figure 7A-B). 

Seeding of endogenous a-Syn by the different fibrillar polymorphs was next assessed. The 

slices were fixed 4, 7 or 14 days’ post-exposure to exogenous fibrillar a-Syn polymorphs 

(Figure 7C-E) and aggregated a-Syn was detected using pS129-a-Syn immunolabeling with 

the mouse monoclonal antibody 81A (Figure 7, green). Processes immunopositive for pS129-

a-Syn were visible as early as 4 days after exposure to the polymorph Fibrils 91, not to the 

other fibrillar polymorphs (Figure 7D-E). At day 7, few pS129-a-Syn positive processes 

were detected in slices exposed to the polymorphs Fibrils and Ribbons (Figure 7D-E). By 

day 14, slices exposed to Ribbons exhibited a larger number of pS129-a-Syn positive 

processes than those exposed to Fibrils albeit less than those exposed to Fibrils-91 (Figure 

7D-E). No hippocampal region specificity was observed. As for the primary neuronal 

cultures, pS129-a-Syn aggregates are made from the endogenous a-Syn, as similar results 

were obtained with exogenous fibrillar polymorphs made of an a-Syn version (a-Syn S129A) 

that cannot be phosphorylated on Serine residue 129 (Supplementary Figure 4). The residual 

fluorescence of exogenous fibrillar a-Syn polymorphs were also assessed on day 4, 7 and 14 

(Figure 7F). A time-dependent decrease, demonstrating clearance/degradation of exogenous 

fibrillar a-Syn polymorphs was observed.    

 

Loosely packed aggregated bundles of endogenous pS129-a-Syn (Figure 7G-H, green) were 

observed in neurons cell body (Figure 7G, grey) either frequently or occasionally upon 

exposure of the slices to the fibrillar polymorphs Fibrils-91 or Ribbons, respectively. The 

extent of pS129-a-Syn aggregation was very low (Figure 7E) in slices exposed to the 

polymorph Fibrils, and no aggregated bundles were seen in the experimental time frame. 

These structures stained positive for autophagosome marker p62/Sequestosome-1 (Figure 

7H, red). Notably, p62 only co-localized with cytosolic bundled aggregates, but not individual 

processes (Figure 7H, arrows) as observed in primary cultures (Figure 5E).  

 

The dependence of seeding on the concentration of exogenous fibrillar a-Syn polymorphs 

was next assessed. For all three fibrillar polymorphs, a significant increase in the amount of 

pS129-a-Syn labeling was observed upon increasing seeds concentration by two-fold (Figure 
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7I). The increase in the median values was 100.5%, 621.2%, and 73.4%, for the fibrillar 

polymorphs Fibrils, Ribbons and Fibrils-91, respectively (Figure 7J). 

  

To determine whether seeding affects neuronal integrity within the organotypic slices, the 

slices were stained with anti-Homer antibodies and the density of synapses was quantified 

after seeding. No reduction in Homer-positive synapses was observed (Supplementary 

Figure 3B). Additionally, no observable difference in neuronal labeling was observed 1-week 

after seeding with the different fibrillar polymorphs (Supplementary Figure 5). We conclude 

from these observations that distinct fibrillar a-Syn polymorphs bind and trigger the 

aggregation of endogenous a-Syn to different extents ex vivo. We further conclude that they 

do so in a concentration-dependent manner within the concentration range we explored.  

 

We also assessed the localization of p129-a-Syn relative to oligodendrocytes, and the impact 

of microglia depletion from the organotypic slices on p129-a-Syn deposits. We found no 

p129-a-Syn deposits in Olig2 positive cells for slices exposed to Fibrils/Fibrils-91 

polymorphs. For Ribbons, we did observe occasional p129-a-Syn reactivity within Olig2-

positive oligodendrocytes (Supplementary Figure 6). As the exposed surfaces of 

organotypic slices are known to be enriched in microglia we depleted completely those cells 

by colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397 (Elmore et al, 2014). 

This did not alter p129-a-Syn immunoreactivity demonstrating that microglia do not affect 

seeding in neurons in our setup (Supplementary Figure 7).  

 

Differential re-distribution of synaptic a3-NKA/GluA2-AMPA/GluN2B-NMDA in 

primary neurons exposed to a-Syn fibrillar polymorphs.  

We next assessed the distribution of key synaptic components in seeded neurons by 

immunohistochemistry. Exposure was performed on DIV 14 for 15min and the cells were 

fixed on DIV 21 as above. No synaptic morphological changes were observed within the 

experimental time frame we used in agreement with previous observations (Shrivastava et al, 

2015). Dual-detection was performed for a3-subunit of Na+/K+-ATPase (a3-NKA) (Figure 

8A-B), GluA1-subunit of AMPA receptors (Figure 8F-G), GluA2-subunit of AMPA 

receptors (Figure 8C-D), GluN2B-subunit of NMDA receptors (Figure 8E-F), or 

metabotropic glutamate receptor 5 (mGluR5) (Figure 8H-I) along with Homer or PSD95 to 

identify excitatory synapses. Increased a3-NKA, GluA2-AMPA and GluN2B-NMDA but not 
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GluA1-AMPA receptor or mGluR5 at synapses was observed for neurons exposed to a-Syn 

fibrillar polymorph Fibrils (Figure 8). Neurons exposed to a-Syn polymorph Fibrils-91 

exhibited increased synaptic clustering of a3-NKA but not GluA2-AMPA GluN2B-NMDA, 

GluA1-AMPA receptors or mGluR5 (Figure 8). In contrast, exposure of neurons to a-Syn 

fibrillar polymorph Ribbons did not lead to a change in the synaptic distribution of any of the 

proteins or receptors we examined (Figure 9). Our measurements demonstrate that a-Syn 

fibrillar polymorphs Fibrils and Fibrils-91 but not Ribbons alter excitatory synaptic receptors 

composition. We conclude from these observations that distinct a-Syn fibrillar polymorphs 

differentially redistribute key synaptic components in seeded neurons likely due to 

homeostatic dysregulation. 

 

Alteration in network activity in primary neurons seeded with fibrillar a-Syn 

polymorphs 

We next assessed the impact of fibrillar a-Syn polymorphs seeding on spontaneous neuronal 

activity using Multi-Electrode Array (MEA) recordings. Primary neurons were grown on 120 

electrodes MEA plates and their activity was sampled at 10 kHz. To account for the inherent 

differences in network development between cultures, we recorded spontaneous neuronal 

activity on DIV 14 (2h before exposure to a-Syn fibrillar polymorphs) and on DIV 21 (1-

week after exposure). Raster plots show the network activity in each MEA where each row 

represents the spiking activity around individual electrode (Figure 9A-D). As evident from 

the raster plots, the most significant decrease in neuronal spiking rate was observed in Fibrils-

seeded neurons (Figure 9B, 9E). Neurons seeded with the polymorphs Ribbons and Fibrils-

91 exhibit no or weak reduction in neuronal activity (Figure 9). This observation together 

with the finding that neurons exposed to the polymorph Fibrils exhibit the lowest pS129-a-

Syn load (Figure 5C) and the strongest re-distribution of synaptic receptor (Figure 8B, D 

and F) suggest that neuronal network activity is most affected by the polymorph Fibrils.  
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Discussion 

We and others previously showed that mega-Dalton fibrillar a-Syn assemblies propagate 

from cell to cell (Rey et al, 2016; Hansen et al, 2011; Luk et al, 2012; Freundt et al, 2012; 

Peelaerts et al, 2015; Brahic et al, 2016). This is consistent with the hypothesis made by 

Braak for the spread of a pathogen within the central nervous system via neuroanatomical 

connections in Parkinson’s disease (Braak et al, 2003). We also established that exogenous 

fibrillar assemblies made of wild type a-Syn with distinct structural properties trigger 

pathological phenotypes characteristic of PD and MSA and imprint their structural 

characteristics to the monomeric a-Syn they recruit (Bousset et al, 2013; Peelaerts et al, 

2015). This suggests a structure-pathology relationship. We demonstrate here that distinct WT 

a-Syn fibrillar polymorphs bind to neurons with different efficiencies. We show that the 

binding, take-up and seeding of distinct exogenous a-Syn fibrillar polymorphs alters synaptic 

NMDA/AMPA/a3-NKA distribution to different extents. We bring evidence for a tight 

relationship between binding and seeding efficiencies in in vitro and an ex vivo model of 

synucleinopathy. Indeed, we show that distinct exogenous a-Syn fibrillar polymorphs trigger 

the aggregation of endogenous monomeric a-Syn to different extents. This indicates that the 

binding of exogenous fibrillar a-Syn polymorphs to neurons is key for take-up and 

amplification by seeding. Our findings further establish the function of the plasma membrane 

as a chemical reactor favoring molecular interactions and the formation of protein clusters by 

restricting a-Syn fibrillar polymorphs diffusion space from 3D to 2D (Shrivastava et al, 

2017).  

