

Table of radionuclides (Vol. 5 - A = 22 to 244)

Marie-Martine Bé, Vanessa Chisté, Christophe Dulieu, Xavier Mougeot, Edgardo Browne, Valery Chechev, Nikolay Kuzmenko, Filip Kondev, Aurelian Luca, Monica Galan, et al.

► To cite this version:

Marie-Martine Bé, Vanessa Chisté, Christophe Dulieu, Xavier Mougeot, Edgardo Browne, et al.. Table of radionuclides (Vol. 5 - A = 22 to 244). Bureau International des Poids et Mesures. , 5, 2010, Table of radionuclides, 13 978-92-822-2234-8. cea-02476352

HAL Id: cea-02476352 https://cea.hal.science/cea-02476352

Submitted on 12 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Table of Radionuclides (Vol. 5 - A = 22 to 244)

M.-M. Bé, V. Chisté, C. Dulieu, X. Mougeot E. Browne V. Chechev, N. Kuzmenko F. Kondev A. Luca M. Galán A.L. Nichols A. Arinc X. Huang

2010

BUREAU INTERNATIONAL DES POIDS ET MESURES

Pavillon de Breteuil, F-92310 SÈVRES

Édité par le BIPM, Pavillon de Breteuil F-92312 Sèvres Cedex France

Imprimé par Reproduction Service

ISBN-13 978-92-822-2234-8 (Vol. 5) ISBN-13 978-92-822-2235-5 (CD-Rom)

Preface

This monograph is one of several published in a series by the Bureau International des Poids et Mesures (BIPM) on behalf of the Consultative Committee for Ionizing Radiation (*Comité Consultatif des Rayonnements Ionisants*, CCRI¹). The aim of this series of publications is to review topics that are of importance for the measurement of ionizing radiation and especially of radioactivity, in particular those techniques normally used by participants in international comparisons. It is expected that these publications will prove to be useful reference volumes both for those who are already engaged in this field and for those who are approaching such measurements for the first time.

The purpose of this monograph, number 5 in the series, is to present the recommended values of nuclear and decay data for a wide range of radionuclides. Activity measurements for more than sixty-three of these radionuclides have already been the subject of comparisons under the auspices of Section II (dedicated to the Measurement of radionuclides) of the CCRI. The material for this monograph is now covered in five volumes. The first two volumes contain the primary recommended data relating to half-lives, decay modes, x-rays, gamma-rays, electron emissions; alpha- and beta-particle transitions and emissions, and their uncertainties for a set of sixty-eight radionuclides, Volume 1 for those radionuclides with mass number up to and including 150 and Volume 2 for those radionuclides with mass number over 150. Volume 3 contains the equivalent data for twenty-six additional radionuclides as listed and re-evaluations for ¹²⁵Sb and ¹⁵³Sm; Volume 4 contains the data for a further thirty-one radionuclides with a re-evaluation for ²²⁶Ra while the present Volume 5 includes 17 new radionuclide evaluations and 8 re-evaluations of previous data as identified in the contents page. The data have been collated and evaluated by an international working group (Decay Data Evaluation Project, DDEP) led by the Laboratoire national de métrologie et d'essais -Laboratoire national Henri Becquerel (LNE-LNHB). The evaluators have agreed on the methodologies to be used and the CD-ROM included with this monograph contains the evaluators' comments for each radionuclide in addition to the data tables included in the monograph itself.

The work involved in evaluating nuclear data is ongoing and the recommended values are kept up to date on the LNE-LNHB website at <u>http://www.nucleide.org/DDEP_WG/DDEPdata.htm</u>.

The BIPM and the DDEP are most grateful to the International Atomic Energy Agency (IAEA) for their assistance and financial support to some evaluators in the production of data for Volumes 1 to 3 through their Coordinated Research Project "Update of x-ray and gamma ray decay data standards for detector calibration and other applications" and for Volumes 4 and 5 through their Coordinated Research Project "Updated decay data library for actinides". The BIPM and the DDEP are indebted also to some other evaluators who participate in the United States Nuclear Data Program (USNDP) for their support to these publications.

The publication of further volumes of Monographie 5 is envisaged when necessary to add new radionuclide data or re-evaluations in this more permanent format that can be referenced easily.

Although other data sets may still be used when evaluating radionuclide activity, use of this common, recommended data set should help to reduce the uncertainties in activity evaluations and lead to more coherent results for comparisons.

K. Carneiro President of the CCRI

Jnew brace

A.J. Wallard Director of the BIPM

¹ Previously known as the Comité Consultatif pour les Étalons de Mesures des Rayonnements Ionisants (CCEMRI)

Monographie BIPM-5 – Table of Radionuclides, Volume 5

Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Xavier MOUGEOT, Laboratoire National Henri Becquerel (LNHB), France; Edgardo BROWNE, Lawrence Berkeley National Laboratory (LBNL), USA; Valery CHECHEV, Nikolay KUZMENKO, Khlopin Radium Institute (KRI), Russia; Filip G. KONDEV, Argonne National Laboratory (ANL), USA; Aurelian LUCA, Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Romania; Mónica GALÁN, Laboratorio de Metrología de Radiaciones Ionizantes (CIEMAT), Spain; Alan L. NICHOLS, Department of Physics, University of Surrey, United Kingdom; Arzu ARINC, National Physical Laboratory (NPL), United Kingdom; Xiaolong HUANG, China Institute of Atomic Energy (CIAE), China.

"TABLE DE RADIONUCLÉIDES"

Sommaire - Ce volume regroupe l'évaluation des radionucléides suivants :

²²Na, ⁴⁰K, ⁷⁵Se, ¹²⁴Sb, ²⁰⁷Bi, ²¹¹Bi, ²¹⁷At, ²²⁵Ra, ²²⁵Ac, ²²⁸Ra, ²³¹Th, ²³²Th, ²³³Th, ²³³Pa, ²³⁴Th, ²³⁵U, ²³⁷U, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴⁴Am^m.

Les valeurs recommandées et les incertitudes associées comprennent : la période radioactive, les modes de décroissance, les émissions α , β , γ , X et électroniques ainsi que les caractéristiques des transitions correspondantes.

"TABLE OF RADIONUCLIDES"

Summary - This volume includes the evaluation of the following radionuclides:

²²Na, ⁴⁰K, ⁷⁵Se, ¹²⁴Sb, ²⁰⁷Bi, ²¹¹Bi, ²¹⁷At, ²²⁵Ra, ²²⁵Ac, ²²⁸Ra, ²³¹Th, ²³²Th, ²³³Th, ²³³Pa, ²³⁴Th, ²³⁵U, ²³⁷U, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴⁴Am^m.

Primary recommended data comprise half-lives, decay modes, X-rays, gamma-rays, electron emissions, alpha- and beta-particle transitions and emissions, and their uncertainties.

"TABELLE DER RADIONUKLIDE"

Zusammenfassung – Dieser Band umfaßt die Evaluation der folgenden Radionuklide:

²²Na, ⁴⁰K, ⁷⁵Se, ¹²⁴Sb, ²⁰⁷Bi, ²¹¹Bi, ²¹⁷At, ²²⁵Ra, ²²⁵Ac, ²²⁸Ra, ²³¹Th, ²³²Th, ²³³Th, ²³³Pa, ²³⁴Th, ²³⁵U, ²³⁷U, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴⁴Am^m.

In diesem Bericht sind evaluierte Werte der Halbwertszeiten, Übergangswahrscheinlichkeiten und Übergangsenergien von α , β^- , β^+ -, EC- und Gammaübergängen, Konversionskoeffizienten von Gammaübergängen sowie der Emissionswahrscheinlichkeiten von Röntgen- und Gammaquanten, Auger- und Konversionselektronen und deren Unsicherheiten zusammengefaßt.

"ТАБЛИЦА РАДИОНУКЛИДОВ"

Резюме. Этот том включает оценки характеристик распада для следующих нуклидов:

²²Na, ⁴⁰K, ⁷⁵Se, ¹²⁴Sb, ²⁰⁷Bi, ²¹¹Bi, ²¹⁷At, ²²⁵Ra, ²²⁵Ac, ²²⁸Ra, ²³¹Th, ²³²Th, ²³³Th, ²³³Pa, ²³⁴Th, ²³⁵U, ²³⁷U, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴⁴Am, ²⁴⁴Am^m.

Основные рекомендуемые данные включают периоды полураспада, виды распада, Х-излучение, гамма-излучение, электронное излучение, альфа- и бета- переходы и излучения, а также погрешности рассмотренных величин.

"TABLA DE RADIONUCLEIDOS"

<u>Contenido</u> – Este volúmen agrupa la evaluación de los radionucleidos siguientes:

²²Na, ⁴⁰K, ⁷⁵Se, ¹²⁴Sb, ²⁰⁷Bi, ²¹¹Bi, ²¹⁷At, ²²⁵Ra, ²²⁵Ac, ²²⁸Ra, ²³¹Th, ²³²Th, ²³³Th, ²³³Pa, ²³⁴Th, ²³⁵U, ²³⁷U, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴⁴Am, ²⁴⁴Am^m.

Los valores recomendados y las incertidumbres asociadas comprenden: el período de semidesintegración radiactiva, los modos de desintegración, las emisiones $\alpha\beta\gamma X$ y electrónicas incluyendo las características de las transiciones correspondientes.

TABLE DE RADIONUCLÉIDES TABLE OF RADIONUCLIDES TABELLE DER RADIONUKLIDE ТАБЛИЦА РАДИОНУКЛИДОВ TABLA DE RADIONUCLEIDOS

Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU, Xavier MOUGEOT, Laboratoire National Henri Becquerel (LNHB), France;

- Edgardo BROWNE, Lawrence Berkeley National Laboratory (LBNL), USA;
- Valery CHECHEV, Nikolay KUZMENKO, Khlopin Radium Institute (KRI), Russia;
- Filip G. KONDEV, Argonne National Laboratory (ANL), USA;

Aurelian LUCA, Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Romania;

Mónica GALÁN, Laboratorio de Metrología de Radiaciones Ionizantes (CIEMAT), Spain;

Alan L. NICHOLS, Department of Physics, University of Surrey, United Kingdom;

Arzu ARINC, National Physical Laboratory (NPL), United Kingdom;

Xiaolong HUANG, China Institute of Atomic Energy (CIAE), China.

TABLE DE RADIONUCLÉIDES

INTRODUCTION

Le Laboratoire National Henri Becquerel (LNHB) a commencé l'étude des données nucléaires et atomiques qui caractérisent la décroissance des radionucléides en 1974. Ces évaluations ont fait l'objet de la publication des quatre volumes de la Table de Radionucléides [87Ta] et de quatre volumes de la *Monographie* BIPM-5 [99Be, 04Be, 06Be, 08Be]. Ce nouveau volume s'inscrit dans la continuation du travail précédent.

D'autre part, pour des raisons évidentes, telles la facilité de mise à jour des données ou la commodité de consultation pour les utilisateurs, le LNHB a créé une base de données informatisée. Le logiciel NUCLEIDE est la forme informatisée de cette table, il permet un accès aisé aux différentes informations à l'aide de menus déroulants atteints par un simple « clic » sur un « bouton ».

Le propos de la Table est d'étudier un nombre limité de radionucléides utiles dans le domaine de la métrologie ou dans des domaines variés d'applications (médecine nucléaire, environnement, cycle du combustible, etc.) et d'en présenter une étude complète.

Les données recommandées comprennent : la période radioactive, les modes de décroissance, les émissions α , β , γ , X et électroniques ainsi que les caractéristiques des transitions associées.

Dans le but de mettre à jour et d'ajouter de nouvelles évaluations plus rapidement Le Laboratoire National Henri Becquerel (LNHB, France) et le Physikalisch - Technische Bundesanstalt (PTB, Germany) ont établi un accord de coopération. Ils ont ensuite été rejoints par Idaho National Engineering & Environmental Laboratory (INEEL, USA), Lawrence Berkeley National Laboratory (LBNL, USA) et Khlopin Radium Institute (KRI, Russia). Le premier travail de cette collaboration internationale a été d'établir une méthode et des règles communes d'évaluation. Les évaluations proposent des valeurs recommandées et leurs incertitudes. Ces valeurs ont été évaluées à partir des données expérimentales disponibles. A défaut, elles sont issues de calculs théoriques. Toutes les références utilisées pour l'évaluation d'un radionucléide sont listées à la fin de chaque chapitre.

Ce volume est le cinquième de la Monographie 5 publiée sous l'égide du BIPM.

VALEURS RECOMMANDÉES ET INCERTITUDES

Les principales étapes pour l'évaluation des données et leurs incertitudes sont :

- une analyse critique de toutes les publications disponibles afin de retenir ou non une valeur et son incertitude, ramenée à l'incertitude-type composée ;

- la détermination d'une valeur recommandée qui est, selon les cas, une moyenne simple ou pondérée des valeurs issues des publications, ceci est décidé après examen du chi carré réduit. Dans le cas d'une moyenne pondérée, le poids relatif de chaque valeur est limité à 50 %. L'incertitude, notée u_c , est la plus grande des valeurs des incertitudes interne ou externe ; dans le cas de valeurs incompatibles elle peut être étendue pour recouvrir la valeur la plus précise.

Pour certaines applications il est nécessaire de définir une incertitude élargie, notée U, telle que : $U(y) = k \times u_c(y)$ où k est le facteur d'élargissement. La valeur de k retenue pour cette publication est : k = 1.

Les valeurs d'incertitude indiquées portent sur les derniers chiffres significatifs, ainsi : 9,230 (11) signifie $9,230 \pm 0,011$ et 9,2 (11) $9,2 \pm 1,1$

Si une valeur est donnée sans incertitude, cela signifie qu'elle est considérée comme douteuse. Elle est indiquée à titre indicatif et souvent a été estimée en fonction du schéma de désintégration comme étant « de l'ordre de ».

Des précisions concernant les techniques d'évaluation peuvent être obtenues dans les références [85Zi], [96He], [99In] (voir rubrique Références) ou directement auprès des auteurs. La description physique des données évaluées est disponible dans la référence [99In].

NUMÉROTAGE

Les niveaux d'un noyau sont numérotés, arbitrairement, de 0 pour le niveau fondamental à n pour le énième niveau excité. Les diverses transitions sont ainsi repérées par leur niveau de départ et leur niveau d'arrivée.

Dans le cas de transition de faible probabilité qu'il n'est pas possible de situer sur le schéma de désintégration, les niveaux de départ et d'arrivée sont notés (-1, n).

Dans le cas de l'émission gamma de 511 keV qui suit une désintégration bêta plus, la notation adoptée est : (-1, -1).

