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Introduction & Background

In ITER, Neutral Beam Injection (NBI) and lon Cyclotron Reso
temperatures beyond what is achieved by ohmic heating. To be
is necessary to have numerical tools capturing the dynamics
Modelling effort (EU-IM) provides the European Transport S
arbitrary tokamak plasma discharges. A first verification
study of the Fokker-Planck codes, that describe the collisi
plasma (via Coulomb collisions) was not done. Two 1D Fokker- Planck solvers for arbitrary distributions functions
have recently been implemented within ETS: StixRedist [3] a nd FoPla [4]. To ensure the CPU time remains
acceptable, the latter was parallelized. We discuss the inte  gration and verification/validation of these modules in
the heating and current drive (H&CD) ETS workflow in high pow er JET-ILW discharges, drawing special attention
to the importance of the nonlinear collision operator when s olving a set of coupled Fokker-Planck equations for
cases when majority species play a key .

nance Heating (ICRH) will be used to increase the
able to predict how ITER discharges will behave it
sufficiently realistically. The European Integrated
imulator (ETS) [1] which was designed to simulate
of ICRF full-wave codes was done in [2] but a detailed
onal power redistribution of the heated ions to the bulk

ICRH and ICRH-NBI synergy workflow

A set of coupled problems:
1) The RF wave solver provides the RF electric fields and the R F power absorbed by the various species in the
plasma, including fast neutral beam subpopulations;

tween the RF accelerated ion populations and the

2) The Fokker-Planck solvers describe the power exchange be
(per species) to the transport solver;

bulk plasma via Coulomb collisions, providing a heat source
3) The transport solver evolves the kinetic profiles as a res ponse to the ICRH and NBI power applied, and provides
a new plasma target to be used in the next workflow iteration.
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Note: As a first approach, the distributions coming from the Fokker-Planck solver are represented as “e  quivalent”

Maxwellian distributions with an appropriate Teff i n the wave solvers (same approach as in TRANSP[5])

Parallelization of FoPla

The parallelization is based on solving the Fokker-Planck eq uation at each radial grid independently, and
distributing the task over several cores using a cyclic dist ribution method. The method has multiple advantages:
it is generic , easy to implement , compatible with future dev elopments, and has quite good performance.

cores ]2 s J2¢ 30 | la |

time 24h  344h 1.33h 1.21h 46mn 47.6mn
Speed-up 1 7 18 19.9 313 305

Scalability of FoPla obtained on a large velocity grid and using the full feature of the module

Conclusion and Perspectives

- Good agreement between ETS and TRANSP on ICRH and NBI/ICRH s  ynergy when similar algorithms are used.
When all ions are considered in the ETS Fokker-Planck module , somewhat higher collisional electron heating is
obtained.

- Using a 1D parallelized Fokker-Planck solver to account for beam populations enables to have fast simulations.

on distribution by using the numerical distribution

- Improve the self-consistency between RF-fields and fast i
ellians) in the wave solvers.

functions given by the FP codes (instead of “equivalent” Maxw

- Assess impact of the complete features of the Fokker-Planc k solvers (StixRedist and FoPla) on collisional
heating and neutron yield with predictive ETS simulation in cluding temperature transport.
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and beyond, AIP

Benchmarking and Verification of ICRH modelling (no NBI)

JET pulse 92436 at t=49s with ETS (CYRANO/StixReDis ) and TRANSP (TORIC/FPP),
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(Left) Direct ICRH power absorption profiles per species and (Middle) collisional power redistribution computed for H minority
ICRF heating similar method use as in TRANSP. (Right) Full StixRedist calculation with non-linear H, D and self-collisions.
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ed (middle plot): The Fokker-Planck equation is not

1) Good agreement with TRANSP when similar algorithms are us
stays in the bulk D heating channel.

solved for the majority D ions so the RF power absorbed (~50%)

s accounted for (right plot), a part of the RF power

2) When the D majority Coulomb collisional redistribution i
hannel, leading to more balanced core

originally absorbed by the D ions now ends up in the electron ¢
electron/deuterium heating.

3) Because the D majority is accelerated by 2nd harmonic ICRH (w=2ax) in this case, a small fraction of the D ions
carrying a significant part of the wave power is accelerated to high energies.

Benchmarking and Verification of ICRH/NBI synergy m  odelling

JET pulse 92436 at t=49s with ETS (ASCOT/CYRANO/FOP  LA) and TRANSP (NUBEAM/TORIC/FPP)
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(Left) Comparison between ETS(ASCOT) without synergy and ETS(ASCOT/CYRANO/FOPLA) with synergy. (Middle)
Cumulative integrals. (Right) Comparison between ETS and TRANSP

1) About IMW (20%) of the total ICRH power applied is absorbed by the D-beam ions and is partially redistributed to

the electrons and bulk ions in the plasma centre

2) Good agreement between ETS and TRANSP, but ETS predicts so mewhat higher core electron heating by self-
consistently accounting for the RF acceleration of both the D-thermal and the D-NBI.

Neutron yield

ETS full collisional power Experiment Data

ETS collisional power

computed for Honly (n/m 3s) computed (n/m 3/s) (n/m3/s)
D-D 0.120E+17 0.160E+17
D-Beam 0.107E+17 0.106E+17
Beam-Beam 0.447E+15 0.439E+15
Total 0.232E+17 0.270E+17 0.26E+17

When the D majority tail formation is taken into account, a higher D-D neutron rate is obtained leading to a closer

agreement with the experiment data.
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