 

Differential fibrillar a-Syn polymorphs binding and clustering in primary and organotypic 

slice cultures  

Intra-cerebral injection of exogenous a-Syn assemblies is widely used to document their 

prion-like propagation and the accumulation of pS129-a-Syn (Mougenot et al, 2012; Hansen 

et al, 2011; Peelaerts et al, 2015; Guo et al, 2013; Luk et al, 2012). This experimental 

approach is nonetheless unsuitable to assess cellular mechanistic processes occurring within 

short timeframes (hours to days) following the interaction of exogenous a-Syn assemblies 

with a naïve neuron. Indeed, detectable levels of pathological pS129-a-Syn deposits appear 

only 2-3 months post-injection, after spine loss begins (Blumenstock et al, 2017). Primary 

neuronal culture models represent an alternative to in vivo studies (Volpicelli-Daley et al, 

2011). However, most existing protocols are based on the continuous exposure of 5-7-days 
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old neurons, that lack mature synapses (Ichikawa et al, 1993), to exogenous a-Syn 

assemblies. We therefore developed a robust model based on the use of 14-21 days old 

primary neurons and backed it up with 14-28 days-old organotypic slice cultures, where 

neuronal circuitry is maintained, to assess over minutes to 2 weeks the binding and seeding 

propensities of exogenous fibrillar a-Syn polymorphs and the consequences of these events. 

We chose hippocampal neurons despite the fact that the striatum and substantia nigra are 

affected most in vivo by Lewy pathology. This choice is justified by the fact that seeded 

aggregation of a-Syn in hippocampal neurons has been well documented (Volpicelli-Daley et 

al, 2011) and our recent finding that seeding in hippocampal neurons is more efficient than in 

cortical and striatal counterparts (Courte et al., in revision).   

 

 

The distinct intrinsic structures fibrillar a-Syn polymorphs exhibit are due to the different 

conformations monomeric a-Syn adopts within the fibrillar particles. This reflects in their 

shapes, morphology, proteolytic patterns, physical properties (Verasdonck et al, 2016; 

Bousset et al, 2013; Makky et al, 2016) and is expected to define their interactomes as distinct 

polymorphs must expose different amino acid stretches at their surfaces. Recent studies 

reported the interaction of exogenous fibrillar a-Syn with extracellularly exposed membrane 

proteins (Shrivastava et al, 2015; Holmes et al, 2013). The recent cryo-electron microscopy 

structure for the polymorph Fibrils reveals indeed what amino acid stretches and side chains 

are exposed to the solvent (Guerrero-Ferreira et al, 2019). The amino acid stretches that 

define the interactome of the polymorph Fibrils we use here differ from those reported to be 

exposed to the solvent in fibrillar polymorphs generated by others (Li et al, 2018a; Rodriguez 

et al, 2015; Tuttle et al, 2016; Li et al, 2018b). Despite the fact that the amino acid stretches 

the distinct fibrillar polymorphs we use here, with one exception, are unknown, we know they 

differ as the fibrillar polymorphs amyloid core are unlike (Bousset et al, 2013; Verasdonck et 

al, 2016). We demonstrate here that a-Syn polymorphs surfaces indeed define their functional 

properties. They bind differentially to neuronal plasma membranes, cluster and alter synaptic 

a3-NKA, NMDA and AMPA receptors distribution to different extents, minutes to hours 

after binding and 7 days later on when uptake and seeding of endogenous a-Syn has occurred.  

 

Differential fibrillar a-Syn polymorphs seeding  
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Strain-dependent differential seeding is known for various amyloidogenic proteins such as 

scrapie-prions, a-Syn, tau and amyloid-beta (Aguzzi et al, 2007; Kaufman et al, 2016; Guo et 

al, 2013; Peelaerts et al, 2015). We demonstrate here a relationship between binding and 

seeding. The polymorphs that bind best, Fibrils-91, seed to the highest extent. Thus, the 

differential binding of distinct fibrillar a-Syn polymorphs appears key for their take-up, 

escape from the endo-lysosomal compartments (Flavin et al, 2017) and seeding within the 

cytosol of recipient neurons. As the distinct fibrillar a-Syn polymorphs were fragmented in 

order to have an average length of 40-50 nm compatible with endocytosis, differential take-up 

cannot account for the different seeding propensities we report. As the different polymorphs 

have different structures, as demonstrated by solid state NMR measurements (Bousset et al, 

2013; Verasdonck et al, 2016), they expose different amino acid stretches on their surfaces 

(Melki, 2018). Once taken up, distinct fibrillar polymorphs grow at very different rates as 

their different ends recruit monomeric a-Syn at rates highly dependent on the abundance of 

the conformation that can establish highly complementary interactions with their ends. 

Furthermore, as distinct a-Syn polymorphs expose on their sides different amino acid 

stretches, they resist clearance to different extents and interact differentially with partner 

molecules ranging from proteins to lipids. Taken together, the differential binding, growth 

rates and resistance of distinct fibrillar a-Syn polymorphs account for their differential 

accumulation within neurons. 

 

Interestingly, super-resolution imaging revealed that the endogenous, seeded, a-Syn 

aggregates have elongated structures (30-50nm width) that bundle over time into structures 

resembling Lewy neurites. Whether these structures are polymorph-specific and possess 

defined structures, remains unclear and cryo-electron microscopy may allow determining 

whether, in a manner similar to PolyQ inclusions, they consist of fibrils interacting with 

cellular endomembranes originating from the endoplasmic reticulum (Bäuerlein et al, 2017).  

 

Functional consequences of the differential interaction of fibrillar a-Syn polymorphs with 

neuronal membrane components 

Synapses are dynamic and they re-model in an activity and signaling dependent manner 

(Choquet & Triller, 2013). Differential re-distribution of synaptic membrane proteins, but not 

scaffolds (homer, PSD) was observed in a-Syn polymorphs seeded neurons. This suggest that 

the different polymorphs trigger different molecular signaling pathways.  Increased synaptic 



 16 

clustering of a3-NKA was observed upon exposure of neurons to the polymorphs Fibrils and 

Fibrils-91 but not Ribbons. The redistribution of this pump is deleterious as it prevents the 

extrusion of sodium ion out of neurons (Shrivastava et al, 2015, 2019). Therefore, it is likely 

that the polymorphs Fibrils and Fibrils-91 impact a neuron’s capacity to extrude sodium ions 

by forming aberrant clusters. Such aberrant clustering α3-NKA create regions within the 

plasma membrane with reduced local densities of α3-NKA (Shrivastava et al, 2018). 

  

We previously showed that a-Syn polymorph Fibrils do not interact directly with AMPA and 

NMDA receptors (Shrivastava et al, 2015). Nonetheless, this polymorph triggered increased 

synaptic accumulation of GluA2-subunit containing AMPA and GluN2B-subunit containing 

NMDA receptors. Thus, the re-distribution of AMPA/NMDA is most likely due to 

homeostatic dysregulation following perturbation of several signalling pathways (Choquet & 

Triller, 2013). The polymorph Fibrils-91 also triggered an increase in synaptic accumulation 

of GluA2-AMPA but not GluN2B-NMDA receptors. Fibrils and Fibrils-91-mediated 

glutamate receptors re-distribution at synapses should trigger an enhanced activity-evoked 

calcium influx and possibly synaptic impairment. No redistribution of those major synaptic 

components was observed upon exposure of neurons to the polymorph Ribbons. This suggests 

that the fibrillar polymorph Ribbons either affects a yet unknown pathway or target other 

neuronal cells (Peelaerts et al, 2015). Several pathogenic assemblies: a-Syn (Ferreira et al, 

2017), amyloid-β (Renner et al, 2010; Shrivastava et al, 2013; Um et al, 2013) and scrapie 

prions (Goniotaki et al, 2017) have been shown to interact with mGluR5 via PrPc. None of the 

fibrillar a-Syn polymorphs we used altered mGluR5 distribution.  

 

Neurons where a-Syn aggregation was seeded by Fibrils, but not Ribbons and Fibrils-91 

exhibited gross alteration in neuronal network activity without measurable alterations in 

synapses density. Neurons exposed to the polymorph Fibrils exhibit the lowest pS129-a-Syn 

load and the strongest re-distribution of synaptic receptor. Altogether, our findings suggest 

that neuronal network activity is most affected by the re-distribution of synaptic receptors 

without measurable alterations in synapses density upon exposure of naïve neurons to 

pathogenic a-Syn assemblies. This unexpected finding may indicate that synaptic dysfunction 

and network imbalance precedes the appearance of pathology. Contrarily, neurons where a-

Syn aggregation was seeded with Fibrils-91 displayed extensive pathology but no alteration in 

network activity. The latter neurons likely compensate for the loss of activity over time, but 
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fail to prevent cytosolic aggregation. These aggregates are potential source of “traffic-jams” 

within the cell where different cytosolic proteins and organelles get trapped.  

 

Altogether our results suggest a sequential deleterious scenario where the binding of distinct 

a-Syn fibrillar polymorphs to neuron plasma leads to differential redistribution of essential 

membrane proteins, synaptic remodeling and impaired neuronal activity. Following take-up, 

distinct a-Syn fibrillar polymorphs further trigger noxious changes with the differential 

seeded aggregation of endogenous a-Syn and the impact this has on normal cytosolic 

trafficking and mitochondrial function (Gribaudo et al., 2019; Valdinocci et al., 2019; 

Ordonez et al., 2018). This is of particular interest in a context where recent reports bring 

solid evidence for the existence of a-Syn polymorphs in the brain of patients who developed 

distinct synucleinopathies (Strohäker et al, 2019) and for their capacity to selectively target 

brain regions and cells types from the central nervous system (Lau et al, 2019; Rey et al., 

2019). Our results together with recent reports using patients-derived pathogenic a-Syn 

highlight the importance of targeting a-Syn aggregates prion-like propagation in therapeutic 

approaches to synucleinopathies. As for de novo generated a-Syn fibrillar polymorphs, the 

future assessment of patients-derived pathogenic a-Syn aggregates, amplified ex vivo or not, 

ability to differentially redistribute neuron membrane proteins, remodel synapses and seed the 

aggregation of a-Syn in neurons may bring novel insights into synucleinopathies.       