UNITÉS

Les valeurs recommandées sont exprimées :

- pour les périodes :

	Symbole
. en secondes pour $T_{1/2} \ll 60$ secondes	S
. en minutes pour $T_{1/2} > 60$ secondes	min
. en heures pour $T_{1/2} > 60$ minutes	h
. en jours pour $T_{1/2} > 24$ heures	d
. en années pour $T_{1/2} > 365$ jours	а

1 année = 365,242 198 jours = 31 556 926 secondes ;

- pour les probabilités de transition et nombre de particules émises, les valeurs sont données pour 100 désintégrations ;

- les énergies sont exprimées en keV.

<u>Remarque</u> : Si une valeur plus précise de la période est nécessaire, par exemple en jours plutôt qu'en années, le lecteur se référera aux commentaires de l'évaluation inclus sur le CD-Rom ou sur les sites web du LNE-LNHB ou du BIPM. Ceci évitera l'introduction d'erreurs d'arrondi supplémentaires en cas de conversion d'unités.

AVERTISSEMENT

Ce document a été imprimé en 2010, pour toutes les nouvelles évaluations et mises à jour ultérieures, le lecteur se référera aux documents accessibles sur : <u>http://www.nucleide.org/NucData.htm</u> http://www.bipm.org/fr/publications/monographie-ri-5.html

TABLE OF RADIONUCLIDES

INTRODUCTION

The evaluation of decay data for the "Table de Radionucléides" by the Bureau National de Métrologie – Laboratoire National Henri Becquerel/Commissariat à L'Énergie Atomique (BNM – LNHB/CEA) began in 1974, continued to 1987 and four volumes were published [87Ta] and then, in 1999, the fifth volume was published containing the revised evaluations for 30 selected radionuclides [99Be]. This work has been pursued and four volumes of evaluations have already been published as *Monographie* BIPM-5 [04Be, 06Be, 08Be].

Moreover, LNHB developed a database and related software (NUCLÉIDE) with the objectives of making it easier to update and add data and, obviously, to offer easy access to the nuclear and atomic decay data to the user by "click on the button" facilities.

The aim of this Table is to provide recommended data for nuclides of special interest for metrology or practical applications like nuclear medicine, monitoring and reactor shielding, etc.

Primary recommended data comprise half-lives, decay modes, X-rays, gamma-rays, electron emissions, alpha- and beta-particle transitions and emissions, and their uncertainties. All the references used for the evaluations are given.

In order to update the data of the nuclides already present and to add new evaluations, the Laboratoire National Henri Becquerel (LNHB, France) and the Physikalisch-Technische Bundesanstalt (PTB, Germany) established a cooperative agreement; they were then joined by the Idaho National Engineering & Environmental Laboratory (INEEL, USA), the Lawrence Berkeley National Laboratory (LBNL, USA) and the Khlopin Radium Institute (KRI, Russia). This international collaboration is based on an informal agreement, the initial work of this group was to discuss and to agree on a methodology to be used in these evaluations. The data and associated uncertainties were evaluated from all available experiments and taking into account theoretical considerations.

This volume is the fifth in the series of the Monographie 5 published under the auspices of the BIPM.

RECOMMENDED VALUES AND UNCERTAINTIES

The main steps for the evaluation of the data and their uncertainties are:

- a critical analysis of all available original publications in order to accept or not each value and its uncertainty reduced to the combined standard uncertainty;

- the determination of the best value which is either the weighted or the unweighted average of the retained values, this is decided after examination of the reduced χ^2 value. For a weighted average of discrepant data, each weight is limited to 50 %, and the uncertainty, designated u_c , is the larger of the internal or external uncertainty values, which may be expanded to cover the most precise input value.

For some applications it may be necessary to define an expanded uncertainty, designated U, as: $U(y) = k \times u_c(y)$ where k is the coverage factor. In this publication, standard uncertainties are quoted (i.e. k = 1).

The value of the uncertainty, in parentheses, applies to the least significant digits, i.e.: 9.230 (11) means 9.230 ± 0.011 and 9.2 (11) 9.2 ± 1.1

A value given without an uncertainty is considered questionable. It is provided for information and often its order of magnitude is estimated from the decay scheme.

Information on evaluation methods may be obtained from references [85Zi, 96He, 99In] or directly from the authors.

Information on the meaning of physical data may be obtained from reference [99In].

NUMBERING

Nuclear levels are arbitrarily numbered from 0 (for the ground state level) to *n* (for the *n*th excited level). All transitions are designated by their initial and final levels.

For transitions with weak emission probabilities that are not shown by an arrow in the decay scheme, the initial and final levels are noted (-1, n).

For a 511 keV gamma emission, which follows a beta plus disintegration, the adopted numbering is (-1, -1).

UNITS

The recommended values are given:

- for half-lives:

	Symbol
. in seconds for $T_{1/2} \ll 60$ seconds	S
. in minutes for $T_{1/2} > 60$ seconds	min
. in hours for $T_{1/2} > 60$ minutes	h
. in days for $T_{1/2} > 24$ hours	d
. in years for $T_{1/2} > 365$ days	а

1 year = 1 a = 365.242 198 d = 31 556 926 s

- for transition probabilities and number of emitted particles, the values are given for 100 disintegrations of the parent nuclide.

- for energies, the values are expressed in keV.

<u>Remark</u>: When a more precise evaluation of a half life is required, for example in days instead of years, the reader is referred to the commented evaluation included on the CD ROM or on the websites of the LNE-LNHB or the BIPM. This will avoid the introduction of rounding errors.

NOTICE

This report was printed in 2010, new evaluations and updated issues will be available on: http://www.nucleide.org/NucData.htm http://www.nucleide.org/NucData.htm

TABELLE DER RADIONUKLIDE

EINLEITUNG

Die Evaluation der Zerfallsdaten für die "Table de Radionucléides" durch das Laboratoire National Henri Becquerel (BNM-LNHB/CEA) begann im Jahre 1974, diese Arbeit wurde bis 1987 fortgesetzt, und es wurden vier Bände veröffentlicht [87Ta]. Seitdem sind des weiteren vier Bände der *Monographie* BIPM-5 [04Be, 06Be, 08Be] erschienen. Der vorliegende neue Band stellt die Fortsetzung der vorhergehenden Arbeit dar.

Darüber hinaus wurde im LNHB eine computerbasierte Datenbank entwickelt. Die Software NUCLEIDE erleichtert die Aktualisierung und die Einbeziehung weiterer Daten und ermöglicht den Zugang zu den Kern- und Atomdaten für den Anwender "auf Tastendruck".

Der Zweck dieser Tabelle ist es, empfohlene Daten einer begrenzten Anzahl von Radionukliden für metrologische und praktische Anwendungen wie etwa in der Nuklearmedizin, der Umweltüberwachung, dem Brennstoffkreislauf, der Reaktorabschirmung usw. zur Verfügung zu stellen.

Die empfohlenen Daten betreffen die Halbwertszeit, die Art des Zerfalls und die Charakteristika der α -, β -, γ -, Röntgen- und Elektronenemissionen und der entsprechenden Übergänge.

Um die bereits vorliegenden Daten zu aktualisieren und neue Evaluationen schneller einbeziehen zu können, vereinbarten das Laboratoire National Henri Becquerel (LNHB, Frankreich) und die Physikalisch-Technische Bundesanstalt (PTB, Deutschland) eine Übereinkunft zur Zusammenarbeit. Es schlossen sich das Idaho National Engineering and Environmental Laboratory (INEEL, USA), das Lawrence Berkeley National Laboratory (LBNL, USA) und das Khlopin Radium Institute (KRI, Rußland) an. Eine der ersten Arbeiten dieser Gruppe war es, die in diesen Evaluationen benutzte Methodologie zu diskutieren und festzulegen. Die Datenbank umfaßt empfohlene Daten und ihre Unsicherheiten, die aus den verfügbaren experimentellen Daten oder theoretischen Berechnungen gewonnen wurden. Alle für die Evaluation benutzten Referenzen werden angegeben.

Dieser Band ist die fünfte Ausgabe der Monographie BIPM-5.

EMPFOHLENE WERTE UND UNSICHERHEITEN

Die Hauptschritte für die Evaluation der Daten und Unsicherheiten sind:

- Eine kritische Analyse aller verfügbaren Veröffentlichungen, um einen jeweils veröffentlichten Wert und seine Unsicherheit - auf die kombinierte Standardunsicherheit zurückgeführt - zu berücksichtigen oder auszuschließen.

- Die Bestimmung eines empfohlenen Wertes, der entweder das gewichtete oder das ungewichtete Mittel der veröffentlichten Werte ist. Die Entscheidung wird nach der Prüfung des reduzierten Chi-Quadrat-Werts getroffen. Im Falle des gewichteten Mittels wird das Gewicht jedes Einzelwerts auf 50 % begrenzt. Die Unsicherheit, als u_c bezeichnet, ist der größere Wert der inneren oder äußeren Unsicherheit. Für einen diskrepanten Datensatz kann sie so vergrößert werden, daß der genaueste Einzelwert in der Unsicherheit mit eingeschlossen ist.

Für einige Anwendungen ist es notwendig, eine vergrößerte Unsicherheit, als U bezeichnet, wie folgt zu definieren:

 $U(y) = k \times u_c(y)$ wo k der Erweiterungsfaktor ist. Für die vorliegende Veröffentlichung ist die erweitere Unsicherheit mit k = 1 berechnet.

Die Werte der Unsicherheit beziehen sich auf die letzten Stellen, d. h.:

9,230(11) bedeutet 9,230 \pm 0,011 und 9,2(11) bedeutet 9,2 \pm 1,1

Wenn ein Wert ohne Unsicherheit angegeben ist, bedeutet das, daß dieser Wert als fragwürdig zu betrachten ist. Er wird zur Information mitgeteilt und ist oft abgeschätzt aus dem Zerfallsschema im Sinne "in der Größenordnung von".

Informationen über die Evaluationsprozedur können aus den Referenzen [85Zi, 96He, 99In] oder direkt von den Autoren bezogen werden.

Die Bedeutung der evaluierten Daten kann aus Ref. [99In] entnommen werden.

NUMERIERUNG

Die Kernniveaus werden willkürlich numeriert von 0 für den Grundzustand bis zu n für das n-te angeregte Niveau. Alle Übergänge werden durch ihr Ausgangs- und Endniveau gekennzeichnet. Für Übergänge mit geringen Wahrscheinlichkeiten, die nicht im Zerfallsschema gezeigt werden können, werden als Ausgangs- und Endniveau (-1, n) angegeben.

Für die 511 keV-Gamma-Emission, die dem Beta Plus-Zerfall folgt, ist die angenommene Numerierung (- 1, -1).

EINHEITEN

Die empfohlenen Werte sind ausgedrückt:

- für Halbwertszeiten:

. in Sekunden für $T_{1/2} \leq 60$ Sekunden	S
. in Minuten für $T_{1/2} > 60$ Sekunden	min
. in Stunden für $T_{1/2} > 60$ Minuten	h
. in Tagen für $T_{1/2} > 24$ Stunden	d
. in Jahren für $T_{1/2} > 365$ Tage	a

1 a = 365,242 198 d = 31 556 926 s

- für Übergangswahrscheinlichkeiten und die Anzahl der emittierten Teilchen werden Werte angegeben, die sich auf 100 Zerfälle beziehen.
- die Werte der Energien sind in keV ausgedrückt.

HINWEIS

Dieses Dokument wurde im Jahre 2010 erstellt. Alle späteren Fassungen oder neueren Evaluationen können vom Leser unter <u>http://www.nucleide.org/NucData.htm</u> <u>http://www.bipm.org/en/publications/monographie-ri-5.html</u>

abgerufen werden.

ТАБЛИЦА РАДИОНУКЛИДОВ

ВВЕДЕНИЕ

Оценка данных распада для Table de Radionucléides, BNM – LNHB/CEA, была начата в 1974 г. и продолжалась до 1987 г. К тому времени были опубликованы четыре тома [87Ta] и затем, в 1999 г., был опубликован пятый том, содержащий ревизованные оценки для 30 выбранных радионуклидов [99Be]. Эта работа была продолжена, и три тома были опубликованы как *Monographie* BIPM-5 [04Be, 06Be, 08Be].

В дополнение в LNHB была развита компьютерная форма Table de Radionucléides (программа NUCLEIDE) с тем, чтобы обеспечить более простое обновление и дополнение данных и, очевидно, также с целью предложить пользователю более легкий доступ к ядерным и атомным данным распада путем "нажатия кнопки".

Цель настоящего издания - дать рекомендованные данные для нуклидов, представляющих специфический интерес для метрологии или практических приложений, таких как ядерная медицина, мониторинг, реакторная защита и др.

Первичные рекомендованные данные включают периоды полураспада, виды распада, характеристики X- и гамма-излучений, электронных излучений, альфа- и бета-переходов и излучений и погрешности величин этих характеристик. В книге дан полный список литературы, использованной для оценок.

Для того чтобы обновить данные по нуклидам, уже имеющимся в Table de Radionucléides, и добавить новые оценки, Национальная лаборатория им. Анри Беккереля (LNHB, Франция) и Физико-Технический Институт (РТВ, Германия) заключили кооперативное соглашение. К ним затем присоединились Национальная лаборатория прикладных и экологических исследований Айдахо (INEEL, США), Лоуренсовская Национальная Лаборатория Беркли (LBNL, США) и Радиевый институт им. В.Г. Хлопина (KRI, Россия). Это международное сотрудничество основано на неформальном соглашении. Первоначальная работа состояла в обсуждении и принятии согласованной методологии, которая должна быть использована в этих оценках. Данные и связанные с ними погрешности были оценены с использованием всех имеющихся в распоряжении результатов экспериментов и с учетом теоретических рассмотрений.

Настоящий том представляет собой четвёртый выпуск Monographie BIPM-5.

РЕКОМЕНДОВАННЫЕ ЗНАЧЕНИЯ И ПОГРЕШНОСТИ

Основные шаги для оценки данных и их погрешностей следующие:

- критический анализ всех имеющихся оригинальных публикаций, чтобы принять или отвергнуть данное значение и его погрешность, приведенную к комбинированному стандартному отклонению;
- определение лучшего значения, которое является взвешенным или невзвешенным средним сохраненных величин; выбор взвешенного или невзвешенного среднего определяется анализом величины χ². В случае среднего взвешенного вес каждого оригинального результата ограничивается 50 %. В качестве итоговой погрешности (*u_c*) принимается большая из двух погрешностей среднего взвешенного: внутренней и внешней. Для расходящегося набора данных она может быть расширена, чтобы перекрыть самое точное входное значение.

Для некоторых применений может оказаться необходимым расширенная погрешность (U), выраженная как: $U(y) = k \times u_c(y)$, где k - коэффициент перекрытия. Для этой публикации принято k = 1.

Значение погрешности, в скобках, приводится в единицах последней значащей цифры, т.е.: 9,230 (11) означает $9,230 \pm 0,011$ и $9.2 \pm 1,1$

Если значение величины дается без погрешности, она считается сомнительной и приводится для информации. Такие величины часто оценивались из схемы распада под рубрикой "порядка".

