Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

On the geometry of K3 surfaces with finite automorphism group: the compact case

Abstract : Nikulin and Vinberg proved that there are only a finite number of lattices of rank $\geq 3$ that are the N\'eron-Severi group of projective K3 surfaces with a finite automorphism group. The aim of this paper is to provide a more geometric description of such K3 surfaces $X$, when the fundamental domain $\mathcal{F}_{X}$ of their Weyl group in $\mathbb{P}(NS X)\otimes\mathbb{R})$ is compact. In that case we show that such K3 surface is either a quartic with special hyperplane sections or a double cover of the plane branched over a smooth sextic curve which has special tangencies properties with some lines, conics or cuspidal cubic curves. We then study the converse i.e. if the geometric description we obtained characterizes these surfaces. In $4$ cases the description is sufficient, in the $4$ other cases there is exactly another one possibility which we study.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal-cea.archives-ouvertes.fr/cea-02479800
Contributor : Xavier Roulleau <>
Submitted on : Friday, February 14, 2020 - 4:51:10 PM
Last modification on : Saturday, February 15, 2020 - 1:02:46 AM

Links full text

Identifiers

  • HAL Id : cea-02479800, version 1
  • ARXIV : 1909.01909

Collections

Citation

Xavier Roulleau. On the geometry of K3 surfaces with finite automorphism group: the compact case. 2020. ⟨cea-02479800⟩

Share

Metrics

Record views

9