 

Overall, we demonstrate here that a-Syn polymorphs surfaces define their binding and 

seeding propensity with subsequent differential redistribution of partner proteins at synapses 

and consequences on neuronal network activity. These findings are consistent with the view 

that distinct synucleinopathies may result from the changes in neuronal membrane and 

cytosolic protein homeostasis different a-Syn polymorphs trigger.  
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Material and Methods 

Generation, labeling and characterization of fibrillar a-syn polymorphs 

The expression and purification of human wild-type (WT) α-Syn was performed as 

previously described (Ghee et al, 2005). A variant human α-Syn where Serine 129 residue 

was changed to Alanine (S129A α-Syn) was generated by site directed mutagenesis. This 

variant cannot be phosphorylated in neurons on S129, the main phosphorylation site for α-

Syn. S129A α-Syn was purified exactly as wild-type (WT) α-Syn. WT α-Syn or S129A α-

Syn was incubated in buffer A to obtain the fibrillar polymorph “Fibrils” (50 mM Tris–HCl, 

pH 7.5, 150 mM KCl), in buffer B for “Ribbons” (5 mM Tris–HCl, pH 7.5), in buffer C for 

“Fibrils-65” (20mM MES pH6,5, 150mM NaCl) and in buffer D for “Fibrils-91” (20mM 

KPO4 pH9.1), at 37°C under continuous shaking in an Eppendorf Thermomixer set at 600 

r.p.m for 4-7 days (Bousset et al, 2013; Makky et al, 2016). A truncated human α-Syn 

spanning residues 1-110 was generated by introducing 2 stop codons after residue 110 by site 

directed mutagenesis. This variant was purified exactly as full-length α-Syn and was 

assembled into fibrillar structures “Fibrils-110” in buffer A (50 mM Tris–HCl, pH 7.5, 150 

mM KCl). The fibrillar α-Syn polymorphs were centrifuged twice at 15,000 g for 10 min and 

re-suspended twice in PBS at 1,446g/L. All preformed assemblies were labeled with ATTO-

488 NHS-ester, ATTO-550 NHS-ester or ATTO-647N NHS-ester (Atto-Tec Gmbh # AD 

488-3, AD 550-35 and AD 647N-35, respectively) fluorophore following the manufacturer’s 

instructions and/or biotin using EZ-link Sulfo-NHS-Biotin (sulfosuccinimidobiotin, Perbio 

Science, UK) using a protein:dye/tag ratio of 1:2. The labeling reactions were arrested by 

addition of 1mM Tris pH 7.5. The unreacted fluorophore was removed by a final cycle of two 

centrifugations at 15,000 g for 10 min and resuspensions of the pellets in PBS. Mass-

spectrometry was used to quantify the number of incorporated ATTO or biotin molecules per 

α-Syn monomer within the fibrillar assemblies as previously described (Shrivastava et al, 

2019, 2015). This labelling protocol typically yields ≤ 1 ATTO or biotin molecules 

incorporated per α-Syn monomer on average (Supplementary Figure 8). The quality control 

of human recombinant monomeric WT or S129A α-Syn and the fibrillar polymorphs they 

generate and that of α-Syn 1-110 were carried out as previously described (Bousset et al, 

2013; Makky et al, 2016). The fibrillar polymorphs were fragmented by sonication for 20 min 

in 2-ml Eppendorf tubes in a Vial Tweeter powered by an ultrasonic processor UIS250v (250 

W, 2.4 kHz; Hielscher Ultrasonic, Teltow, Germany) to generate fibrillar particles with an 

average size 42-52 nm that are suitable for endocytosis.  
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For transmission electron microscopy, the assemblies were adsorbed on 200 mesh carbon 

coated electron microscopy grids and imaged after negative staining with 1% uranyl acetate 

before and after fragmentation using a Jeol 1400 electron microscope. For fibrillar 

polymorphs finger print analysis, we used degradation by proteinase K. Aliquots of fibrillar 

assemblies were removed before or after addition of proteinase K (3.8µg ml-1), denatured in 

boiling Laemmli buffer for 5 minutes at 90°C, subjected to SDS-PAGE on 12% 

polyacrylamide gels and stained by Coomassie coloration.  

 

Organotypic Slice Culture and protocol for seeding with fibrillar a-syn polymorphs 

Slice were cultured in MEM (ThermoFisher Scientific) medium supplemented with 20% heat-

inactivated horse serum (Eurobio), 2mM Glutamax 100 (ThermoFisher Scientific), 1mM 

CaCl2, 2mM MgSO4, 2mM MgCl2, 11mM d-Glucose, 5mM NaHCO3 (ThermoFisher 

Scientific), and 20mM Hepes (ThermoFisher Scientific) (Cantaut-Belarif et al, 2017). Prior to 

dissection, 6-wells dishes were prepared with 900µl of culture media with a millicell insert 

(30mm biopore PTFE membrane, type-CM, 0.4µm, Millipore). Hippocampi were dissected 

from P3–P5 C57BL/6 mice and kept on ice in PBS(1X) – Glucose (1X) solution. Hippocampi 

were sliced (400µm) using a McIllwain tissue chopper (Mickle Laboratory) and separated in 

the pre-warm culture medium. 4-6 slices were plated on Millicell inserts in each 6-well 

dishes. Slices were maintained for 28 days with medium changed twice a week. Exposure to 

a-syn fibrillar polymorphs was performed on day 14. Fibrillar a-syn polymorphs were diluted 

in fresh culture medium and applied on top of the slices for 15min, followed by 3-washes 

with culture medium. The millicells were then transferred to new 6-well dishes containing 

fresh medium. Microglial cells were depleted using colony-stimulating factor 1 receptor 

(CSF1R) inhibitor, PLX3397. The inhibitor was supplemented in the culture medium (10µM) 

starting from day 7, until the end of the experiment, i.e. day 28. Notably, by day 14, when 

fibrillar a-Syn exposure was performed, microglial cells were completely depleted.    

 

Exposure concentrations 

The fibrillar polymorphs concentration is expressed throughout the work as monomer-

equivalent concentration. The amount of aggregated a-Syn within all fibrillar polymorphs 

was determined by ultracentrifugation and measurement of the amount of monomeric a-Syn 

in the supernatant. The fibrillar assemblies were fragmented to the similar size (Figure 1A-
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B). In primary neurons, short-term experiments (binding and dynamics) were performed at 

50nM concentration. Seeding experiments were performed at 250nM (15min exposure, 

followed by wash) because no seeding was detected for Fibril-polymorph at 50nM 

concentration. For organotypic slices, seeding experiments were performed at 750nM and 

1500nM (15min exposure, followed by wash). Control conditions refer to 1X PBS buffer 

exposure.      

 

Primary Neuronal Culture and protocol for seeding with fibrillar a-syn polymorphs 

Primary neuronal culture was performed as described previously (Shrivastava et al, 2015, 

2013; Renner et al, 2010). Freshly dissociated (trypsin) hippocampi were plated (105 

cells/well in a 12-well dish containing 18-mm coverslip) in neuronal attachment media 

consisting of 10% horse serum (Eurobio), 1mM sodium pyruvate (ThermoFisher Scientific), 

2mM Glutamax-100X (ThermoFisher Scientific) and Penicillin/streptomycin (ThermoFisher 

Scientific) in MEM (ThermoFisher Scientific) for 3 h. The attachment medium was replaced 

and cells were maintained in serum-free Neurobasal medium (ThermoFisher Scientific) 

supplemented with B27 (GIBCO) and 2mM Glutamax-100X. Exposure to fibrillar a-syn 

polymorphs was performed at DIV14. Fibrillar a-syn polymorphs were diluted in fresh 

neurobasal medium. The “cell-conditioned neurobasal medium” was replaced with fibrillar a-

syn containing neurobasal medium for 15min, the former kept aside at 37°C. After 15 min 

exposure, fibrillar a-syn-containing medium was removed and the well was washed thrice. 

Lastly the cells were replenished with “cell-conditioned neurobasal medium” and transferred 

back to the incubator until DIV21. 

 

Immunolabeling, antibodies used and quantifications 

Immunolabeling was performed as per standard protocol. The antibodies are listed in the table 

below. For organotypic slices, staining was performed on free-floating sections. For this, 

slices were detached from Millicells followed by blocking (0.25% gelatin and 0.2% Triton X-

100 in 1X PBS) for 45 min. Slices were then incubated overnight with the appropriate 

primary antibodies diluted in 0.125% gelatin and 0.2% Triton-X-100 in 1X PBS. Following 3 

washes (20 min each), slices were incubated with secondary antibodies (1:1000, 3 hr). After 

washing for 2-3h, sections were mounted onto glass slides using Vectashield (Vector Labs). 