Информацию о процедурах оценки можно получить из публикаций [85Zi, 96He, 99In] или непосредственно от авторов.

Информация о смысле физических величин может быть получена из [99In].

S

НУМЕРАЦИЯ

Ядерные уровни произвольно пронумерованы от 0 для основного состояния до n для n-ого возбужденного уровня. Все переходы обозначаются по их начальному и конечному уровням. Для слабых переходов, не показанных стрелкой в схеме распада, начальный и конечный уровни обозначаются как (-1, n).

Для гамма-излучения с энергией 511 кэВ, которое следует за бета-плюс распадом, принято обозначение (-1, -1).

ЕДИНИЦЫ

Рекомендованные значения выражены:

- для периодов полураспада:
- . в секундах для $T_{1/2} \leq 60$ секунд
- . в минутах для $T_{1/2} > 60$ секунд min
- . в часах для $T_{1/2} > 60$ минут h
- . в сутках для $T_{1/2} > 24$ часов d
- . в годах для *T*_{1/2} > 365 суток а

1 год = 365,242198 суток = 31 556 926 секунд

- для вероятностей переходов и числа испускаемых частиц значения даны на 100 распадов;
- для энергий значения выражены в килоэлектронвольтах (keV).

ПРИМЕЧАНИЕ

Этот выпуск подготовлен в 2010 г. Новые оценки и обновленные результаты можно найти на сайте:

http://www.nucleide.org/NucData.htm http://www.bipm.org/en/publications/monographie-ri-5.html

TABLA DE RADIONUCLEIDOS

INTRODUCCION

El Laboratorio Nacional Henri Becquerel (LNHB) inició en 1974 el estudio de datos nucleares y atómicos que caracterizan la desintegración de radionucleidos. Esas evaluaciones han permitido la publicación de cuatro volúmenes de la Tabla de Radionucleidos [87Ta, 99Be]. Este nuevo volumen es el siguiente en la continuación del estudio precedente *Monographie* BIPM-5 [04Be, 06Be, 08Be].

Para facilitar la corrección de nueva información y mejorar la comodidad de consulta a los lectores, el LNHB a creado una base de datos informatizada. El programa NUCLEIDE permite el acceso a la Tabla de Radionucleidos con la ayuda de menues en cascada disponibles con un simple « clic ».

El objetivo de la Tabla de Radionucleidos es el de proporcionar información sobre un número limitado de radionucleidos utilizados en el campo de la metrología o en otras disciplinas (medicina nuclear, medio ambiente, ciclo del combustible,etc.)

Los datos recomendados incluyen : el período de semidesintegración, los modos de desintegración, las emisiones α , β , γ , X y de electrones atómicos asociados a las mismas.

Con el propósito de actualizar y agregar nuevas evaluaciones rapidamente el *Laboratoire National Henri Becquerel* (LNHB, Francia) y el *Physikalisch-Technische Bundesanstalt* (PTB, Alemania) establecieron un acuerdo de colaboración. Posteriormente se unieron el *Idaho National Engineering & Environmental Laboratory* (INEEL, USA), *Lawrence Berkeley National Laboratory* LBNL, USA) y *Khoplin Radium Institute* (KRI, Rusia). El primer trabajo de esta colaboración internacional fue el de establecer el método y las reglas comunes de evaluación. Las evaluaciones proponen valores recomendados e incertidumbres asociadas. Éstos valores han sido evaluados a partir de datos experimentales. En su ausencia, los valores se obtienen por cálculos teóricos. Todas las referencias utilizadas para la evaluación de un radionucleido se citan al final de cada capítulo.

VALORES RECOMENDADOS E INCERTIDUMBRES

Las principales etapas para evaluar datos con sus incertidumbres son:

- Un análisis crítico de todas las publicaciones disponibles con el fin de obtener un valor con su incertidumbre, considerada como incertidumbre típica combinada.
- La determinación de un valor recomendado que es, según el caso, una media simple o ponderada de valores obtenidos de publicaciones. Ésto se decide tras el chi-cuadrado reducido. En el caso de una media ponderada para conjuntos de valores discrepantes, el peso estadístico relativo de cada valor es limitado al 50 %. La incertidumbre, u_c , es el mayor de los valores de las incertidumbres interna o externa. En el caso de conjuntos de valores discrepantes, este valor puede ser extendido con el fin de incluir el valor experimental más preciso.

Para ciertas aplicaciones, es necesario definir una incertidumbre expandida, llamada U:

 $U(y) = k \times u_{c}(y)$ donde k es el factor de cobertura.

El valor de k utilizado en esta publicación es: k = 1.

Los valores de incertidumbres indicados entre paréntesis corresponden a las últimas cifras significativas, por ejemplo:

9,230 (11)	significa	$9,230 \pm 0,011$	у
9,2 (11)	significa	$9,2 \pm 1,1$	

Valores dados sin incertidumbres se consideran dudosos (usualmente se presentan como valores aproximados, y a menudo estimados a partir de los esquemas de desintegración).

Para más información sobre las técnicas de evaluación consultar [85Zi], [96He], [99In] o directamente con el autor.

NUMERACION

Los niveles de un núcleo están arbitrariamente numerados desde "0" (para el nivel fundamental), hasta "n" para el enésimo nivel excitado. Las transiciones se representan por sus niveles inicial y final. En el caso de una transición débil e imposible de situar en el esquema de desintegración, el nivel inicial y el final están designados con la siguiente notación: (-1, n).

En el caso de una emisión γ de 511 keV que sigue a una desintegración β^+ , la notación adoptada es: (-1, -1).

UNIDADES

Los valores recomendados se dan:

- para los períodos de semidesintegración:	
	Símbolo
. en segundos para $T_{1/2} \le 60$ segundos	S
. en minutos para $T_{1/2} > 60$ segundos	min
. en horas para $T_{1/2} > 60$ minutos	h
. en días para $T_{1/2} > 24$ horas	d
. en años para $T_{1/2} > 365$ días	а

1 año = 365,242 198 días = 31 556 926 segundos;

- para las probabilidades de transición y número de partículas emitidas, los valores se dan por 100 desintegraciones;
- para las energías, los valores se expresan en keV.

ADVERTENCIA

Este documento ha sido imprimido en el 2010. Para obtener todas las nuevas evaluaciones actualizadas ulteriormente, el lector deberá referirse a los documentos disponibles en: http://www.nucleide.org/NucData.htm

http://www.bipm.org/en/publications/monographie-ri-5.html

RÉFÉRENCES

REFERENCES

REFERENZEN

REFERENCIAS

[87Ta] Table de Radionucléides, F. Lagoutine, N. Coursol, J. Legrand. ISBN 2 7272 0078 1 (LMRI, 1982-1987).

[85Zi] W.L. Zijp, Netherland Energy Research Foundation, ECN, Petten, The Netherlands, Rep. ECN-179.

[96He] **R.G. Helmer**, Proceedings of the Int. Symp. "Advances in alpha-, beta- and gamma-ray Spectrometry", St. Petersburg, September 1996, p. 71.

[96Be] **M.-M. Bé, B. Duchemin and J. Lamé**. Nucl. Instrum. Methods A369 (1996) 523 and Bulletin du Bureau National de Métrologie 110 (1998).

[99In] **Table de Radionucléides. Introduction, nouvelle version**. Introduction, revised version. Einleitung, überarbeitete Fassung. ISBN 2 7272 0201 6, BNM-CEA/LNHB BP 52, 91 191 Gif-sur-Yvette Cedex, France.

[99Be] M.-M. Bé, E. Browne, V. Chechev, R.G. Helmer, E. Schönfeld. Table de Radionucléides, ISBN 2 7272 0200 8 and ISBN 2 7272 0211 3(LHNB, 1988-1999).

[04Be] M.M. Bé, E. Browne, V. Chechev, V. Chisté, R. Dersch, C. Dulieu, R.G. Helmer, T.D. MacMahon, A.L. Nichols, E. Schönfeld. *Table of Radionuclides, Monographie BIPM-5, vo.l 1 & 2,* ISBN 92-822-2207-7 (set) and ISBN 92-822-2205-5 (CD), CEA/BNM-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

M.M. Bé, E. Browne, V. Chechev, V. Chisté, R. Dersch, C. Dulieu, R.G. Helmer, N. Kuzmenco, A.L. Nichols, E. Schönfeld. NUCLEIDE, *Table de Radionucléide sur CD-Rom*, Version 2-2004, CEA/BNM-LNHB, 91191 Gif-sur-Yvette, France.

[06Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU; Edgardo BROWNE, Coral BAGLIN; Valery CHECHEV, Nikolay KUZMENKO; Richard G. HELMER; Filip G. KONDEV; T. Desmond MACMAHON; Kyung Beom LEE. *Table of Radionuclides, Monographie BIPM-5, vol. 3,* ISSN 92-822-2204-7 (set), ISBN 92-822-2218-7 (Vol. 3) and ISBN 92-822-2219-5 (CD), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

[08Be] Marie-Martine BÉ, Vanessa CHISTÉ, Christophe DULIEU; Edgardo BROWNE; Valery CHECHEV, Nikolay KUZMENKO; Filip G. KONDEV; Aurelian LUCA; Mónica GALÁN; Andrew PEARCE; Xiaolong HUANG. *Table of Radionuclides, Monographie BIPM-5, vol. 4*, ISBN 92-822-2230-6 (Vol. 4) and ISBN 92-822-2231-4 (CD), CEA/LNE-LNHB, 91191 Gif-sur-Yvette, France and BIPM, Pavillon de Breteuil, 92312 Sèvres, France.

AUTEURS POUR CORRESPONDANCE

AUTHOR'S MAIL ADDRESSES

ADRESSEN DER AUTOREN

AUTORES PARA CORRESPONDENCIA

Toutes demandes de renseignements concernant les données recommandées et la façon dont elles ont été établies doivent être adressées directement aux auteurs des évaluations.

Information on the data and the evaluation methods is available from the authors listed below.

Informationen über die Daten und Evaluationsprozeduren können bei den im folgenden zusammengestellten Autoren angefordert werden:

Todos los pedidos de información relativos a datos recomendados y la manera de establecerlos deben dirigirse directamente a los autores de las evaluaciones.

Dr. Arzu Arinc

National Physical Laboratory Teddington, Middlesex, TW11 OLM, United Kingdom E-mail: <u>Arzu.Arinc@npl.co.uk</u>

Dr. Marie-Martine Bé

CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France Tel: 33-1-69-08-46-41 Fax: 33-1-69-08-26-19 E-mail: <u>mmbe@cea.fr</u>

Dr. Edgardo Browne

Lawrence Berkeley National Laboratory MS 88RO192, Berkeley, California 94720, USA Tel: (510) 486-7647 Fax: (510) 486-5757 E-mail: ebrowne@lbl.gov

Dr. Valery P. Chechev

V.G. Khlopin Radium Institute 28, 2nd Murinsky Ave., 194021 St. Petersburg, Russia Tel: 007 (812) 2473706 Fax: 007 (812) 2478095 E-mail: <u>chechev@atom.nw.ru</u> **Dr. Vanessa Chisté** CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France Tel: 33-1-69-08-63-07 E-mail: <u>vanessa.chiste@cea.fr</u>

Dr. Mónica Galán

CIEMAT, Laboratorio de Metrología de Radiaciones Ionizantes Avenida de la Complutense, 22 28040 Madrid, Spain E-mail: <u>monica.galan@ciemat.es</u>

Dr. Xialong Huang

China Nuclear Data center PO Box 275 (41) Beijing, China E-mail: <u>huang@ciae.ac.cn</u>

Dr. Filip G. Kondev

Applied Physics and Nuclear Data, Nuclear Engineering Division Argonne National Laboratory 9700 South Cass Ave. Argonne, IL 60439, USA Tel: 1-(630) 252-4484 Fax: 1-(630) 252-5287 E-mail: kondev@anl.gov

Dr. Aurelian Luca

IFIN-HH/Radionuclide Metrology Laboratory 407 Atomistilor street PO Box MG-6 077125 Mahurele, Ilfov County, Romania E-mail: aluca@ifin.nipne.ro

Dr. Xavier Mougeot

CEA/LNHB 91191 Gif-sur-Yvette, CEDEX, France E-mail: <u>xavier.mougeot@cea.fr</u>

Dr. Alan L. Nichols Department of Physics University of Surrey Guildford GU2 7XH, United Kingdom Tel: 44-1235-524077

E-mail: <u>alanl.nichols@btinternet.com</u>

Table of contents

(Volumes 4 & 5)

List of radionuclides included in:

Volume 5 – A = 22 to 244

Volume $4 - A = 133$ to 252

Mass	Nuclide	Page
22	Na-22	1
40	K-40	7
75	Se-75	13
124	Sb-124	21
207	Bi-207	33
211	Bi-211	41
217	At-217	47
225	Ra-225	53
225	Ac-225	59
228	Ra-228	81
231	Th-231	85
232	Th-232	95
233	Th-233*	101
233	Pa-233*	117
234	Th-234	127
235	U-235	133
237	U-237 [*]	145
238	Pu-238*	153
240	Pu-240*	165
241	Am-241*	175
242	Pu-242*	197
242	Am-242	203
243	Am-243*	209
244	Am-244	217
244	Am-244m	223

* : updated evaluations

Mass	Nuclide	Page
133	I-133	1
133	Xe-133	11
133	Xe-133m	17
135	Xe-135m	23
139	Ce-139	31
206	Tl-206	39
210	Tl-210	45
210	Pb-210	51
210	Bi-210	59
210	Po-210	65
213	Po-213	71
214	Pb-214	75
214	Bi-214	83
214	Po-214	111
217	Rn-217	117
218	Po-218	121
218	At-218	125
218	Rn-218	129
221	Fr-221	135
222	Rn-222	143
226	Ra-226 [*]	149
227	Ac-227	155
232	U-232	169
236	U-236	177
237	Np-237	183
238	Np-238	195
239	U-239	205
239	Np-239	221
239	Pu-239	231
241	Pu-241	259
246	Cm-246	269
252	Cf-252	277

* : updated evaluations

Table of contents

(Volumes 1, 2 & 3)

List of radionuclides included in:

Volume $3 - A = 3$ to 244		o 244	Volu	me $2 - A = 152$	Volume $1 - A = 7$ to 140			
Mass	Nuclide	Page	Mass	Nuclide	Page	Mass	Nuclide	Page
3	H-3	1	152	Eu-152	1	7	Be-7	1
55	Fe-55	5	153	Gd-153	21	11	C-11	7
56	Co-56	11	153	Sm-153	27	13	N-13	11
60	Co-60	23	154	Eu-154	37	15	O-15	17
63	Ni-63	29	155	Eu-155	59	18	F-18	21
65	Zn-65	33	166	Ho-166	67	24	Na-24	27
79	Se-79	39	166	Ho-166m	75	32	P-32	35
90	Sr-90	43	169	Yb-169	87	33	P-33	41
90	Y-90	47	170	Tm-170	99	44	Sc-44	45
90	Y-90m	53	177	Lu-177	107	44	Ti-44	51
108	Ag-108	59	186	Re-186	113	46	Sc-46	57
108	Ag-108m	67	198	Au-198	121	51	Cr-51	63
111	In-111	75	201	Tl-201	129	54	Mn-54	71
125	Sb-125*	81	203	Hg-203	135	56	Mn-56	77
137	Cs-137	91	204	Tl-204	141	57	Co-57	83
153	Sm-153*	99	208	Tl-208	147	57	Ni-57	91
159	Gd-159	109	212	Bi-212	155	59	Fe-59	99
203	Pb-203	115	212	Pb-212	167	64	Cu-64	105
233	Pa-233	123	212	Po-212	173	66	Ga-66	113
233	Th-233	133	216	Po-216	177	67	Ga-67	133
234	U-234	147	220	Rn-220	183	85	Kr-85	141
236	Np-236	155	224	Ra-224	189	85	Sr-85	147
236	Np-236m	163	226	Ra-226	195	88	Y-88	153
237	U-237	169	227	Th-227	201	89	Sr-89	161
238	U-238	177	228	Th-228	227	93	Nb-93m	167
242	Cm-242	185	238	Pu-238	235	99	Mo-99	173
243	Am-243	195	240	Pu-240	247	99	Tc-99m	183
244	Cm-244	203	241	Am-241	257	109	Cd-109	191
			242	Pu-242	277	110	Ag-110	199
* : upda	ted evaluations	5				110	Ag-110m	207
						123	I-123	219

123

125

129

131

131

133

140

140

Te-123m

Sb-125

I-129

I-131

Xe-131m

Ba-133

Ba-140

La-140

229

235

243

249

257

263

271

277

 Table of contents

 (Volumes 1 to 5 - All nuclides sorted by increasing atomic mass)

Mass	Nuclide	Vol.	Page	Mass	Nuclide	Vol.	Page	Mass	Nuclide	Vol.	Page
3	H-3	3	1	129	I-129	1	243	220	Rn-220	2	183
7	Be-7	1	1	131	I-131	1	249	221	Fr-221	4	135
11	C-11	1	7	131	Xe-131m	1	257	222	Rn-222	4	143
13	N-13	1	11	133	I-133	4	1	224	Ra-224	2	189
15	O-15	1	17	133	Xe-133	4	11	225	Ra-225	5	53
18	F-18	1	21	133	Xe-133m	4	17	225	Ac-225	5	59
22	Na-22	5	1	133	Ba-133	1	263	226	Ra-226	2	195
24	Na-24	1	27	135	Xe-135m	4	23	226	Ra-226 [*]	4	149
32	P-32	1	35	137	Cs-137	3	91	227	Ac-227	4	155
33	P-33	1	41	139	Ce-139	4	31	227	Th-227	2	201
40	K-40	5	7	140	Ba-140	1	271	228	Ra-228	5	81
44	Sc-44	1	45	140	La-140	1	277	228	Th-228	2	227
44	Ti-44	1	51	152	Eu-152	2	1	231	Th-231	5	85
46	Sc-46	1	57	153	Sm-153	2	27	232	Th-232	5	95
51	Cr-51	1	63	153	Sm-153*	3	99	232	U-232	4	169
54	Mn-54	1	71	153	Gd-153	2	21	233	Th-233	3	133
55	Fe-55	3	5	154	Eu-154	2	37	233	Th-233 [*]	5	101
56	Mn-56	1	77	155	Eu-155	2	59	233	Pa-233	3	123
56	Co-56	3	11	159	Gd-159	3	109	233	Pa-233*	5	117
57	Co-57	1	83	166	Ho-166	2	67	234	Th-234	5	127
57	Ni-57	1	91	166	Ho-166m	2	75	234	U-234	3	147
59	Fe-59	1	99	169	Yb-169	2	87	235	U-235	5	133
60	Co-60	3	23	170	Tm-170	2	99	236	U-236	4	177
63	Ni-63	3	29	177	Lu-177	2	107	236	Np-236	3	155
64	Cu-64	1	105	186	Re-186	2	113	236	Np-236m	3	163
65	Zn-65	3	33	198	Au-198	2	121	237	U-237	3	169
66	Ga-66	1	113	201	T1-201	2	129	237	U-237 [*]	5	145
67	Ga-67	1	133	203	Hg-203	2	135	237	Np-237	4	183
75	Se-75	5	13	203	Pb-203	3	115	238	U-238	3	177
79	Se-79	3	39	204	T1-204	2	141	238	Np-238	4	195
85	Kr-85	1	141	206	T1-206	4	39	238	Pu-238	2	235
85	Sr-85	1	147	207	Bi-207	5	33	238	Pu-238*	5	153
88	Y-88	1	153	208	T1-208	2	147	239	U-239	4	205
89	Sr-89	1	161	210	TI-210	4	45	239	Np-239	4	221
90	Sr-90	3	43	210	Pb-210	4	51	239	Pu-239	4	231
90	Y-90	3	47	210	Bi-210	4	59	240	Pu-240	2	247
90	Y-90m	3	53	210	Po-210	4	65	240	Pu-240*	5	165
93	Nb-93m	1	167	211	Bi-211	5	41	241	Pu-241	4	259
99	Mo-99	1	173	212	Pb-212	2	167	241	Am-241	2	257
99	Tc-99m	1	183	212	Bi-212	2	155	241	Am-241*	5	175
108	Ag-108	3	59	212	Po-212	2	173	242	Pu-242	2	277
108	Ag-108m	3	67	213	Po-213	4	71	242	Pu-242*	5	197
109	Cd-109	1	191	214	Pb-214	4	75	242	Am-242	5	203
110	Ag-110	1	199	214	Bi-214	4	83	242	Cm-242	3	185
110	Ag-110m	1	207	214	Po-214	4	111	243	Am-243	3	195
111	In-111	3	75	216	Po-216	2	177	243	Am-243*	5	209
123	Te-123m	1	229	217	At-217	5	47	244	Am-244	5	217
123	I-123	1	219	217	Rn-217	4	117	244	Am-244m	5	223
124	Sb-124	5	21	218	Po-218	4	121	244	Cm-244	3	203
125	Sb-125	1	235	218	At-218	4	125	246	Cm-246	4	269
125	Sb-125*	3	81	218	Rn-218	4	129	252	Cf-252	4	277

* : updated evaluations

Table of contents

(Volumes 1 to 5 - All nuclides sorted by alphabetical order)

Mass	Nuclide	Vol.	Page	Mass	Nuclide	Vol.	Page	Mass	Nuclide	Vol.	Page
225	Ac-225	5	59	166	Ho-166m	2	75	228	Ra-228	5	81
227	Ac-227	4	155	123	I-123	1	219	186	Re-186	2	113
108	Ag-108	3	59	129	I-129	1	243	217	Rn-217	4	117
108	Ag-108m	3	67	131	I-131	1	249	218	Rn-218	4	129
110	Ag-110	1	199	133	I-133	4	1	220	Rn-220	2	183
110	Ag-110m	1	207	111	In-111	3	75	222	Rn-222	4	143
241	Am-241	2	257	40	K-40	5	7	124	Sb-124	5	21
241	Am-241*	5	175	85	Kr-85	1	141	125	Sb-125	1	235
242	Am-242	5	203	140	La-140	1	277	125	Sb-125*	3	81
243	Am-243	3	195	177	Lu-177	2	107	44	Sc-44	1	45
243	Am-243*	5	209	54	Mn-54	1	71	46	Sc-46	1	57
244	Am-244	5	217	56	Mn-56	1	77	75	Se-75	5	13
244	Am-244m	5	223	99	Mo-99	1	173	79	Se-79	3	39
217	At-217	5	47	13	N-13	1	11	153	Sm-153	2	27
218	At-218	4	125	22	Na-22	5	1	153	Sm-153*	3	99
198	Au-198	2	121	24	Na-24	1	27	85	Sr-85	1	147
133	Ba-133	1	263	93	Nb-93m	1	167	89	Sr-89	1	161
140	Ba-140	1	203	57	Ni-57	1	91	90	Sr-90	3	43
7	Be-7	1	1	63	Ni-63	3	29	99	Tc-99m	1	183
207	Bi-207	5	33	236	Nn-236	3	155	123	Te-123m	1	229
210	Bi-210	4	59	236	Np-236m	3	163	227	Tt 125m Th_227	2	201
210	Bi_210	5	41	230	Np-237	4	183	227	Th_{227}	2	201
211	Bi-211 Bi-212	2	155	237	Np-238		105	220	Th-220	5	85
212	Bi-212 Bi-214	2 4	83	230	Np-239		221	231	Th_232	5	95
11	C_{-11}	1	7	15	O-15	1	17	232	Th_232	3	133
100	Cd-109	1	101	32	D-15 D-32	1	35	233	Th_{233}^{*}	5	101
130	Ce-139	1	31	32	P-33	1	33 41	233	Th_{233}	5	101
252	Cf-252	4	277	233	Pa_233	3	123	234	Ti-234	1	51
232	CI=2.52 Cm=2.42	3	185	233	$P_{2} - 233^{*}$	5	123	201	T1-44 T1-201	2	120
242	Cm-242	3	202	203	1 a-233 Db 203	3	117	201	TI-201	2	129
244	Cm - 244	3	203	203	Ph 210	3	51	204	TI-204	2 1	20
240 56	Cn 56	4	11	210	Dh 212	4	167	200	TI-200	4	147
57	Co-50	1	11 92	212	10-212 Ph 214	2 1	75	208	TI-208	2 1	147
60	Co-57	1	22	214	10-214 Do 210	4	65	210	$T_{\rm m} = 170$	4	43
51	C_{r} 51	1	23 63	210	Do 212	4	172	170	1111-170 11 222	2 1	160
127	C_{1}	1	03	212	F0-212 Do 212	∠ 4	71	232	U-232	4	109
64	Cu 64	1	105	213	Po 214	4	/1	234	U-234	5	14/
152	Cu-04 Eu 152	2	105	214	Do 216	4	111	235	U-255	5	133
154	Eu-132	2	1	210	F0-210	∠ 4	1//	230	U-230	4	1//
154	Eu-134	2	57	218	P0-218	4	121	237	0-257	5	109
133	Eu-133	2 1	39 21	230	Pu-238	2	255 152	237	U-237	2	143
18	F-18	1	21	238	Pu-238	5	155	238	U-238	3	205
55 50	Fe-55	3	5	239	Pu-239	4	231	239	U-239	4	205
59	Fe-59	1	99	240	Pu-240	2	247	131	Xe-131m	1	257
221	Fr-221	4	135	240	Pu-240	5	165	133	Xe-133	4	11
66	Ga-66	1	113	241	Pu-241	4	259	133	Xe-133m	4	17
67	Ga-67	1	133	242	Pu-242	2	277	135	Xe-135m	4	23
153	Gd-153	2	21	242	Pu-242	5	197	88	Y-88	1	153
159	Ga-159	3	109	224	Ka-224	2	189	90	Y-90	3	47
3	H-3	3	1	225	Ra-225	5	53	90	Y-90m	3	53
203	Hg-203	2	135	226	Ra-226	2	195	169	Yb-169	2	87
166	Ho-166	2	67	226	Ra-226 ^{**}	4	149	65	Zn-65	3	33

* : updated evaluations

1 Decay Scheme

Na-22 disintegrates predominantly to the 1275 keV level of Ne-22 by beta plus emission and electron capture. A very small fraction (0,056 %) disintegrates to the ground state of Ne-22. Le sodium 22 se désintègre essentiellement vers le niveau de 1275 keV de néon 22 par émission bêta plus et capture électronique. Une faible proportion (0,056 %) se désintègre vers le niveau fondamental.

2 Nuclear Data

 $T_{1/2}(^{22}\text{Na})$: 2,6029 (8) a $Q^+(^{22}\text{Na})$: 2843,02 (21) keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$	P_K	P_L	
$ \begin{array}{c} \epsilon_{0,1} \\ \epsilon_{0,0} \end{array} $	$\begin{array}{c} 1568,\!44 (21) \\ 2843,\!02 (21) \end{array}$	$9,64 (9) \\ 0,00098 (25)$	Allowed Unique 2nd Forbidden	$7,41 \\ 14,91$	0,923 (4)	0,077 (4)	

2.2 β^+ Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$egin{smallmatrix} eta_{0,1}^+ \ eta_{0,0}^+ \end{split}$	$546,44 (21) \\1821,02 (21)$	$90,30 (9) \\ 0,055 (14)$	Allowed Unique 2nd Forbidden	7,4 14,9

2.3 Gamma Transitions and Internal Conversion Coefficients	\mathbf{ts}
--	---------------

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-6}) \end{array}$	$\begin{array}{c} \alpha_T \\ (10^{-6}) \end{array}$	$\begin{array}{c} \alpha_{\pi} \\ (10^{-5}) \end{array}$
$\gamma_{1,0}({ m Ne})$	1274,577(7)	99,94 (13)	E2	6,36~(9)	6,71 (9)	2,34 (3)

3 Atomic Data

3.1 Ne

ω_K	:	0,0152	(8)
$\bar{\omega}_L$:	0,0001	(1)
n_{KL}	:	$1,\!985$	(6)

3.1.1 X Radiations

		Energy keV	Relative probability
X _K	17	0.0400	50.00
	$\kappa \alpha_2$	0,8486	$50,\!28$
	$K\alpha_1$	0,8486	100

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL	0,75 - 0,81	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AK} $ec_{1,0 \alpha}$	(Ne) KLL (Ne)	0,75 - 0,81 252	$\{ 8,8 (1) \\ 0,002339 (30) $
$egin{smallmatrix} eta_{0,0}^+ \ eta_{0,0}^+ \ eta_{0,0}^+ \end{split}$	max: avg:	$\begin{array}{rrr} 1821,02 & (21) \\ 835,04 & (19) \end{array}$	$0,055\ (14)$
$ \begin{array}{c} \beta_{0,1}^+ \\ \beta_{0,1}^+ \\ \beta_{0,1}^+ \end{array} $	max: avg:	$\begin{array}{ccc} 546,44 & (21) \\ 215,62 & (17) \end{array}$	90,30 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
$\begin{array}{c} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Ne) (Ne)	$0,8486 \\ 0,8486$	$0,0453 (25) \\ 0,090 (5)$	} Κα }

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
γ^{\pm} $\gamma_{1,0}(\text{Ne})$	$511 \\ 1274,537 (7)$	$\begin{array}{c} 180,7 \ (2) \\ 99,94 \ (13) \end{array}$

6 Main Production Modes

 $\begin{array}{l} {\rm F}-19(\alpha,\!n){\rm Na}-22\\ {\rm Mg}-24({\rm d},\!\alpha){\rm Na}-22 \end{array}$