Images were acquired using a Leica confocal TCS SP8 microscope and processed using 

ImageJ, Metamorph (Molecular Devices) and Matlab. 
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For primary neurons, blocking (3% BSA in 1X PBS) was performed for 30 min post 

permeabilization (0.2% Triton X-100 in 3% BSA in 1X PBS, 10min). No permeabilization 

step was required for methanol-fixation. Cells were then incubated in appropriate primary 

antibodies diluted in 3% BSA in 1X PBS for 1h. Following 3 washes (10 min each), slices 

were incubated with secondary antibodies (1:400, 45min). After 3-washes (20min), sections 

were mounted onto glass slides using Vectashield (Vector Labs). Images were acquired using 

Leica Inverted Spinning Disk microscope (DM5000B, Coolsnap HQ2 camera, Cobolt lasers). 

 

 

Thresholding is based on wavelet based segmentation as previously described (Bannai et al, 

2015; Shrivastava et al, 2015; Renner et al, 2010; Shrivastava et al, 2013). Individual 

structures were identified (e.g. p129-a-Syn aggregates, receptor and synaptic clusters) to 

generate background free masks. The fluorescence intensity of the original images on top of 

these masks were then computed. For p129-a-Syn, the sum of “intensity of all structures” was 

Primary Antibody Host Supplier Fixation 
Protocol 

Dilution 

Organotypic Slices 
pS129-a-Syn (81A) Mouse Monoclonal Millipore 

MABN826 
 
 

4%PFA 
4°C 

45min 

1:1200 

p62/Sequestosome-1 Rabbit 
PolyclonalPolyclonal 

Proteintech  
55274-1-AP  

1:1000 

NeuN (Neurons) Mouse Monoclonal Millipore 
MAB377 

1:800 

Iba1 Rabbit Polyclonal Wako 1:1000 
Olig2 Rabbit Polyclonal Millipore 

AB9610 
1:500 

Primary Neurons 
pS129-a-Syn (81A) Mouse Monoclonal Millipore 

MABN826 
 
 
 
 
 
 

4%PFA 
RT 

10min 
 

1:1200 

p62/Sequestosome-1 Rabbit  
Polyclonal 

Abcam 
ab51253 

1:1000 

Tau (Axons) Rabbit  
Polyclonal 

Synaptic System 
314 003 

1:1200 

a3-Na+/K+-ATPase Mouse Monoclonal ThermoFisher MA3-
915 

1:800 

mGluR5 Rabbit  
Polyclonal 

Millipore 
AB5675 

1:1200 

vGluT1 Guinea Pig 
Polyclonal 

Millipore 
AB5905 

1:1000 

GluA1-AMPA Rabbit  
Polyclonal 

Synaptic System 
182 003 

 
 

Methanol 
-20°C 
10min 

1:1200 

GluA2-AMPA Rabbit  
Polyclonal 

Synaptic System 
182 103 

1:1200 

GluN2B-NMDA Mouse Monoclonal NeuroMab 
75-101 

1:200 
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calculated. Two color analysis: “Co-localization” is defined when there was an overlap 

between the thresholded clusters of two images. “Intensity of cluster” is defined as total 

fluorescence intensity per cluster. For each image the values of all clusters were averaged 

within the field.  

 

Endocytosis Assay 

In order to distinguish between cell surface and internalized spots, a-Syn fibrils were tagged 

with Biotin + ATTO488 dyes. Neuronal conditioned medium was removed (stored at 37°C) 

and replaced with fresh Neurobasal culture medium 15min before exposure. Live neurons 

were exposed with fibrillar polymorphs for 1h in incubator followed by 3-washes with pre-

warmed culture medium. The cells were allowed to recover (4h or 8h) or not (0h) in neuronal 

conditioned medium. At the end of each time point, cells were fixed using cold 4% PFA on 

ice to prevent membrane rupture due to fixation. Cell surface Biotin + ATTO488 were 

revealed using Streptavidin555 (1:1000, 10min) followed by extensive washes. Spots positive 

for Biotin- Streptavidin555 and ATTO488 are localized at the cell surface, while ATTO488 

only spots represent endocytosed spots. Quantification was performed as described in 

previous paragraph.       

 

Sarkosyl Extraction 

Neurons were plated on 10-cm dish and exposed to a-Syn polymorphs (250nM) on DIV14 

and harvested on DIV21. Cells were washed 1-time in ice-cold PBS (1X) and then scrapped 

scraped in 1ml 1XPBS. The cells were pelleted and 500µl extraction buffer was added. 

Extraction buffer was composed of 20 mM Tris-HCl, pH 7.5; 0.8 M NaCl, 1 mM EGTA; 10% 

[w/v] sucrose and 1% sarkosyl supplemented with protease (Roche) and phosphatase (Sigma) 

inhibitor cocktails as described recently(Gribaudo et al, 2019). The cell suspension was 

incubated at 37°C gently shaking at 300rpm for 30min and then centrifuged at 1000rpm for 

20min. The supernatant was collected and probed by western blotting. 12% gels without 

stacking layer were used. Following antibodies were used: p129-a-Syn (81A, Millipore / 

MABN826, 1:1000); Mouse specific a-Syn (D37A6, Cell Signaling / 4179S, 1:1000), 

Tubulin (DM1A, Abcam/ Ab7291, 1:2500). 

 

Stochastic Optical Reconstruction Microscopy (STORM) Imaging and Quantifications 
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STORM imaging was performed on exogenous fibrillar a-Syn polymorphs labeled with 

ATTO647N or on endogenous mouse p129-a-Syn inclusions labeled with mouse-monoclonal 

antibody (Primary antibody:81A, Secondary antibody: Alexa 647). Imaging was performed 

under reducing condition with buffer composed of PBS (pH 7.4), glucose (10%), β-

mercaptoethylamine (10 mM), glucose oxidase (0.5 mg/ml), and catalase (40 mg/ml), and 

deoxygenized with nitrogen (Shrivastava et al, 2015). A total of 20,000 (ATTO647N) or 

40,000 (Alexa647) frames were acquired. STORM imaging was carried out on an inverted 

Nikon Eclipse Ti microscope equipped with a 100X oil- immersion objective (N.A. 1.49 with 

a microscope-inbuilt 1.5X lens) using an Andor iXon EMCCD camera (image pixel size, 106 

nm). ATTO647N/Alexa647 were imaged using laser 639 nm (1 kW, used at 500 mW) for a 

50 ms exposure time. Single molecules were detected and rendered with a pointing accuracy 

of 10nm (Gausssian radius, 10nm) using Matlab. All the quantifications were performed using 

open-source softwares, ImageJ and Lama (Malkusch & Heilemann, 2016), the latter was used 

to compute DBSCAN algorithm (Ester et al, 1996). DBSCAN allows the identification of 

clusters in large spatial data sets by looking at the local density of points. Here, after 

correcting for multiple detections in consecutive frames, ‘density threshold’ of minimum 20 

detections within a radial distance of 20 nm was used. 

 

For SPT-STORM, neurons were exposed to PA-JF-646 (Photoactivable Janelia Farm 647) 

labeled a-Syn polymorphs (50nM). Imaging was performed within 10-min of exposure to 

study the dynamic properties of fibrillar assemblies at the membrane. These photoactivable 

(off to on) dyes are excellent for live-cell imaging, especially in SPT experiments where they 

enable longer observations and better localization of individual fluorescent conjugates 

(Grimm et al, 2016). Exposure and recording were performed in Krebs recording medium 

(110 mM NaCl, 4 mM KCl, 1.5 mM CaCl2, 1.2 mM MgSO4, 25 mM NaHCO3, 1 mM 

NaH2PO4, 20 mM HEPES, 10 mM Glucose, pH 7.4). Imaging was performed as recently 

described(Shrivastava et al, 2019). PA-JF646 were acquired at 50 Hz (20 ms) using laser 647 

nm (0.5 kW, used at 200-300 mW) while pulse-activating with 405 nm laser (100 mW power, 

used at 2–5 mW) for 6,000 frames.    

 
Hidden Markov model  

The most probable model of diffusive states was inferred by a modified version of vbSPT 

analysis software (Persson et al, 2013), which applies a Bayesian treatment of hidden Markov 

models. This approach was recently implemented in our work to track membrane proteins 
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(Shrivastava et al, 2019). The number of trajectories analyzed were (each experiment): 

Fibrils: 2982, 21202, 12041; Ribbons: 17322, 26941, 33225; Fibril-91: 11237, 12694, 45426. 

We assume that a-Syn single molecules remain in a steady-state within the short experimental 

observation time. This takes into account i) binding of new molecules to the membrane ii) 

cluster formation iii) dissociation of single molecules from clusters and targeting to 

endocytosis compartments. The analysis vbSPT method uses a maximum-evidence criterion 

to determine the most probable number of diffusive states from each set of observed data (n=3 

experiments). The script was let to freely choose between models with one, two or three 

possible states. Only the position coordinates of the molecules in two successive time points 

were taken into account to construct the model. Based on our previous data (Shrivastava et al, 

2019), prior values of D and dwell time were 0.1 µm2/s and 50 frames (1,000 ms), 

respectively. The minimum length of trajectory was 2.  

 
Multi Electrode Array Recordings 
 

Primary neuronal cultures were grown on 120 electrodes MEA plates (120MEA30/10iR-ITO, 

MultiChannel Systems, Reutlingen, Germany) at a density of 240,000 cells/plate. Neuronal 

activity was sampled at 10 kHz using MultiChannel Experimenter software and MEA2100-

System (MultiChannel Systems, Reutlingen, Germany). Cells were kept in their culture 

medium during recordings. In these conditions, cultured neurons maintain the same network 

activity for at least 60 min. To avoid movement-induced artefacts, recordings were started 15 

min after translocation of MEAs from incubator to the recording stage. Analysis was carried 

out on 10 min long sessions for each plate. Spikes, considered as point processes, were 

detected ( ± 6 SDs) in high-pass (300 Hz) filtered records. MEA plates were immediately put 

back in the incubator after recording. Channels with the mean firing rate  < 0.1 Hz were 

considered as non-spiking and discarded from further analyses. Signal processing and all 

analyses of neuronal activity were carried out using homemade software in Matlab (The 

Mathworks). 