7 References

- B. T. WRIGHT. Phys. Rev. 90 (1953) 159 (Beta plus emission probabilities)
- W.E.KREGER. Phys. Rev. 96 (1954) 1554 (Electron Capture/Beta plus ratio)
- R.SHERR, R.H.MILLER. Phys. Rev. 93 (1954) 1076 (Electron Capture/Beta plus ratio)
- P.F.ZWEIFEL. Phys. Rev. 96 (1954) 1572 (Electron Capture/Beta plus ratio)
- R.A.Allen, W.E.Burcham, K.F.CHAKETT, G.L.MUNDAY, P.REASBECK. Proc. Phys. Soc. 68 (1955) 681 (Electron Capture/Beta plus ratio)
- W.F.MERRIT, P.J.CAMPION, R.C.HAWKINGS. Can. J. Phys. 35 (1957) 16 (Half-life)
- J.KÖNIJN, B.VAN NOOIJEN, H.L.HAGEDOORN, A.H.WAPSTRA. Nucl. Phys. 9 (1958) 296 (Electron Capture/Beta plus ratio)
- M.K.RAMASWAMY. Indian J. Phys. 33 (1959) 285 (Electron Capture/Beta plus ratio)
- E. I. WYATT, S. A. REYNOLDS, T. H. HANDLEY, W. S. LYON, H. A. PARKER. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- A.WILLIAMS. Nucl. Phys. 52 (1964) 324 (Electron Capture/Beta plus ratio)
- S. C. ANSPACH, L. M. CAVALLO, S. B. GARFINKEL, J. M. R. HUTCHINSON, C. N. SMITH. Report NP-15663 (1965)
- (Half-life)
- H. LEUTZ, H. WENNINGER. Nucl. Phys. A99 (1967) 55 (Electron Capture/Beta Plus Ratio)
- E.VATAI, D.VARGA, J.UCHRIN. Nucl. Phys. A116 (1968) 637 (Electron Capture/Beta plus ratio)
- M.F.MCCANN, K.M.SMITH. J. Phys. (London) A2 (1969) 392 (Electron Capture/Beta plus ratio)
- E. K. WARBURTON, G. T. GARVEY, I. S. TOWNER. Ann. Phys. 57 (1970) 174 (Beta plus emission probabilities)
- J. S. MERRITT, J. V. G. TAYLOR. Report AECL-3912 (1971) (Electron Capture/Beta Plus Ratio)
- J. KANTELE, M. VALKONEN. Nucl. Instrum. Methods 112 (1973) 501 (Gamma emission probabilities)
- T. D. MACMAHON, A. P. BAERG. Can. J. Phys. 54 (1976) 1433 (Electron Capture/Beta Plus Ratio)
- H. E. BOSCH, J. DAVIDSON, M. DAVIDSON, L. SZBISZ. Z. Phys. A280 (1977) 321 (Electron Capture/Beta Plus Ratio)
- W.BAMBYNEK, H.BEHRENS, M.H.CHEN, B.CRASEMANN, M.L.FITZPATRICK, K.W.D.LEDINGHAM, H.GENZ, M.MUTTERER, R.L.INTERMANN. Rev. Mod. Phys. 49 (1977) 77 (Electron Capture/Beta plus ratio)
- R.B.FIRESTONE, WM.C.MCHARRIS, B.R.HOLSTEIN. Phys. Rev. C18 (1978) 2719 (Electron Capture/Beta plus ratio)
- P.SCHLUTER, G.SOFF. At. Data Nucl. Data Tables 24 (1979) 509 (Internal-pair formation coefficient)
- H. HOUTERMANNS, O. MILOSEVICH, F. REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 151 (Half-life)
- A. R. RUTLEDGE, L. V. SMITH, J. S. MERRITT. Report NBS-SP-626 (1982) 5 (Half-life)
- A. P. BAERG. Can. J. Phys. 61 (1983) 1222 (Electron Capture/Beta Plus Ratio)
- H.H.HANSEN. Nuc. Sci. Technol. 6 (1985) 777 (K ICC, T ICC)
- V.KUNZE, W.D.SCHMIDT-OTT, H.BEHRENS. Z. Physik A337 (1990) 169 (Electron Capture/Beta plus ratio)
- W. BAMBYNEK, T. BARTA, R. JEDLOVSZKY, P. CHRISTMAS, N. COURSOL, K. DEBERTIN, R. G. HELMER, A. L. NICHOLS, F. J. SCHIMA, Y. YOSHIZAWA. Report IAEA-TECDOC 619 (1991) (Half-life and Gamma emission probability evaluations)

- E. SCHÖNFELD. Report PTB 6.33-95-2 (1995) (PK, PL, PM theory)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (K, L, Auger electron emission probabilities)
- M.-M.Bé, B.Duchemin, E.Browne, S.-C.Wu, V.Chechev, R.Helmer, E.Schönfeld. CEA-ISBN 2-7272-0211-31 (1999)
 - (Evaluation)
- M.-M.Bé, B.Duchemin, E.Browne, S.-C.Wu, V.Chechev, R.Helmer, E. Schönfeld. CEA-ISBN 2-7272-0200-8 (1999)
- (Evaluation)
- R. G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods A450 (2000) 35 (Gamma ray energies)
- M. P. UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.JR.NESTOR. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- M.Mukherjee, A.Kellerbauer, D.Beck, K.Blaum, G.Bollen, F.Carrel, P.Delahaye, J.Dilling, S.George, C.Guenaut, F.Herfurth, A.Herlert, H.-J.Kluge, U.Koster, D.Lunney, S.Schwarz, L.Schweikhard, C.Yazidjian. Phys. Rev. Lett. 93 (2004) 150801 (Na mass excess)
- O.NÄHLE, K.KOSSERT, R.KLEIN. Appl. Rad. Isotopes 66 (2008) 865 (Electron Capture/Beta plus ratio)
- M.Mukherjee, D. Beck, K. Blaum, G. Bollen, P. Delahaye, J. Dilling, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, U. Koster, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian. Eur. Phys. J. A35 (2008) 31 (Na mass excess)
- G. Audi, W.Meng, D. Lunney, B. Pfeiffer. Priv. Communication (2009) (Mass excess)

1 Decay Scheme

K-40 is a natural isotope with an isotopic abundance of 0.0117 (1) %. It disintegrates by beta minus emission to the Ca-40 fundamental level for 89.25 (17) %, by electron capture to the 1460 keV level of Ar-40 for 10.55 (11) %, to the ground state level of Ar-40 for 0.2 (1) % and by beta plus for 0.00100 (12) %. Le potassium 40 est un isotope naturel dont l'abondance est de 0,0117 (1)%. Il se désintègre pour 89,25 (17) % par émission bêta moins vers le niveau fondamental du calcium 40, par capture électronique vers l'argon 40, pour 10,55 (11) % vers le niveau de 1460 keV et pour 0,2 (1) % vers le niveau fondamental.

2 Nuclear Data

$T_{1/2}(^{40}\mathrm{K})$:	$1,\!2504$	(30)	$10^{9} {\rm a}$
$Q^{+}(^{40}\mathrm{K})$:	$1504,\!69$	(19)	keV
$Q^{-}(^{40}\mathrm{K})$:	1311,07	(11)	keV

2.1 β^- Transitions

	${ m Energy}\ { m keV}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,0}^-$	1311,07 (11)	89,25 (17)	Unique 3rd Forbidden	20,58

2.2 β^+ Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$eta^+_{0,0}$	482,9 (3)	0,00100 (12)	Unique 3rd Forbidden	21,35

2.3 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,1} \ \epsilon_{0,0}$	$\begin{array}{c} 44.0 \ (3) \\ 1311.07 \ (11) \end{array}$	$\begin{array}{c} 10,55 \ (11) \\ 0,2 \ (1) \end{array}$	Unique 1st Forbidden Unique 3rd Forbidden	$11,55 \\ 21,35$	$\substack{0,763\\0,88}$	$0,209 \\ 0,086$	$0,027 \\ 0,013$

2.4 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$\binom{\alpha_K}{(10^{-5})}$	$ \begin{pmatrix} \alpha_L \\ (10^{-6}) \end{pmatrix} $	$\begin{array}{c} \alpha_M \\ (10^{-7}) \end{array}$	$ \substack{\alpha_T \\ (10^{-5})} $	$ \begin{array}{c} \alpha_{\pi} \\ (10^{-5}) \end{array} $
$\gamma_{1,0}(\mathrm{Ar})$	1460,822 (6)	10,55 (11)	E2	2,63 (4)	2,15(3)	2,10 (3)	10,28 (15)	7,3 (5)

3 Atomic Data

3.1 Ar

ω_K	:	$0,\!1199$	(28)
$\bar{\omega}_L$:	$0,\!00147$	(30)
n_{KL}	:	$1,\!697$	(6)

3.1.1 X Radiations

		$egin{array}{c} { m Energy} \\ { m keV} \end{array}$		Relative probability
X_{K}	$egin{array}{c} { m K}lpha_2 \\ { m K}lpha_1 \end{array}$	2,95566 2.95774		$50,\!49$ 100
	$\begin{array}{c} \mathrm{K}\beta_1\\ \mathrm{K}\beta_5^{\prime\prime}\end{array}$	3,1905	} }	16,24
X_L	$egin{array}{c} { m L}\ell \ { m L}\eta \ { m L}eta \end{array}$	$0,2195 \\ 0,2215 \\ 0,3112 - 0,3114$		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY	2,511 - 2,669 2,831 - 2,942 3,149 - 3,174	$100 \\ 21,6 \\ 1,16$
Auger L	$0,\!17-0,\!31$	

4 Electron Emissions

		Energy keV		Electrons per 100 disint.	
e_{AL}	(Ar)	0,17 -	0,31		2,22 (2)
e _{AK}	(Ar) KLL KLX KXY	2,511 - 2,831 - 3,149 -	2,669 2,942 3,174	} } }	7,24 (11)
$ec_{1,0}$ T	(Ar)	1457,645 -	1460,835	0	,001085 (19)
$egin{smallmatrix} eta^+_{0,0} \ eta^+_{0,0} \ eta^+_{0,0} \end{split}$	max: avg:	482,9	(3)		0,00100 (12)
$\beta_{\overline{0,0}}^{-}$ $\beta_{\overline{0,0}}^{-}$	max: avg:	1311,07 508,32	(11) (6)		89,25 (17)

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
$\begin{array}{c} {\rm XL} \\ {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \\ {\rm XK}\beta_1 \end{array}$	(Ar) (Ar) (Ar) (Ar)	0,2195 - 0,3114 2,95566 2,95774 3,1905	}	0,003 (1) 0,299 (9) 0,592 (17) 0,096 (4)	$\begin{array}{l} \} \ {\rm K}\alpha \\ \\ \\ \\ {\rm K}'\beta_1 \end{array}$
5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
γ^{\pm} $\gamma_{1,0}(\mathrm{Ar})$	$511 \\ 1460,822 (6)$	$\begin{array}{c} 0,00200 \ (24) \\ 10,55 \ (11) \end{array}$

- G. ORBAN. Sitzb. Akad. Wiss. Wien Abt. IIa 140 (1931) 121 (Partial EC half-life measurement)
- E. GLEDITSCH, T. GRAF. Phys. Rev. 72 (1947) 640 (Partial EC half-life measurement)
- L.H. Ahrens, R.D. Evans. Phys. Rev. 74 (1948) 279 (Partial Beta- half-life measurement)
- T. GRAF. Phys. Rev. 74 (1948) 831 (Partial Beta- half-life measurement)
- O. HIRZEL, H. WÄFFEL. Phys. Rev. 74 (1948) 1553 (Partial Beta- half-life measurement)
- J.J. FLOYD, L.B. BORST. Phys. Rev. 75 (1949) 1106 (Total half-life measurement)
- R.W. STOUT. Phys. Rev. 75 (1949) 1107 (Partial Beta- half-life measurement)
- G.A. SAWYER, M.L. WIEDENBECK. Phys. Rev. 79 (1950) 490 (Total half-life measurement)
- G.A. SAWYER, M.L. WIEDENBECK. Phys. Rev. 76 (1950) 1535 (Partial EC half-life measurement)
- T. GRAF. Rev. Sci. Inst. 21 (1950) 285 (Partial EC half-life measurement)
- W.R. FAUST. Phys. Rev. 78 (1950) 624 (Total half-life measurement)
- F.G. HOUTERMANS, O. HAXEL, J. HEINTZE. Z. Physik 128 (1950) 657 (Total half-life measurement)
- F.W. SPIERS. Nature 165 (1950) 356 (Total half-life measurement)
- B. SMALLER, J. MAY, M. FREEDMAN. Phys. Rev. 79 (1950) 940 (Partial Beta- half-life measurement)
- C.F.G. DELANEY. Phys. Rev. 81 (1951) 158 (Partial Beta- half-life measurement)
- M.L. GOOD. Phys. Rev. 81 (1951) 891
- (Partial Beta- half-life measurement)
- P.R.J. BURCH. Nature 172 (1953) 361 (Partial EC half-life measurement)
- A.D. SUTTLE, W.F. LIBBY. Anal. Chem. 22 (1955) 921 (Partial Beta- and EC half-life measurement)
- S. KONO. J. Phys. Soc. Japan 10 (1955) 495
- (Partial Beta- half-life measurement)
- G. BACKENSTOSS, K. GOEBEL. Z. Naturforschg. 10a (1955) 920 (Partial EC half-life measurement)
- G.W. WETHERILL, G.J. WASSERBERG, L.T. ALDRICH, G.R. TILTON, R.J. HAYDEN. Phys. Rev. 103 (1956) 987 (Partial EC half-life measurement)
- A. MCNAIR, R.N. GROVER, H. W. WILSON. Phil. Mag. 1 (1956) 199 (Partial Beta- half-life measurement)