 

In order to compare the effect of treatments on network activity, the activity of 14 DIV 

cultures grown on MEA was recorded as above. After recording, cultures were let to recover 

at least 2h in the incubator before application of fibrillar polymorphs.  One week later, MEA 

plates were recorded again. Results are expressed as the normalized ratio of change between 
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14 DIV and 21 DIV to account for the inherent differences in network development between 

MEAs. 

 
Graphs and Statistics 

Image analysis were performed on ImageJ, Matlab. Graphs were plotted and statistics 

performed on GraphPad Prism software. All plots show the distribution of values as Box-plot 

and detailed within the legend. Dot plots shows the averaged value per experiment. When 

both box-plot and dot-plot are shown, the statistical test is performed on the box-plot data. 

Non-parametric Mann-Whitney has been performed to compare the distribution and tests 

whether the median of two groups are independent of each other.  



 26 

 

Author Contribution 

Conceived the project, Designed experiment: ANS, RM 

Performed Experiments and Analyzed Data, ANS, LB, MR, JS, VR 

Provided Resources, Funding and Equipment: RM, AT  

Wrote the manuscript, ANS, AT, RM 

 

Competing Interests 

The authors declare no conflict of interest. A.N.S. is currently an employee at U.C.B. 

Biopharma SRL. 

 

Fundings 

The authors thank Tracy Bellande and Margaux Petay for expert technical assistance. This 

work was supported by Grants from the EC Joint Programme on Neurodegenerative Diseases 

(TransPathND, ANR-17-JPCD-0002-02), the Centre National de la Recherche Scientifique, 

The Fondation pour la Recherche Médicale (Contract DEQ 20160334896), a “Coup d’Elan a 

la Recherche Francaise” award from Fondation Bettencourt-Schueller, the Fondation Simone 

et Cino Del Duca of the Institut de France, the European Union’s Horizon 2020 research and 

innovation programme and EFPIA Innovative Medicines Initiative 2 under grant agreements 

No. 116060 (IMPRiND) and No. 821522 (PD-MitoQUANT), an ERC advanced research 

grant (PLASLTINHIB), and the ‘‘Investissements d’Avenir’’ program (ANR-10-LABX-54 

MEMO LIFE and ANR-11-IDEX-0001-02 PSL Research University). This work benefited 

from the JiePie research award attributed to RM, the electron microscopy facility Imagerie-

Gif and the proteomic facility SICaPS. The opinions expressed and arguments employed 

herein do not necessarily reflect the official views of any funding body. We thank Luke D 

Lavis for providing Janelia Farm dyes and Maria J Pinto for assistance in slice culture work.  

 

 
 
 
 
 
 
 
 
 
 



 27 

References 
 
Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin J-C, Melki R & Zurzolo C (2016) 

Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35: 

2120–2138 

Aguzzi A, Heikenwalder M & Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat. Rev. 

Mol. Cell Biol. 8: 552–61 

Bannai H, Niwa F, Sherwood MW, Shrivastava AN, Arizono M, Miyamoto A, Sugiura K, Lévi S, Triller A & 

Mikoshiba K (2015) Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium. 

Cell Rep. 13: 2768–80 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26711343 

Bäuerlein FJB, Saha I, Mishra A, Kalemanov M, Martínez-Sánchez A, Klein R, Dudanova I, Hipp MS, Hartl 

FU, Baumeister W & Fernández-Busnadiego R (2017) In Situ Architecture and Cellular Interactions of 

PolyQ Inclusions. Cell 171: 179-187.e10 

Blumenstock S, Rodrigues EF, Peters F, Blazquez-Llorca L, Schmidt F, Giese A & Herms J (2017) Seeding and 

transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO 

Mol. Med. 9: 716–731 

Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, 

Meier BH & Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nat. 

Commun. 4: 2575 

Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH & Braak E (2003) Staging of brain pathology 

related to sporadic Parkinson’s disease. Neurobiol. Aging 24: 197–211 

Brahic M, Bousset L, Bieri G, Melki R & Gitler AD (2016) Axonal transport and secretion of fibrillar forms of 

α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 131: 539–48 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/26820848 

Brundin P, Melki R & Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative 

diseases. Nat. Rev. Mol. Cell Biol. 11: 301–7 

Cantaut-Belarif Y, Antri M, Pizzarelli R, Colasse S, Vaccari I, Soares S, Renner M, Dallel R, Triller A & Bessis 

A (2017) Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the 

spinal cord. J. Cell Biol. 216: 2979–2989 

Choquet D & Triller A (2013) The Dynamic Synapse. Neuron 80: 691–703 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/24183020 [Accessed December 8, 2019] 

Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen 

H, West BL & Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia 

viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82: 380–397 

Ester M, Kriegel H-P, Sander J & Xu X (1996) A density-based algorithm for discovering clusters in large 

spatial databases with noise. In KDD’96 Proceedings of the Second International Conference on 

Knowledge Discovery and Data Mining pp 226–231. Portland, Oregon 

Falsig J, Sonati T, Herrmann US, Saban D, Li B, Arroyo K, Ballmer B, Liberski PP & Aguzzi A (2012) Prion 

pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog. 8: e1002985 

Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szegö ÉM, Marques-Morgado I, 



 28 

Vaz SH, Rhee JS, Schmitz M, Zerr I, Lopes LV. & Outeiro TF. (2017) α-synuclein interacts with PrPC to 

induce cognitive impairment through mGluR5 and NMDAR2B. Nat. Neurosci. 20: 1569–1579 

Flavin WP, Bousset L, Green ZC, Chu Y, Skarpathiotis S, Chaney MJ, Kordower JH, Melki R & Campbell EM 

(2017) Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta 

Neuropathol. 134: 629–653 

Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K & 

Brahic M (2012) Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. 

Neurol. 72: 517–24 

Ghee M, Melki R, Michot N & Mallet J (2005) PA700, the regulatory complex of the 26S proteasome, interferes 

with alpha-synuclein assembly. FEBS J. 272: 4023–33 

Goniotaki D, Lakkaraju AKK, Shrivastava AN, Bakirci P, Sorce S, Senatore A, Marpakwar R, Hornemann S, 

Gasparini F, Triller A & Aguzzi A (2017) Inhibition of group-I metabotropic glutamate receptors protects 

against prion toxicity. PLoS Pathog. 13: 1–29 

Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, Peyrin J-M & Perrier AL (2019) Propagation of α-

Synuclein Strains within Human Reconstructed Neuronal Network. Stem cell reports 12: 230–244 

Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, 

Lionnet T & Lavis LD (2016) Bright photoactivatable fluorophores for single-molecule imaging. Nat. 

Methods 13: 985–988 

Guerrero-Ferreira R, Taylor NM, Arteni A-A, Kumari P, Mona D, Ringler P, Britschgi M, Lauer ME, Makky A, 

Verasdonck J, Riek R, Melki R, Meier BH, Böckmann A, Bousset L & Stahlberg H (2019) Two new 

polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. 

Elife 8: Available at: http://www.ncbi.nlm.nih.gov/pubmed/31815671 [Accessed December 18, 2019] 

Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ & 

Lee VMY (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154: 

103–17 

Hansen C, Angot E, Bergström A, Steiner J a, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li J-Y 

& Brundin P (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds 

aggregation in cultured human cells. J. Clin. Invest. 121: 715–25 

Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi 

DP, Kotzbauer PT, Miller TM, Papy-Garcia D & Diamond MI (2013) Heparan sulfate proteoglycans 

mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. 110: E3138-

3147 

Ichikawa M, Muramoto K, Kobayashi K, Kawahara M & Kuroda Y (1993) Formation and maturation of 

synapses in primary cultures of rat cerebral cortical cells: an electron microscopic study. Neurosci. Res. 

16: 95–103 

Ivenshitz M & Segal M (2010) Neuronal density determines network connectivity and spontaneous activity in 

cultured hippocampus. J. Neurophysiol. 104: 1052–60 

Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J, Sharma AM, Miller TM & Diamond 

MI (2016) Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional 

Vulnerability In Vivo. Neuron 92: 796–812 



 29 

Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC, Stuart E, Menon S, Visanji NP, Meisl G, 

Faidi R, Marano MM, Schmitt-Ulms C, Wang Z, Fraser PE, Tandon A, Hyman BT, Wille H, Ingelsson M, 

Klenerman D, et al (2019) α-Synuclein strains target distinct brain regions and cell types. Nat. Neurosci. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/31792467 [Accessed December 18, 2019] 

Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, 

Zhou ZH & Jiang L (2018a) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common 

structural kernel. Nat. Commun. 9: 3609 Available at: http://www.nature.com/articles/s41467-018-05971-2 

[Accessed December 18, 2019] 

Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, Zhang X, Li D, Liu C & Li X (2018b) Amyloid fibril structure of α-

synuclein determined by cryo-electron microscopy. Cell Res. 28: 897–903 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/30065316 [Accessed December 18, 2019] 

Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ & Lee VM-Y (2012) Pathological  -Synuclein 

Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science (80-. ). 338: 

949–953 

Makky A, Bousset L, Polesel-Maris J & Melki R (2016) Nanomechanical properties of distinct fibrillar 

polymorphs of the protein α-synuclein. Sci. Rep. 6: 37970 

Malkusch S & Heilemann M (2016) Extracting quantitative information from single-molecule super-resolution 

imaging data with LAMA – LocAlization Microscopy Analyzer. Sci. Rep. 6: 34486 

Melki R (2015) Role of different alpha-synuclein strains in synucleinopathies, similarities with other 

neurodegenerative diseases. J. Parkinsons. Dis. 5: 217–227 

Melki R (2017) The multitude of therapeutic targets in neurodegenerative proteinopathies. In Disease-Modifying 

Targets in Neurodegenerative Disorders pp 1–20. Elsevier 

Melki R (2018) How the shapes of seeds can influence pathology. Neurobiol. Dis. 109: 201–208 

Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S & Baron T (2012) Prion-

like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33: 2225–8 

Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R & 

Baekelandt V (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic 

administration. Nature 522: 340–4 

Persson F, Lindén M, Unoson C & Elf J (2013) Extracting intracellular diffusive states and transition rates from 

single-molecule tracking data. Nat. Methods 10: 265–269 

Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, 

Kravitz SN, Geschwind DH, Glidden D V., Halliday GM, Middleton LT, Gentleman SM, Grinberg LT & 

Giles K (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with 

parkinsonism. Proc. Natl. Acad. Sci. 112: E5308–E5317 

Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL & Triller A (2010) Deleterious Effects of 

Amyloid β Oligomers Acting as an Extracellular Scaffold for mGluR5. Neuron 66: 739–754 

Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VM-Y & Brundin P (2016) Widespread 

transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s 

disease. J. Exp. Med. 213: 1759–1778 

Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, 



 30 

Zhang M, Jiang L, Arbing MA, Nannenga BL, Hattne J, Whitelegge J, Brewster AS, Messerschmidt M, 

Boutet S, Sauter NK, Gonen T, et al (2015) Structure of the toxic core of α-synuclein from invisible 

crystals. Nature 525: 486–90 Available at: http://www.nature.com/articles/nature15368 [Accessed 

December 18, 2019] 

Shrivastava AN, Aperia A, Melki R & Triller A (2017) Physico-Pathologic Mechanisms Involved in 

Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions. Neuron 95: 33–50 Available at: 

http://dx.doi.org/10.1016/j.neuron.2017.05.026 

Shrivastava AN, Kowalewski JM, Renner M, Bousset L, Koulakoff A, Melki R, Giaume C & Triller A (2013) β-

amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 

receptors. Glia 61: 1673–86 Available at: http://www.ncbi.nlm.nih.gov/pubmed/23922225 

Shrivastava AN, Redeker V, Fritz N, Pieri L, Almeida LG, Spolidoro M, Liebmann T, Bousset L, Renner M, 

Léna C, Aperia A, Melki R & Triller A (2015) α-synuclein assemblies sequester neuronal α3-Na+/K+-

ATPase and impair Na+ gradient. EMBO J. 34: 2408–23 Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/26323479 

Shrivastava AN, Redeker V, Pieri L, Bousset L, Renner M, Madiona K, Mailhes-Hamon C, Coens A, Buée L, 

Hantraye P, Triller A & Melki R (2019) Clustering of Tau fibrils impairs the synaptic composition of α3-

Na+/K+-ATPase and AMPA receptors. EMBO J.: e99871 

Shrivastava AN, Triller A & Melki R (2018) Cell biology and dynamics of Neuronal Na+/K+-ATPase in health 

and diseases. Neuropharmacology 13: e1006733 Available at: 

https://doi.org/10.1016/j.neuropharm.2018.12.008 

Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann S, Yaganoglu S, Li B, Herrmann US, 

Wieland B, Swayampakula M, Rahman MH, Das D, Kav N, Riek R, Liberski PP, James MNG & Aguzzi 

A (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 

501: 102–106 

Strohäker T, Jung BC, Liou S, Fernandez CO, Riedel D, Becker S, Halliday GM, Bennati M, Kim WS, Lee S & 

Zweckstetter M (2019) Structural heterogeneity of α -synuclein fi brils ampli fi ed from patient brain 

extracts. : 1–12 

Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, Courtney JM, Kim JK, Barclay 

AM, Kendall A, Wan W, Stubbs G, Schwieters CD, Lee VMY, George JM & Rienstra CM (2016) Solid-

state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23: 

409–15 Available at: http://www.nature.com/articles/nsmb.3194 [Accessed December 18, 2019] 

Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, 

Koleske AJ, Gunther EC, Nygaard HB & Strittmatter SM (2013) Metabotropic Glutamate Receptor 5 Is a 

Coreceptor for Alzheimer A b Oligomer Bound to Cellular Prion Protein. Neuron 79: 887–902 

Unni VK, Weissman T a, Rockenstein E, Masliah E, McLean PJ & Hyman BT (2010) In vivo imaging of alpha-

synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment 

mobility. PLoS One 5: e10589 

Verasdonck J, Bousset L, Gath J, Melki R, Böckmann A & Meier BH (2016) Further exploration of the 

conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph. Biomol. 

NMR Assign. 10: 5–12 



 31 

Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ & Lee 

VM-Y (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction 

and neuron death. Neuron 72: 57–71 

Wong YC & Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. 

Nat. Med. 23: 1–13 

 
Rey NL, Bousset L, George S, Madaj Z, Meyerdirk L, Schulz E, Steiner JA, Melki R, & Brundin P (in press) α-

Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the 

olfactory bulb. Acta Neuropathol Commun. 

 

Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, Peyrin JM, & Perrier AL (2019) Propagation of α-

Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports. 12: 230-44.  

 

Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, & Pountney DL (2019) Intracellular and 

Intercellular Mitochondrial Dynamics in Parkinson's Disease. Front Neurosci. 13: 930.  

 

Ordonez DG, Lee MK, & Feany MB (2018) α-synuclein Induces Mitochondrial Dysfunction through Spectrin 

and the Actin Cytoskeleton. i 7: 108-24. 
 

 

 



 32 

 
Figure 1. Characterization of five fibrillar a-Syn polymorphs.  
 
(A) Transmission electron micrographs of negatively-stained a-Syn fibrillar polymorphs 
Fibrils, Ribbons, Fibrils-91, Fibrils-65 and Fibrils-110 before (upper lane) and after 
fragmentation (lower lane).  
 
(B) Length distribution of the fragmented fibrillar polymorphs. The number (n) of fibrillar 
assemblies the histograms were derived from is indicated.   
 
(C) Proteinase K degradation patterns of a-Syn (100µM monomer concentration) polymorphs 
Fibrils, Ribbons, Fibrils-91, Fibrils-65 and the fibrillar form of the truncated form of a-Syn 
spanning residues 1-110 monitored over time on Coomassie stained SDS–PAGE (12%). Time 
(min) and molecular weight markers (kDa) are shown on the top and left of each gel, 
respectively.  
 
Figure 2. Differential fibrillar a-Syn polymorphs binding and clustering on primary 
neuronal cultures  
 
(A) Cultured hippocampal neurons (DIV 21-24) exposed for 5 or 60 minutes to the fibrillar a-
Syn polymorphs Fibrils, Ribbons, Fibrils-91, Fibrils-65 and Fibrils-110 (50nM) labeled with 
ATTO550 followed by fixation and immunolabeling of Homer (excitatory post-synapse 
marker) (Top two row: full field view; bottom two rows: boxed region). Full field view of 
ATTO-550 fluorescence is shown in grey-scale (top row) for better visualization of neuronal 
morphology. The images reveal striking differences in binding. Fibrils-91 bound much more 
efficiently than Ribbons and Fibrils polymorphs. Fibrils-65 and Fibrils-110 exhibited weak 
binding. All three polymorphs exhibited significant co-localization with homer (bottom row).    
 
(B-D) Quantification of size (B, fluorescence intensity of fibrillar ATTO550-a-Syn 
polymorphs clusters, density (C, number of fibrillar ATTO550-a-Syn polymorphs clusters 
per µm2, and synaptic co-localization (D) of fibrillar ATTO550-a-Syn polymorphs clusters 
obtained after thresholding (see Material and Methods section). (D) The proportion of 
synaptic fibrillar a-Syn polymorphs clusters were similar for all polymorphs except Fibrils-65 
and Fibrils-110.  
 
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test 
performed to compare the distribution between 5 min and 60 min; 60-75 images from 4-5 
independent experiments. ***p<0.001, ns=not significant. Dot plot shows the averaged value 
per experiment. 
 
Figure 3. Nanoscopic properties of the clusters fibrillar a-Syn polymorphs form on 
primary neuron plasma membrane 
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(A) Super-resolution images rendered with a pixel size of 10nm (red, top row) shows the 
binding/clustering of fibrillar a-Syn-ATTO647N polymorphs on neurons following 60min 
exposure to the fibrillar polymorphs Fibrils, Ribbons and Fibrils-91 (50nM). Bottom row 
(white) shows fibrillar a-Syn-ATTO647N clusters identified through the DBSCAN analysis 
(see Material and Methods section). 
 
(B) Density (detections/µm2) of single molecule events on neurons (clustered and non-
clustered) in panel A showing differential binding of the distinct fibrillar a-Syn polymorphs.  
 