- G.W. WETHERILL. Science 126 (1957) 545 (Partial EC half-life measurement)
- W.H. KELLY, G.B. BEARD, R.A. PETERS. Nucl. Phys. 11 (1959) 492 (Partial Beta- half-life measurement)
- N.K. SAHA, J.B. GUPTA. Proc. Natl. Inst. Sci. India 26A (1960) 486 (Partial Beta- and EC half-life measurement)
- L.E. GLENDENIN. Ann. N.Y. Acad. Sci. 91 (1961) 166 (Partial Beta- half-life measurement)
- D.W. ENGELKEMEIR, K.F. FLYNN, L.E. GLENDENIN. Phys. Rev. 126 (1962) 1818 (Beta+/Beta- ratio measurement)
- D.G. FLEISHMAN, V.V. GLAZUNOV. Sov. At. En. 12 (1962) 338 (Partial Beta- half-life measurement)
- G.A. BRINKMAN, A.H.W. ATEN, JR., J.TH. VEENBOER. Physica 31 (1965) 1305 (Partial Beta- half-life measurement)
- H. LEUTZ, G. SCHULZ, H. WENNINGER. Z. Phys. 187 (1965) 151 (Partial Beta- and EC half-life measurement)
- K. EGELKRAUT, H. LEUTZ. Physik Verhandl. 11 (1966) 67 (Partial Beta- and EC half-life measurement)
- I. FEUERHAKE, A. HINZPETER. Naturwiss. 53 (1966) 272 (Partial Beta- half-life measurement)
- A.W. DERUYTTER, A.H.W. ATEN, JR., A. VAN DULMEN, C. KROL-KONIG, E. ZUIDEMA. Physica 32 (1966) 991 (Partial EC half-life measurement)
- J. D. KING, N. NEFF, H. W. TAYLOR. Nucl. Instrum. Methods 52 (1967) 349 (Gamma-ray energy)
- J. F. W. JANSEN, B. J. MEIJER, P. KOLDEWIJN. Radiochim. Acta 13 (1970) 171 (Gamma-ray energy)
- P. VENKATARAMAIAH, H. SANJEEVAIAH, B. SANJEEVAIAH. Ind. J. Pure Appl. Phys. 9 (1971) 133 (Partial Beta- half-life measurement)
- K. GOPAL, H. SANJEEVAIAH, B. SANJEEVAIAH. Am. J. Phys. 40 (1972) 721 (Partial Beta- half-life measurement)
- A. CESANA, M. TERRANI. Anal. Chem. 49 (1977) 1156 (Partial EC half-life measurement)
- P. SCHLUTER, G. SOFF. At. Data Nucl. Data Tables 24 (1979) 509 (Internal-pair formation coefficient)
- R. G. HELMER, R. J. GEHRKE, R. C. GREENWOOD. Nucl. Instrum. Methods 166 (1979) 547 (Gamma-ray energy)
- P. M. ENDT. Nucl. Phys. A521 (1990) 1 (Spin and Half-life of excited levels)
- P. M. ENDT. Nucl. Phys. A529 (1991) 763 (Spin and Half-life of excited levels)
- P. M. ENDT. Nucl. Phys. A564 (1993) 609 (Spin and Half-life of excited levels)
- E.SCHÖNFELD. Report PTB-6.33-95-2 (1995) (Electron capture coefficients)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (Atomic Data)
- V.P. CHECHEV. IAEA report INDC(CCP) (2001) 432 (Half-life evaluation)
- F. BEGEMANN, K.R. LUDWIG, G.W. LUGMAIR, K. MIN, L.E. NYQUIST, P.J. PATCHETT, P.R. RENNE, C.-Y. SHIH, I.M. VILLA, R.J. WALKER. Geochim. Cosmochim. Acta 65 (2001) 111 (Uncertainties)
- G. Audi, A.H. Wapstra, C. Thibault. Nucl. Phys. A 729 (2003) 337 (Q values)
- K. KOSSERT, E. GÜNTHER. Appl. Rad. Isotop. 60 (2004) 459 (Total half-life measurement)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR, JR. Nucl. Instr. and Meth. A 589 (2008) 202 (BrICC)

1 Decay Scheme

Se-75 disintegrates 100% by electron capture to excited levels and to the ground state of As-75. Le sélénium 75 se désintègre à 100% par capture électronique vers des niveaux excités et le niveau fondamental de l'arsenic 75.

2 Nuclear Data

$T_{1/2}(^{75}\text{Se})$:	119,781	(24)	d
$Q^{+}(^{75}\text{Se})$:	$863,\! 6$	(8)	keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	\lgft	P_K	P_L	P_M
$\begin{array}{c} \epsilon_{0,9} \\ \epsilon_{0,8} \\ \epsilon_{0,7} \\ \epsilon_{0,6} \\ \epsilon_{0,5} \\ \epsilon_{0,3} \\ \epsilon_{0,2} \\ \epsilon_{0,0} \end{array}$	$\begin{array}{c} 42,0 \ (8) \\ 245,9 \ (8) \\ 291,4 \ (8) \\ 395,0 \ (8) \\ 462,9 \ (8) \\ 584,1 \ (8) \\ 598,9 \ (8) \\ 863,6 \ (8) \end{array}$	$\begin{array}{c} 0,00734 \ (18) \\ 0,0126 \ (6) \\ 0,03484 \ (35) \\ 0,00036 \ (5) \\ 94,5 \ (21) \\ 2,1 \ (14) \\ 1,3 \ (21) \\ 1,42 \ (22) \end{array}$	1st Forbidden 1st Forbidden 1st Forbidden 1st Forbidden Allowed 1st Forbidden 1st Forbidden 1st Forbidden	$7,9 \\ 8,8 \\ 9,1 \\ 11,1 \\ 6,1 \\ 8 \\ 8,2 \\ 8,5$	$\begin{array}{c} 0,8038 \ (32) \\ 0,8724 \ (16) \\ 0,8740 \ (16) \\ 0,8762 \ (16) \\ 0,8770 \ (16) \\ 0,8770 \ (16) \\ 0,8781 \ (15) \\ 0,8794 \ (15) \end{array}$	$\begin{array}{c} 0,1633 \ (26) \\ 0,1071 \ (13) \\ 0,1058 \ (13) \\ 0,1041 \ (13) \\ 0,1033 \ (13) \\ 0,1025 \ (13) \\ 0,1024 \ (13) \\ 0,1014 \ (12) \end{array}$	$\begin{array}{c} 0,0300 \ (8) \\ 0,0186 \ (4) \\ 0,0184 \ (4) \\ 0,0180 \ (4) \\ 0,0179 \ (4) \\ 0,0177 \ (4) \\ 0,0177 \ (4) \\ 0,0175 \ (4) \end{array}$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$
$\begin{array}{c} \gamma_{3,2}(\mathrm{As})\\ \gamma_{4,3}(\mathrm{As})\\ \gamma_{2,1}(\mathrm{As}) \end{array}$	$\begin{array}{c} 14,8847 \ (13) \\ 24,3815 \ (14) \\ 66,0518 \ (8) \end{array}$	$\begin{array}{c} 0,0206 \ (6) \\ 5,5 \ (13) \\ 1,400 \ (42) \end{array}$	M1 (+E2) M2 M1+ 1,44% E2	$\begin{array}{c} 165,4 \ (25) \\ 0,29 \ (3) \end{array}$	$32,6 (5) \\ 0,034 (5)$	$5,13 (10) \\ 0,0052 (7)$	$\begin{array}{c} 204 \ (3) \\ 0,33 \ (3) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\begin{array}{c} & \gamma_{3,1}(\mathrm{As}) \\ \gamma_{5,4}(\mathrm{As}) \\ \gamma_{5,3}(\mathrm{As}) \\ \gamma_{5,2}(\mathrm{As}) \\ \gamma_{1,0}(\mathrm{As}) \\ \gamma_{9,7}(\mathrm{As}) \\ \gamma_{2,0}(\mathrm{As}) \\ \gamma_{2,0}(\mathrm{As}) \\ \gamma_{3,0}(\mathrm{As}) \\ \gamma_{4,0}(\mathrm{As}) \\ \gamma_{7,1}(\mathrm{As}) \\ \gamma_{5,0}(\mathrm{As}) \\ \gamma_{6,0}(\mathrm{As}) \\ \gamma_{9,3}(\mathrm{As}) \\ \gamma_{9,3}(\mathrm{As}) \end{array}$	$\begin{array}{c} 80,9365 \ (15) \\ 96,7340 \ (9) \\ 121,1155 \ (11) \\ 136,0001 \ (6) \\ 198,6060 \ (12) \\ 249,3 \ (3) \\ 264,6576 \ (9) \\ 279,5422 \ (10) \\ 303,9236 \ (10) \\ 373,61 \ (24) \\ 400,6572 \ (8) \\ 419,1 \ (4) \\ 468,6 \ (4) \\ 542,02 \ (18) \\ 556 \ 00 \ (18) \end{array}$	$\begin{array}{c} 0,0259 \ (15) \\ 6,35 \ (14) \\ 17,56 \ (37) \\ 59,2 \ (21) \\ 1,48 \ (6) \\ 0,00400 \ (13) \\ 59,17 \ (19) \\ 25,11 \ (9) \\ 1,379 \ (5) \\ 0,00258 \ (11) \\ 11,403 \ (43) \\ 0,0121 \ (6) \\ 0,00036 \ (5) \\ 0,000435 \ (6) \\ 0,00277 \ (12) \end{array}$	$\begin{bmatrix} E2 \\ E2 \\ E1 \\ E1 \\ M1+ 9,03\% E2 \\ [M1,E2] \\ M1+ 0,89\% E2 \\ M1+ 25,04\% E2 \\ E3 \\ [E2] \\ E1 \\ [M1,E2] \\ [M1,E2] \\ [M1,E2] \\ [E2] \\ [$	$\begin{array}{c} 1,486 \ (21) \\ 0,772 \ (11) \\ 0,0372 \ (6) \\ 0,0263 \ (4) \\ 0,0167 \ (9) \\ 0,0015 \ (9) \\ 0,00646 \ (25) \\ 0,0081 \ (4) \\ 0,0469 \ (7) \\ 0,00580 \ (9) \\ 0,001202 \ (17) \\ 0,003 \ (1) \\ 0,0022 \ (6) \\ 0,0015 \ (3) \\ 0 \ 0015 \ (3) \$	$\begin{array}{c} 0,216 \ (3) \\ 0,1044 \ (15) \\ 0,00388 \ (6) \\ 0,00274 \ (4) \\ 0,00182 \ (11) \\ 0,0017 \ (10) \\ 0,00068 \ (3) \\ 0,00087 \ (4) \\ 0,00592 \ (9) \\ 0,000628 \ (9) \\ 0,0001241 \ (18) \\ 0,00032 \ (11) \\ 0,00023 \ (7) \\ 0,00015 \ (4) \\ 0,00017 \ (2) \end{array}$	0,0326 (5) 0,01576 (22) 0,000588 (9) 0,000415 (6) 0,000277 (16) 0,00026 (15) 0,000104 (5) 0,000133 (6) 0,0000954 (14) 0,000049 (16) 0,000035 (10) 0,000023 (6) 0,0000252 (4)	$\begin{array}{c} 1,736 \ (25) \\ 0,893 \ (13) \\ 0,0417 \ (6) \\ 0,0295 \ (5) \\ 0,0189 \ (11) \\ 0,017 \ (10) \\ 0,0072 \ (3) \\ 0,0091 \ (4) \\ 0,0538 \ (8) \\ 0,00653 \ (10) \\ 0,001346 \ (19) \\ 0,0034 \ (11) \\ 0,0025 \ (7) \\ 0,0016 \ (4) \\ 0 \ 0,00182 \ (2) \end{array}$
$\gamma_{9,2}(\mathrm{As})$ $\gamma_{7,0}(\mathrm{As})$ $\gamma_{8,0}(\mathrm{As})$ $\gamma_{9,0}(\mathrm{As})$	572,22 (24) 617,8 (4) 821,56 (18)	$\begin{array}{c} 0,00277 (12) \\ 0,03626 (31) \\ 0,00453 (5) \\ 0,000134 (8) \end{array}$	$ \begin{array}{c} [E2] \\ M1 + 3,48 \% E2 \\ [M1,E2] \\ [E2] \end{array} $	$\begin{array}{c} 0,001028 (23) \\ 0,001040 (15) \\ 0,00103 (18) \\ 0,000558 (8) \end{array}$	$\begin{array}{c} 0,000172 \ (3) \\ 0,0001079 \ (16) \\ 0,000108 \ (20) \\ 0,0000582 \ (9) \end{array}$	$\begin{array}{c} 0,0000262 \ (4) \\ 0,00001646 \ (24) \\ 0,000017 \ (3) \\ 0,00000887 \ (13) \end{array}$	$\begin{array}{c} 0,00185 \ (3) \\ 0,001165 \ (17) \\ 0,00116 \ (20) \\ 0,000626 \ (9) \end{array}$

3 Atomic Data

3.1 As

ω_K	:	$0,\!575$	(4)
$\bar{\omega}_L$:	$0,\!0155$	(5)
n_{KL}	:	1,232	(4)

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}				
	$K\alpha_2$	10,50814		$51,\!53$
	$K\alpha_1$	$10,\!5438$		100
	$\mathrm{K}eta_3$	11,7204	}	
	$K\beta_1$	11,7263	}	
	${ m K}eta_5^{\prime\prime}$	11,821	}	22,87
	$f Keta_2 \ f Keta_4$	11,8643	}	0.86
	$\mathbf{n}p_4$		ſ	0,00
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	1,1195		
	$L\alpha$	$1,\!2816 - 1,\!2824$		
	$L\eta$	$1,\!1552$		
	$\mathrm{L}eta$	$1,\!3152 - 1,\!4892$		
	$\mathrm{L}\gamma$	$1,\!3508 - 1,\!5312$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	8,75 - 9,10 10,12 - 10,54 11,44 - 11,80	$100 \\ 31 \\ 2,4$
Auger L	$1,\!1-1,\!3$	

4 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(As)	1,1 - 1,3	119,6 (15)
e _{AK}	(As) KLL KLX KXY	8,75 - $9,1010,12$ - $10,5411,44$ - $11,80$	41,4 (14) } } }
$ec_{4,3}$ K $ec_{4,3}$ L $ec_{4,3}$ M $ec_{2,1}$ K $ec_{5,4}$ K $ec_{5,4}$ K $ec_{5,4}$ L $ec_{5,4}$ M $ec_{5,3}$ K $ec_{5,3}$ L $ec_{5,2}$ K $ec_{5,2}$ L $ec_{2,0}$ K $ec_{3,0}$ K $ec_{4,0}$ K	 (As) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 4,5 \ (12) \\ 0,88 \ (20) \\ 0,139 \ (31) \\ 0,305 \ (32) \\ 2,59 \ (7) \\ 0,350 \ (9) \\ 0,0528 \ (13) \\ 0,627 \ (17) \\ 0,0654 \ (17) \\ 1,51 \ (6) \\ 0,158 \ (6) \\ 0,378 \ (15) \\ 0,202 \ (10) \\ 0,0614 \ (9) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(As)	$1,\!1195 - 1,\!5312$		1,93~(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(As) (As)	10,50814 10,5438		$16,5\ (6)\ 31,9\ (11)$	} Κα }
$\begin{array}{c} \mathrm{XK}eta_3 \\ \mathrm{XK}eta_1 \\ \mathrm{XK}eta'' \end{array}$	(As) (As)	11,7204 11,7263	} }	7,30 (25)	${\rm K}'\beta_1$
$\begin{array}{c} \mathrm{XK}eta_5^{-} \\ \mathrm{XK}eta_2 \\ \mathrm{XK}eta_4 \end{array}$	(As) (As) (As)	$11,821 \\ 11,8643$	} } }	0.276(13)	$\mathbf{K}' \boldsymbol{\beta}_2$