(C) Proportion of single molecule detections within clusters showing predominantly clustered 
(90%) binding of the distinct fibrillar a-Syn-ATTO647N polymorphs.  
 
(D) Measurement of area of clusters (µm2) shown as a cumulative distribution plot and box 
plot (inset, n=Fibrils:7681, Ribbons: 4600, Fibrils-91:8672). The distribution shows that the 
fibrillar polymorph Fibrils-91 populates clusters >200000 nm2. The cumulative plot shows 
that the polymorph Ribbons populates the smallest clusters (<500nm2).  
 
(E-F) Representative example showing single molecule trajectories (colored) obtained using 
SPT-STORM of a-Syn-PA-646 Fibrils-91 polymorph. Trajectories were analyzed by 
Bayesian treatment of Hidden Markov Models (see Methods) that revealed three diffusive 
states of a-Syn polymorphs. State 1 represents free, fast diffusing molecules; State 2 exhibit 
intermediate diffusion velocity, representing small complexes; State 3 represents clustered 
fraction with very slow-diffusion velocity. 
 
(G-I) Plots showing averaged diffusion coefficient values (G) and Dwell-time within each 
diffusive state (H) and occupancy (I) for each polymorph. Note Ribbons polymorphs exhibit 
characteristic different diffusive behavior. Each dot represents averaged value of thousands of 
trajectories for a given imaging field.   
 
Dot plot in panel B and C represents averaged value per image, n=9 cells from 3 independent 
experiments. Box-plot in D shows median, inter-quartile range and 10-90% distribution. Dot 
plot in panel G and H averaged value per recording (thousands of trajectories) from 3 
independent. Mann-Whitney-test is performed. *p<0.05, ***p<0.001, ns= not significant. 
Scale bars: 1µm. 
 
Figure 4. Assessment of time-dependent endocytosis of a-Syn fibrillar polymorphs 
 
(A) Schematic representation of the experimental setup to measure the initial endocytosis of 
fibrillar a-Syn polymorphs. Neurons were exposed (50nM, 60min) to ATTO488 + Biotin-
labeled a-Syn. Unbound assemblies were next washed away. Cells were fixed 0h, 4h or 8h 
after exposure to fibrillar a-Syn polymorphs (green) and a-Syn clusters remaining on cell-
surface were labeled with streptavidin-550 (red).  
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(B) Representative raw (top panel) and thresholded (bottom panel) images for a-Syn fibrillar 
polymorph Fibrils labeled with ATTO488 (green) and Biotin are shown. a-Syn Fibrils 
remaining on cell surface were labeled with streptavidin-550 (red). The majority of a-Syn 
clusters were on cell-surface (overlay, yellow). Internalized fibrillar a-Syn spots (green only) 
was quantified and plotted in panel C. 
 
(C) A time-dependent increase in fibrillar a-Syn polymorphs endocytosis is observed.  
 
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test 
performed to compare the distributions; 30 images from 3 independent experiments. 
***p<0.001, **p<0.01, *p<0.05, ns=not significant. Dot plot shows the averaged value per 
experiment. 
 
Figure 5.  Differential seeding by fibrillar a-Syn polymorphs in primary neuronal 
cultures 
 
(A) Schematic representation of the protocol used to assess the seeding of endogenous a-Syn 
by exogenous fibrillar a-Syn polymorphs Fibrils, Ribbons and Fibrils-91. Primary mature 
hippocampal cultured neurons (prepared from wild-type C57BL6J mice) were exposed to 
fibrillar a-Syn polymorphs (250nM, 15 min in fresh culture medium) at DIV 14. After 
extensive washing, the cells were transferred back to the original culture medium. Neurons 
were fixed at DIV 21 and immunolabeled for pS129-a-Syn. 
 
(B) Seeded endogenous a-Syn aggregation following exposure of primary neuronal cultures 
to the fibrillar a-Syn polymorphs Fibrils, Ribbons and Fibrils-91 imaged using the 
monoclonal anti-pS129-a-Syn antibody 81A.  
 
(C) Quantification of the area occupied by aggregated pS129-a-Syn following exposure to 
the different fibrillar a-Syn polymorphs. Box-plot shows median, inter-quartile range and 10-
90% distribution. Number of images (n): Fibrils, 30; Ribbons, 34; Fibrils-91, 34, from 3 
independent experiments; Mann-Whitney-test is performed, ***p<0.001. Dot plot shows the 
averaged value per experiment. 
 
(D) Seeded endogenous pS129-a-Syn (green) within axons (red, labelled with anti tau 
antibody). 
 
(E) pS129-a-Syn bundles (green) are stained by the autophagy marker p62 (red) in the cell 
body but not in the processes (arrows).  
 
(F) pS129-Syn bundles (green) are stained by the ubiquitin (red).  
 
(G) 1% Sarkosyl extract from unseeded or polymorph-seeded neurons. Western blots 
following migration of extracts on SDS-PAGE gels without stacking layer and probing for 
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pS129-a-Syn (left), endogenous mouse a-Syn (middle) and tubulin (right). * represents the 
correct detected bands. Aggregated pS129-a-Syn can be detected in Ribbon/Fibril-91 seeded 
neurons (left and middle). Soluble endogenous mouse a-Syn is detected in all conditions 
(middle).  
 
Figure 6. Seeded pS129-a-Syn are composed of multiple intertwined elongated 
structures 
 
(A-C) Super-resolution STORM imaging of endogenous pS129-a-Syn was performed at DIV 
21 following exposure of primary neuronal cultures to the fibrillar a-Syn polymorphs Fibrils, 
Ribbons and Fibrils-91 (250nM) for 15 minutes on DIV 14. Single molecule detections for 
40,000 frames, rendered with a pixel size of 10nm are shown for Fibrils (A), Ribbons (B) and 
Fibrils-91 (C). In all three cases, elongated structures that seem to intertwine into larger 
bundles are seen.  
 
(D) Time course of elongated and intertwined pS129-a-Syn structures formation imaged by 
STORM after exposure of primary neurons to a-Syn fibrillar polymorph Fibrils-91 after2 
days, 3 days and 6 days.  
 
(E-F) Quantitative analysis of the amount of elongated and intertwined pS129-a-Syn 
structures forming in primary neurons exposed to fibrillar a-Syn polymorphs (250nM for 
15min on DIV 14) as a function of time. Detection events within (E) and area occupied by (F) 
pS129-a-Syn aggregates. Box-plot shows median, inter-quartile range and 10-90% 
distribution. Mann-Whitney test performed to compare the distributions; n is number of 
pS129-a-Syn aggregates analyzed: 40 for Fibrils, 52 for Ribbons, 56 for Fibrils-91. 
***p<0.001, **p<0.01, *p<0.05. Scale bars: 500nm. 
 
Figure 7. Differential a-Syn polymorphs binding and seeding in organotypic slice 
cultures  
 
(A-B) Hippocampal organotypic slices maintained for 14 days in culture (day 0) were 
exposed to 1.5µM ATTO550-labeled fibrillar a-Syn polymorphs Fibrils, Ribbons and Fibrils-
91 for 15min, washed extensively and transferred to a fresh slice culture medium for 1h prior 
to fixation. (A) Representative confocal images are shown for the fibrillar a-Syn polymorphs 
Fibrils, Ribbons and Fibrils-91. (B) Quantification of fibrillar ATTO550-a-Syn polymorphs 
fluorescence intensity.  
 
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test is 
performed. Number of images analyzed (n): 16 for Fibrils, 16 for Ribbons, 12 for Fibrils-91 
from 3 independent experiments. *p<0.05, **p<0.01, ***p<0.001. Scale bars: 5µm. 
 
(C) Schematic representation of the protocol used to assess the seeding of endogenous a-Syn 
by exogenous fibrillar a-Syn polymorphs Fibrils, Ribbons and Fibrils-91. Hippocampal 
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organotypic slices maintained for 14 days in culture (day 0) were exposed to 0.75 or 1.5µM 
ATTO550-labeled fibrillar a-Syn polymorphs for 15min, washed extensively and transferred 
to a fresh slice culture medium. Slices were fixed at different days and stored at 4°C until the 
end of experiment when immunohistochemistry for pS129-a-Syn was performed. 
 
(D-F) Representative images (D) showing seeded endogenous pS129-a-Syn labeled with the 
antibody 81A (green, top row), exogenous-a-Syn-ATTO550 (red, applied at 0.75µM, middle 
row) and overlaid channels (bottom row) following exposure of hippocampal organotypic 
slices to fibrillar a-Syn polymorphs Fibrils, Ribbons and Fibrils-91. The percentage of area 
occupied by pS129-a-Syn was plotted in E and total fluorescence of exogenous-a-Syn-
ATTO550 was plotted in F. Box-plot shows median, inter-quartile range and 10-90% 
distribution. Mann-Whitney test performed to compare the difference from Day 4 for each 
polymorphs; number of images (n) acquired with inclusions from 3-5 experiments (left to 
right): 10, 3, 4, 29, 3, 5, 37, 9 12 22. *p<0.05, **p<0.0.01, ***p<0.001, ns= not significant. 
 
(G) Aggregated bundles of endogenous pS129-a-Syn structures (green) within neuronal cell 
body (grey, labelled with anti NeuN antibody). 
 
(H) pS129-a-Syn bundles (green) are stained by the autophagy marker p62 (red) in neurons 
cell bodies not in the processes (arrows). 
 