5.2 Gamma Emissions

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	Photons per 100 disint.
$\begin{array}{c} \gamma_{3,2}(\mathrm{As}) \\ \gamma_{4,3}(\mathrm{As}) \\ \gamma_{2,1}(\mathrm{As}) \\ \gamma_{3,1}(\mathrm{As}) \\ \gamma_{5,4}(\mathrm{As}) \\ \gamma_{5,3}(\mathrm{As}) \\ \gamma_{5,2}(\mathrm{As}) \\ \gamma_{1,0}(\mathrm{As}) \\ \gamma_{9,7}(\mathrm{As}) \\ \gamma_{2,0}(\mathrm{As}) \\ \gamma_{3,0}(\mathrm{As}) \\ \gamma_{4,0}(\mathrm{As}) \end{array}$	Energy keV 14,8847 (13) 24,3815 (14) 66,0518 (8) 80,9365 (15) 96,7340 (9) 121,1155 (11) 136,0001 (6) 198,6060 (12) 249,3 (3) 264,6576 (9) 279,5422 (10) 303,9236 (10)	Photons per 100 disint. 0,0206 (6) 0,027 (6) 1,053 (20) 0,0095 (5) 3,35 (7) 16,86 (36) 57,7 (20) 1,46 (6) 0,00394 (12) 58,75 (19) 24,89 (9) 1,3082 (50)
$\gamma_{7,1}(As)$ $\gamma_{5,0}(As)$	$373,61 (24) \\400,6572 (8)$	$0,00256 (11) \\ 11,388 (42)$
$\gamma_{8,1}(As)$ $\gamma_{6,0}(As)$ $\gamma_{9,3}(As)$	$\begin{array}{c} 419,1 \ (4) \\ 468,6 \ (4) \\ 542,02 \ (18) \\ 557,8 \ (9) \end{array}$	$\begin{array}{c} 0,0121 \ (6) \\ 0,00036 \ (5) \\ 0,000435 \ (6) \\ 0,00276 \ (12) \end{array}$
$\gamma_{7,0}(As)$ $\gamma_{7,0}(As)$ $\gamma_{8,0}(As)$ $\gamma_{9,0}(As)$	572,22 (24) 617,8 (4) 821,56 (18)	$\begin{array}{c} 0,00210 \\ (12) \\ 0,03622 \\ (31) \\ 0,00453 \\ (5) \\ 0,000134 \\ (8) \end{array}$

 $^{\bf 75}_{34}\,{\rm Se}_{41}$

6 Main Production Modes

 $\begin{array}{l} {\rm Se}-74(n,\gamma){\rm Se}-75\\ {\rm As}-75(d,2n){\rm Se}-75\\ {\rm As}-75(p,n){\rm Se}-75 \end{array}$

- H. N. FRIEDLANDER, L. SEREN, S. H. TURKEL. Phys. Rev. 72 (1947) 23 (Half-life.)
- W. S. COWART, M. L. POOL, D. A. MCCOWN, L. L. WOODWARD. Phys. Rev. 73 (1948) 1454 (Half-life.)
- J. M. CORK, W. C. RUTLEDGE, C. E. BRANYAN, A. E. STODDARD, J. M. LE BLANC. Phys. Rev. 79 (1950) 889 (Half-life.)
- A. W. SCHARDT, J. P. WELKER. Phys. Rev. 99 (1955) 810 (Gamma-ray energies and emission intensities.)
- H. W. WRIGHT, E. I. WYATT, S. A. REYNOLDS, W. S. LYON, T. H. HANDLEY. Nucl. Sci. Eng. 2 (1957) 427 (Half-life.)
- F. R. METZGER, W. B. TODD. Nucl. Phys. 10 (1959) 220 (K conversion electron intensity.)
- H. T. EASTERDAY, R. L. SMITH. Nucl. Phys. 20 (1960) 155 (Half-life.)
- E. P. GRIGORIEV, A. V. ZOLOTAVIN. Nucl. Phys. 14 (1960) 443 (K conversion electron intensity.)
- M. DE CROËS, G. BÄCKSTRÖM. Ark. Fysik 16 (1960) 567 (K conversion electron intensity.)
- E. P. GRIGORIEV, A. V. ZOLOTAVIN. Nucl. Phys. 14 (1960) 443 (Gamma-ray emission intensities, ICC.)
- W. F. EDWARDS, C. J. GALLAGHER. Nucl. Phys. 26 (1961) 649 (K conversion electron intensity.)
- D. R. BRUNDRIT, S. K. SEN. Nucl. Phys. 68 (1965) 287 (K conversion electron intensity.)
- P. V. RAO, D. K. MCDANIELS, B. CRASEMANN. Nucl. Phys. 81 (1966) 296 (Gamma-ray emission intensities.)
- T. PARADELLIS, S. HONTZEAS. Nucl. Phys. A131 (1969) 378 (Gamma-ray emission intensities.)
- T. PARADELLIS, S. HONTZEAS. Can. J. Phys. 48 (1970) 2254 (Gamma-ray emission intensities.)
- W. W. PRATT. Nucl. Phys. A170 (1971) 223 (Gamma-ray emission intensities.)
- V. SUTELA. Ann. Acad. Sci. Fen. AVI 407 (1973) (K conversion electron intensity.)
- R. N. THOMAS, R. V. THOMAS. J. Phys. (London) A6 (1973) 1037 (Gamma-ray emission intensities.)
- J. L. CAMPBELL, J. Phys. (London) A7 (1974) 1451 (Gamma-ray emission intensities.)
- F. LAGOUTINE, J. LEGRAND, C. BAC. Int. J. Appl. Radiat. Isotop. 26 (1975) 131 (Half-life.)
- M. J. MARTIN. Report ORNL 5114 (1976) (Half-life.)
- K. S. KRANE. At. Data. Nucl. Data Tables 19 (1977) 363 (Mixing Ratio.)
- R. PRASAD. Can. J. Phys. 55 (1977) 2036 (Gamma-ray emission intensities and energies.)
- R. J. GEHRKE, R. G. HELMER, R. C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission intensities.)
- U. SCHÖTZIG, K. DEBERTIN, K. F. WALZ. Nucl. Instrum. Methods 169 (1980) 43 (Half-life, gamma-ray emission intensities.)

- H. HOUTERMANS, O. MILOSEVIC, F. REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life.)
- D. D. HOPPES, J. M. R. HUTCHINSON, F. J. SCHIMA, M. P. UNTERWEGER. NBS 626 (1982) 85 (Half-life.)
- K. SINGH, R. MITTAL, M. L. HASIZA, H. S. SAHOTA. Indian J. Phys. 57A (1983) 127 (X-ray intensities.)
- Y. YOSHIZAWA, Y. IWATA, T. KATOH, J.-Z. RUAN, Y. KAWADA. Nucl. Instrum. Methods 212 (1983) 249 (Gamma-ray emission probabilities.)
- K. SINGH, H. S. SAHOTA. J. Phys. (London) G10 (1984) 241 (Gamma-ray emission intensities.)
- R. JEDLOVSZKI, T. BARTA, M. CSIKOS, GY. HORVATH, L. SZUCS, A. ZSINKA. Report OHM-GS/32 Budapest (1987)
- (Gamma-ray emission probabilities.)
- R. JEDLOVSZKY, L. SZÜCS, A. SZÖRÉNYI. Nucl. Instrum. Meth. Phys. Res. A286 (1990) 462 (Gamma-ray emission intensities.)
- X. L. WANG, Y. WANG. Nucl. Instrum. Meth. Phys. Res. A286 (1990) 460 (Gamma-ray emission intensities.)
- R. A. MEYER. Fizika 22 (1990) 153 (Gamma-ray emission intensities.)
- W. BAMBYNEK, T. BARTA, R. JEDLOVSZKY, P. CHRISTMAS, N. COURSOL, K. DEBERTIN, R. G. HELMER, A. L. NICHOLS, F. J. SCHIMA, Y. YOSHIZAWA. Report IAEA-TECDOC 619 (1991) (Gamma-ray emission intensities, half-life.)
- U. SCHÖTZIG. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 141 (Gamma-ray emission intensities.)
- H. MIYAHARA, H. MATUMOTO, C. MORI, N. TAKEUCHI, T. GENKA. Nucl. Instrum. Meth. Phys. Res. A339 (1994) 203

(Gamma-ray emission intensities.)

- A. IWAHARA, I. P. A. SALATI, R. POLEDNA, C. J. DA SILVA, L. TAUHATA. Nucl. Instrum. Meth. Phys. Res A339 (1994) 381
- (Half-life.)
- T. E. SAZONOVA, A. V. ZANEVSKY, S. V. SEPMAN. Nucl. Instrum. Methods A369 (1996) 421 (X-ray intensities.)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (Atomic data.)
- L. C. LONGORIA, J. S. BENITEZ. Appl. Rad. Isotopes 48 (1997) 1069 (Gamma-ray emission intensities.)
- A. R. FARHAN, B. SINGH. Nucl. Data Sheets 86 (1999) 785 (Level energies, spin and parity.)
- Q. -S. ZHANG, L. YIN-MING, Y. CHANG, C. YAN, W. LI. At. Energ. Sci. Tech. (Chine) 34 (2000) 422 (X-ray intensities.)
- M. P. UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life.)
- M. HE, S. JIANG, L. DIAO, S. WU, C. LI. Nucl. Instrum. Meth. Phys. Res. B194 (2002) 393 (Half-life.)
- G. AUDI, A. H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 129 (Q.)
- D. R. RAO, K. V. SAI, M. SAINATH, K. VENKATARAMANIAH. Eur. Phys. J. A26 (2005) 41 (Gamma-ray emission intensities.)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC.)

CEA/LNE - LNHB /V. Chisté, M. M. Bé

1 Decay Scheme

L'antimoine 124 se désintègre par émission bêta moins vers des niveaux excités du tellure 124. Sb-124 disintegrates by beta minus emissions to excited levels in Te-124.

2 Nuclear Data

 $\begin{array}{rll} T_{1/2}(^{124}{\rm Sb}\) &:& 60,\!208 & (11) & {\rm d} \\ Q^-(^{124}{\rm Sb}\) &:& 2904,\!3 & (15) & {\rm keV} \end{array}$

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0.27}^{-}$	17,9(15)	0,0059~(5)	Allowed	6,9
$\beta_{0.26}^{-}$	38,6(15)	0,054~(9)	Allowed	6,9
$\beta_{0.25}^{-}$	89,7~(15)	0,0207~(12)		8,4
$\beta_{0.24}^{-}$	96,8~(15)	0,0012~(5)	1st Forbidden	$_{9,8}$
$\beta_{0,23}^{\underline{-}}$	129,2~(15)	$0,\!653~(6)$		7,5
$\beta_{0.22}$	$193,3\ (15)$	0,106~(6)	1st Forbidden	8,8
$\beta_{0,21}^{-1}$	202,7~(15)	$0,571\ (25)$	Allowed	8
$\beta_{0,20}^{-}$	$210,6\ (15)$	$8,\!663\ (27)$	Allowed	7
$\beta_{0.19}^{-}$	221,8(15)	0,0242~(22)	1st Forbidden	$_{9,6}$
$\beta_{0,18}^{-1}$	285,2~(15)	0,0098~(8)		10,4
$\beta_{0,17}^{-}$	354,6(15)	0,0364~(22)		10
$\beta_{0.16}^{-}$	382,8(15)	0,0529 (5)	1st Forbidden	10
$\beta_{0.15}^{-1}$	392,3~(15)	0,0422 (19)	1st Forbidden	10,2
$\beta_{0.14}^{-}$	421,0 (15)	0,332~(10)	1st Forbidden	9,4
$\beta_{0.13}^{\underline{\gamma}}$	449,3(15)	0,0050 (26)	1st Forbidden	$11,\!3$
$\beta_{0,11}^{-1}$	580,9(15)	0,0686(14)	1st Forbidden	10,5
$\beta_{0,10}^{-}$	$610, 6 \ (15)$	$51,21\ (19)$	Allowed	7,7
$\beta_{0,9}^{-}$	679,5(15)	0,0967(34)	1st Forbidden	$10,\!6$