(I-J) Concentration-dependent seeding of endogenous a-Syn aggregation. Hippocampal 
organotypic slices were exposed on day 0 to fibrillar a-Syn-ATTO550 polymorphs Fibrils, 
Ribbons and Fibrils-91 (0.75µM or 1.5µM) and immunolabeled with the anti-pS129-a-Syn 
antibody 81A on day 14 (F). Quantification of percentage area occupied by pS129-a-Syn (G).  
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test 
performed to compare the difference between 0.75µM and 1.5µM for each polymorphs; 
number of images acquired from 4 experiments (left to right): 16, 27, 22, 35, 25, 31. *p<0.05, 
***p<0.001. Scale bars: 10µM 
 
Figure 8. Differential re-distribution of synaptic a3-NKA/GluA2-AMPA/GluN2B-
NMDA in primary neurons exposed to distinct a-Syn fibrillar polymorphs.  
 
(A-J) Imunocytochemistry on DIV 21 of (A) a3-NKA (red) and Homer (green), (C) GluA2-
AMPA receptors (red) and PSD95 (green), (E) GluN2B-NMDA receptors (red) and Homer 
(green) (G) GluA1-AMPA receptors (red) and PSD95 (green) and (I) mGluR5 receptors (red) 
and Homer (green). Primary neurons were exposed (15min, 250nM) to the fibrillar a-Syn 
polymorphs Fibrils, Ribbons and Fibrils-91 on DIV 14. Quantification of intensity of synaptic 
a3-NKA (B), GluA2-AMPA receptors (D) GluN2B-NMDA receptors (F), GluA1-AMPA 
receptors (H) and mGluR5 (J) clusters (indicative of size; see Material and Methods) was 
performed and plotted.  
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Box-plot shows median, inter-quartile range and 10-90% distribution. Number of images (n) 
analyzed and plotted: (B) 47 from 4 independent experiments, (D) 37 from 3 independent 
experiments, (F) 30 from 3 independent experiments, (H) 37 from 3 independent 
experiments, (J) 20 from 2 independent experiments. Mann-Whitney-test is performed. 
*p<0.05, **p<0.01, ***p<0.001, ns= not significant. Dot plot shows the averaged value per 
experiment. Scale bars: 5µM. 
 
Figure 9. Alteration in network activity in primary neurons seeded with a-Syn fibrillar 
polymorphs 
 
(A-D) Raster plots showing the spiking activity of primary neurons recorded using 120-
electrode MEA plates seeded with fibrillar a-Syn polymorphs. Each row represents 1-
electrode and each dot represents a single spike obtained on DIV 21 (seeded neurons, 1-week 
after exposure to a-Syn polymorphs). Notably control neurons exhibit high-spike frequency 
whereas fibrillar a-Syn polymorphs exposed neurons have decreased spiking frequency.  
   
(E) Quantification showing the normalized ratio of change in spike frequency rate between 
DIV 14 and DIV 21. Nearly 60% reduction in the spike-frequency rate is observed in 
polymorph Fibrils seeded neurons. Dot plot represents averaged value per experiment. Two-
tailed t-test to compare difference from control condition was performed, *p = 0.0227, ns= 
not significant, 3-experiments.  
 
Supplementary Figure 1. Binding of  a-Syn in and out of synapses 
(A) Exposure of neurons to fibrillar a-Syn polymorphs (image for Fibrils-91-ATTO550 is 
presented, red) followed by immunolabeling of excitatory pre-synaptic boutons using vGluT1 
(green) antibody. Binding and clustering of a-Syn is observed both in and out of synaptic 
terminals. 
(B) Binding of a-Syn polymorphs (image for Fibrils-91-ATTO550 is presented, red) on 
neuronal dendrite (labeled with GFP, green). Binding and clustering of a-Syn is observed 
both in dendritic spines and shaft.  
 
Supplementary Figure 2. Endogenous a-Syn is phosphorylated upon exposure in 
primary neuronal cultures to exogenous fibrillar polymorphs 
(A-B) Primary mature hippocampal neurons cultures were exposed to wild-type or S129A 
fibrillar polymorphs (Fibrils and Fibrils-91) (250nM, 15 min in fresh culture medium) at DIV 
14. After extensive washing, cells were transferred back to the original culture medium. 
Neurons were fixed at DIV 21 and immunolabeled for pS129-a-Syn (A). Similar pS129-a-
Syn signal was observed after exposure to wild-type or S129A fibrillar a-Syn polymorphs 
(A). Quantification of the area occupied by aggregated pS129-a-Syn using the 81A antibody 
following exposure to the fibrillar a-Syn polymorphs.  
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test is 
performed to compare the difference; number of images (n) from 2 experiments (left to right): 
16, 22, 30, 30. ***p<0.001, ns= not significant.  
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Supplementary Figure 3. No alteration in synapse density in a-Syn seeded neurons   
(A-D) Immunodetection of synapses using Homer antibody in primary neurons (A) or 
organotypic slices (B) in control or a-Syn polymorphs seeded neurons. No or subtle alteration 
in synaptic density was observed (B, D). Dot plot shows average value from 7-experiments in 
cultures and 4-experiments in slices; Mann-Whitney test, **p<0.01, ns= not significant.   
 
Supplementary Figure 4. Endogenous a-Syn is phosphorylated upon exposure of 
organotypic slice cultures to exogenous fibrillar polymorphs 
(A-B) Organotypic slice cultures were exposed to wild-type or S129A fibrillar polymorphs 
(Fibrils and Fibrils-91 polymorphs) (1.5µM, 15 min in fresh culture medium) at day 0. After 
extensive washing, slices were transferred to a new culture medium. Slices were fixed on day 
14 and immunolabeled for pS129-a-Syn (A). Similar pS129-a-Syn signal was observed after 
exposure to wild-type or S129A fibrillar a-Syn polymorphs (A). Quantification of the area 
occupied by aggregated pS129-a-Syn using the 81A antibody following exposure to the 
fibrillar a-Syn polymorphs.  
Box-plot shows median, inter-quartile range and 10-90% distribution. Mann-Whitney test is 
performed to compare the difference; number of images (n) from 2 experiments (left to right): 
22, 21, 22, 23. *p<0.05, ns= not significant. 
 
Supplementary Figure 5. Morphology of organotypic slices in seeded neurons 
Low magnification images of brain slices immunostained for neuronal marker, NeuN (green) 
prior (control) or after exposure to a-Syn polymorphs on Day 28 in culture after addition of 
the fibrillar polymorphs on Day 14. No alteration in hippocampal morphology is detected. 
 
Supplementary Figure 6. Detection of pS129-a-Syn aggregates in oligodendrocytes   
Organotypic slice cultures were exposed to the fibrillar polymorphs Fibrils, Ribbons and 
Fibrils-91(1.5µM) at day 0. Slices were fixed on day 14 and immunolabeled for pS129-a-Syn 
(81A antibody) and oligodendrocyte marker (Olig 2 antibody). No pS129-a-Syn deposits in 
Olig2 positive cells for slices exposed to Fibrils/Fibrils-91 polymorphs was observed. 
Occasional pS129-a-Syn reactivity within Olig2-positive oligodendrocytes was observed for 
Ribbons (middle). 
 
Supplementary Figure 7. Unaltered seeding in organotypic slices following microglia 
depletion 
(A-B) Organotypic slice cultures were prepared (day -14) and exposed to a-Syn fibrillar 
polymorphs (1.5µM, 15 min in fresh culture medium) at day 0. After extensive washing, the 
slices were transferred to a new culture medium. Slices were fixed on day 14 and 
immunolabeled for pS129-a-Syn and Iba1. Complete microglia depletion (A) was achieved 
using PLX3397 treatment as described in Materials and Methods. Notably fibrillar 
polymorphs seeded the aggregation of endogenous a-Syn both in absence and presence of 
microglia (A, B). Dot-plot shows individual organotypic slice. Mann-Whitney test is 
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performed to compare the difference; number of slices (n=10) from 3 experiments. *p<0.05, 
ns= not significant. 
 
Supplementary Figure 8. Quality control analysis of labeled a-Syn Fibrils . MALDI-TOF 
mass spectra, from top to bottom of (A) unlabelled, (B) ATTO480, (C) ATTO550, (D) 
ATTO647 and (E) biotin-labeled wild-type a-Syn Fibrils are shown. The spectra show that a-
Syn is labelled on average by ≤ one ATTO480, 550, 647 or biotin molecule. Stars depict 
sinapinic acid matrix adducts. 
For mass spectrometry analysis, the samples were de-salted (with 5% acetonitrile, 0.1% 
Trifluoroacetic acid (TFA)) and eluted from a C18 reversed-phase Zip-Tip (Millipore, 
Billerica, MA, USA) in 50% acetonitrile, 0.1% TFA. The polypeptides were mixed in a ratio 
of 1:5 to 1:20 (v⁄v) with sinapinic acid (10 mg/mL) in 50% acetonitrile and 0.1% TFA) and 
spotted (0.5 µL) on a stainless steel MALDI target (Opti-TOF; Applied BioSystems). 
MALDI-TOF-TOF MS spectra were acquired with a MALDI-TOF⁄TOF 5800 mass 
spectrometer (Applied Biosystems) using linear mode acquisition. Acquisition and data 
analysis were performed using the Data Explorer software from Applied Biosystems.  
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