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,8}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \end{array}$	$\begin{array}{c} 721,9 \ (15) \\ 812,6 \ (15) \\ 865,0 \ (15) \\ 946,4 \ (15) \\ 1247,7 \ (15) \\ 1578,8 \ (15) \\ 1655,7 \ (15) \\ 2301,6 \ (15) \end{array}$	$\begin{array}{c} 0,47 \ (30) \\ 0,688 \ (38) \\ 4,143 \ (18) \\ 2,295 \ (7) \\ 0,0053 \ (10) \\ 4,815 \ (29) \\ 2,472 \ (33) \\ 23,44 \ (28) \end{array}$	1st Forbidden 1st Forbidden 1st Forbidden 3rd Forbidden 1st Forbidden 1st Forbidden 1st Forbidden	$10 \\ 10 \\ 9,4 \\ 9,8 \\ 12,8 \\ 10,3 \\ 10,7 \\ 10,3$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{14,12}({\rm Te})$	148,02(5)	0,0037~(6)	E1+M2				
$\gamma_{(-1,1)}({\rm Te})$	159,867 (35)	0,0049 (6)					
$\gamma_{14,10}(\mathrm{Te})$	189,565 (18)	0,0043~(5)					
$\gamma_{20,14}({ m Te})$	210,402 (19)	0,0053~(7)					
$\gamma_{10,6}(\text{Te})$	254,424 (6)	0,0144~(9)	(E1)	0,01269 (18)	0,001575 (22)	0,000312 (5)	0,01465~(21)
$\gamma_{23,14}(\text{Te})$	291,793 (25)	0,0069~(7)					
$\gamma_{10,5}(\text{Te})$	335,797 (16)	0,073~(1)	E1	0,00612 (9)	$0,000754\ (11)$	0,0001495~(21)	$0,00706\ (10)$
$\gamma_{20,11}(\text{Te})$	370,269 (30)	$0,0286\ (11)$					
$\gamma_{20,10}({ m Te})$	399,967~(6)	0,1284 (31)	E2	0,01323 (19)	0,00196 (3)	0,000394~(6)	0,01566~(22)
$\gamma_{14,6}(\text{Te})$	443,989 (18)	0,197~(16)	M1+26%E2	0,01092 (16)	0,001360 (19)	0,000271 (4)	0,01261 (18)
$\gamma_{20,9}(\text{Te})$	468,840 (25)	0,0460 (26)	$\mathrm{E1}$	0,00268 (4)	0,000327~(5)	0,0000648 (9)	0,00309 (5)
$\gamma_{23,10}({ m Te})$	481,36(2)	0,0232 (31)					
$\gamma_{14,5}(\text{Te})$	525,362 (24)	0,1462 (35)	M1 + 50% E2	0,0066 (3)	0,000867 (18)	0,000173 (4)	0,0077 (3)
$\gamma_{26,12}(Te)$	530,46(7)	0,036 (9)					
$\gamma_{26,10}(\text{Te})$	572,01 (5)	0,0176 (8)				<i>.</i>	
$\gamma_{1,0}({ m Te})$	602,7278 (21)	98,254(21)	$\mathrm{E2}$	0,00420 (6)	0,000566 (8)	0,0001132(16)	0,00490 (7)
$\gamma_{5,3}(\text{Te})$	632,403 (16)	0,1029(21)				()	(-)
$\gamma_{2,1}(Te)$	645,8542 (37)	7,452(15)	E2+0,004%M3	0,00351 (5)	0,000468 (7)	0,0000935(14)	0,00409(6)
$\gamma_{21,6}(\text{Te})$	662,334(10)	0,024(11)					
$\gamma_{5,2}(\mathrm{Te})$	709,333(16)	1,368(5)	M1+3%E2	0,00349(5)	0,000429(7)	0,0000853(13)	0,00402(6)
$\gamma_{6,3}$ (Te)	713,776(5)	2,281(7)	M1+50%E2	0,0031(4)	0,00039(4)	0,000078(7)	0,0036(4)
$\gamma_{3,1}$ (Te)	722,7842 (37)	10,742 (22)	M1 + 92% E2	0,00271 (4)	0,000352 (5)	0,0000702(10)	0,00314(5)
$\gamma_{23,6}(\text{Te})$	735,782(17)	0,1312(16)	Do 16	0.010 (0)			0.001 (=)
$\gamma_{7,3}(\text{Te})$	766,168 (21)	0,0105(9)	E0,M1	0,019 (6)			0,021(7)
$\gamma_{25,6}(\text{Te})$	775,27(7)	0,0098(4)	120	0.00014 (4)			0.00040 (0)
$\gamma_{6,2}$ (Te)	790,706 (5)	0,7433(24)	E2	0,00214 (6)	0,000276 (8)	0,000055(2)	0,00248 (8)
$\gamma_{23,5}(1e)$	817,155(23)	0,0744 (12)					
$\gamma_{8,3}(1e)$	856,878 (30)	0,0227(5)					
$\gamma_{9,3}(1e)$	899,327 (25)	0,0179(7)	D1 + 407 M0	0.000 f(0.0)	0.0000670 (11)	0.00001949.(00)	0.000659 (11)
$\gamma_{10,3}(1e)$	908,200(5)	1,888(10)	E1 + 4% M2	0,000569 (9)	0,0000678 (11)	0,00001343(22)	0,000653 (11)
$\gamma_{9,2}(1e)$	970,237(23)	0,0832(7)					
$\gamma_{(-1,2)}(1e)$	997,80(3)	0,0033(23)	E1 + 0.007 M0	0.000404(0)	0.0000507(11)	0 00001169 (01)	0.000567(10)
$\gamma_{10,2}(1e)$	1045,130(5) 1052.87(20)	1,853(14)	E1+0,09%M2	0,000494(9)	0,0000587(11) 0.0001204(20)	0,00001103(21)	0,000507(10)
$\gamma_{4,1}(1e)$	1053,87(30) 1086,68(5)	0,0053(10)	E_Z	0,001117(10) 0,000457(7)	0,0001394(20)	0,0000277(4)	0,001290(18)
$\gamma_{12,2}(1e)$	1000,00(0)	0,0307(9)	£1	0,000437(7)	0,0000345 (8)	0,0001074 (15)	0,000524(8)
$\gamma_{(-1,3)}(10)$	1255(1) 1263.46(7)	0,0073(20) 0.0422(10)					
$\gamma_{15,2}(1e)$	1203,40 (7) 1201 15 (0)	0,0422 (19) 0.0364 (22)					
$\gamma_{17,2}(1e)$	1301,10(9) 1395(519(9))	0,0304(22) 1 589(7)	Fo	0.000602 (10)	0 0000848 (19)	0 00001695 (94)	0.000897(19)
$\gamma_{3,0}(1e)$	1323,312 (3) 1355 187 (16)	1,000(1) 1.0422(28)	<u>157</u> ЕЭТО ЗДМЗ	0,000093(10)	0,0000646 (12)	0,00001000(24)	0.000627 (12)
y5,1(1e)	1000,107 (10)	1,0420 (00)	$124 \pm 3,3701013$	0,0009 (0)	0,00011 (0)	0,00023 (11)	0,0011 (3)

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	α_K	α_L	α_M	α_T
$\gamma_{20,3}(\text{Te})$	1368,167(6)	2,621 (8)	E1+0,04%M2	0,000303(5)	0,0000358 (6)	0,00000709(10)	0,000478 (7)
$\gamma_{21,3}(\text{Te})$	1376,110 (9)	0,5001 (43)	E1+0,01%M2	0,000300 (5)	0,0000354~(6)	0,00000701 (12)	0,000479 (7)
$\gamma_{22,3}(\text{Te})$	1385,500(21)	0,062~(6)					
$\gamma_{6,1}(\mathrm{Te})$	1436,5602 (45)	1,235~(8)	M1+69%E2	0,00063~(5)	0,000076~(6)	0,0000151 (11)	0,00078 (5)
$\gamma_{20,2}(\text{Te})$	1445,097 (6)	0,334~(7)	E1+M2	0,00029 (4)	0,000034 (4)	0,0000067 (8)	0,00052 (4)
$\gamma_{7,1}({ m Te})$	1488,952 (21)	0,6776 (37)	M1+1%E2	0,000659 (14)	0,0000792~(16)	0,0000157 (3)	0,000829 (16)
$\gamma_{23,2}(\text{Te})$	$1526,\!488$ (17)	0,414~(5)	${ m E1}$	0,000252 (4)	0,0000296 (5)	0,00000586 (9)	0,000535 (8)
$\gamma_{25,2}(\text{Te})$	1565,98 (7)	0,0109(12)					
$\gamma_{8,1}(\text{Te})$	1579,662 (30)	0,412~(5)	M1+E2	0,00054 (5)	0,000065~(6)	0,0000128(11)	0,00072 (5)
$\gamma_{9,1}({ m Te})$	1622,111 (25)	0,0416~(19)	E2	0,000467 (7)	0,0000564 (8)	0,00001118(16)	0,000664 (10)
$\gamma_{4,0}(\mathrm{Te})$	1656, 6 (3)		$\mathrm{E0}$				
$\gamma_{10,1}(\text{Te})$	1690,9842 (45)	47,49(19)	E1+0,01%M2	0,000213 (4)	0,0000250 (4)	0,00000494 (8)	0,000615 (9)
$\gamma_{11,1}(\text{Te})$	$1720,\!682$ (30)	0,0947~(6)	M1+E2	0,00045~(4)	0,000054 (4)	0,0000107 (8)	0,00068 (4)
$\gamma_{13,1}(\text{Te})$	1852,23 (7)	0,0030 (9)	M1+E2	0,00039 (3)	0,000047~(4)	0,0000093 (7)	0,00067 (3)
$\gamma_{16,1}(\text{Te})$	1918,75~(6)	0,0529 (5)	M1(+E2)	0,000364 (24)	0,000043 (3)	0,0000086 (6)	0,00067 (3)
$\gamma_{18,1}(\text{Te})$	2016, 36(6)	0,0098 (8)					
$\gamma_{6,0}(\mathrm{Te})$	2039,288 (4)	0,0631 (5)	E2	0,000305 (5)	0,0000364 (5)	0,00000721 (10)	0,000667 (10)
$\gamma_{19,1}(\text{Te})$	2079,77(13)	0,0224~(22)	M1+E2	0,000311 (18)	0,0000371 (21)	0,0000073 (4)	0,000691 (20)
$\gamma_{20,1}(\text{Te})$	2090,951 (5)	5,498(24)	E1+0,1%M2	0,0001522 (23)	0,0000178 (3)	0,00000352~(6)	0,000838(12)
$\gamma_{21,1}(\text{Te})$	2098,894 (9)	0,0471 (33)					
$\gamma_{22,1}(\text{Te})$	2108,284 (21)	0,0444~(23)					
$\gamma_{23,1}(\text{Te})$	2172,342 (17)	0,0029(16)					
$\gamma_{8,0}({ m Te})$	2182,39(3)	0,04147(31)					
$\gamma_{27,1}(\text{Te})$	2283,64 (6)	0,0059(5)	E1+M2	0,00033 (21)	0,000040 (25)	0,000008 (5)	0,00091 (5)
$\gamma_{10,0}(\text{Te})$	2293,712 (4)	0,0327~(41)					
$\gamma_{11,0}(\text{Te})$	2323,41 (3)	0,0025~(6)					
$\gamma_{13,0}({ m Te})$	2454,96 (7)	0,00160 (12)	E2	0,000219 (3)	0,0000259 (4)	0,00000513 (8)	0,000768(11)
$\gamma_{19,0}(\text{Te})$	2682,50 (15)	0,00176 (6)					
$\gamma_{20,0}(\text{Te})$	2693,679(10)	0,0032 (14)					
$\gamma_{24,0}(\text{Te})$	2807,55 (24)	0,0012 (5)	E2	0,0001730 (25)	0,0000204 (3)	0,00000404 (6)	0,000878(13)

3 Atomic Data

3.1 Te

ω_K	:	$0,\!875$	(4)
$\bar{\omega}_L$:	$0,\!0862$	(35)
n_{KL}	:	0,917	(4)

3.1.1 X Radiations

	Energy keV	Relative probability
$\begin{array}{c} \mathbf{X}_{\mathbf{K}} \\ \mathbf{K}\alpha_2 \\ \mathbf{K}\alpha_1 \\ \mathbf{K}\beta_3 \\ \mathbf{K}\beta_1 \\ \mathbf{K}\beta_5' \end{array}$	27,202 27,4726 30,9446 30,996 31,236	53,7 100 } } 28,6

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
	$K\beta_2$	31,7008	}	
	$\mathrm{K}eta_4$	31,774	}	6,2
	$\mathrm{KO}_{2,3}$	$31,\!812$	}	
X_L				
	$\mathrm{L}\ell$	$3,\!3348$		
	$L\alpha$	$3,\!7595 - 3,\!7697$		
	$\mathrm{L}\eta$	$3,\!6052$		
	$\mathrm{L}eta$	$4,\!0299 - 4,\!3661$		
	$\mathrm{L}\gamma$	$4,\!4448 - 4,\!8228$		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY	21,804 - 22,989 25,814 - 27,470 29,80 - 31,81	$100 \\ 45,3 \\ 5,13$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Te)	2,3 - 4,9	0,4829 (26)
e _{AK}	(Te) KLL KLX KXY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,0628 (22) } } }
$ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M $ec_{2,1}$ K $ec_{3,1}$ K $ec_{10,1}$ K	(Te) (Te) (Te) (Te) (Te) (Te)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0,411 \ (6) \\ 0,0553 \ (8) \\ 0,01107 \ (16) \\ 0,02605 \ (37) \\ 0,02902 \ (43) \\ 0,01011 \ (19) \end{array}$

		Ene ke	rgy V	Electrons per 100 disint.
$\beta_{0,27}^-$	max:	17,9	(15)	0,0059 (5)
$\beta_{0,27}^-$	avg:	4,5	(4)	
$\beta_{0,26}^-$	max:	$38,\! 6$	(15)	0,054 (9)
$\beta_{0,26}^-$	avg:	$_{9,8}$	(4)	
$\beta_{0,25}^-$	max:	89,7	(15)	0,0207~(12)
$\beta_{0,25}^{-}$	avg:	$23,\!4$	(4)	
$\beta_{0,24}^-$	max:	$96,\!8$	(15)	0,0012 (5)
$\beta_{0,24}^{-}$	avg:	$25,\!3$	(4)	
$\beta_{0,23}^-$	max:	129,2	(15)	0,653~(6)
$\beta_{0,23}^-$	avg:	$34,\!4$	(4)	
$\beta_{0,22}^{-}$	max:	$193,\!3$	(15)	0,106~(6)
$\beta_{0,22}^{-}$	avg:	$52,\!9$	(5)	
$\beta_{0,21}^{-}$	max:	202,7	(15)	$0,571\ (25)$
$\beta_{0,21}^{-}$	avg:	55,7	(5)	
$\beta_{0.20}^{-}$	max:	$210,\!6$	(15)	8,663~(27)
$\beta_{0,20}^{-}$	avg:	58,0	(5)	
$\beta_{0.19}^{-}$	max:	221,8	(15)	0,0242 (22)
$\beta_{0,19}^{-1}$	avg:	$61,\!5$	(5)	
$\beta_{0.18}^{-1}$	max:	285,2	(15)	0,0098 (8)
$\beta_{0.18}^{-}$	avg:	81,0	(5)	
$\beta_{0.17}^{-17}$	max:	$354,\! 6$	(15)	0,0364 (22)
$\beta_{0.17}^{-17}$	avg:	$103,\!6$	(5)	, , ,
$\beta_{0.16}^{-16}$	max:	382,8	(15)	0,0529(5)
$\beta_{0.16}^{-16}$	avg:	113,0	(5)	, ()
$\beta_{0.15}^{-}$	max:	392.3	(15)	0.0422(19)
$\beta_{0.15}^{-15}$	avg:	116,0	(5)	, , ,
$\beta_{0,14}^{-14}$	max:	421.0	(15)	0.332(10)
$\beta_{0.14}^{-14}$	avg:	126,0	(5)	-) (-)
$\beta_{0,14}^{-12}$	max:	449.3	(15)	0.0050(26)
$\beta_{0,13}^{-12}$	avg:	135.8	(6)	2,0000 (20)
$\beta_{0,11}^{-1}$	max:	580.9	(15)	0.0686(14)
$\beta_{0,11}^{-1}$	avg:	182.8	(6)	0,0000 (11)
$\beta_{0,10}^{-}$	max	610.6	(15)	51 21 (19)
$\beta_{0,10}^{-10}$	avg:	193.8	(6)	01,21 (10)
β_{-10}^{-10}	max	679.5	(15)	0.0967(34)
$\beta_{0,9}^{-}$	avg.	219.5	(6)	0,0001 (04)
β_{-}^{-}	mav	791.0	(15)	0 47 (30)
$\beta_{0,8}^{-}$	avo.	236.0	(6)	0,47 (30)
~0,8 ∂_	mav.	200,0 819 6	(15)	0 688 (38)
$\beta_{0,7}^{-}$	avo.	271.0	(10)	0,000 (30)
$\beta_{0,7}$	avg.	211,0 865 0	(0)	1 119 (10)
$\beta_{0,6}$	max:	000,0 202	(10)	4,140 (18)
$P_{0,6}$	avg.	<i>434</i>	(1)	

		Ener ke	rgy V	Electrons per 100 disint.
$\beta_{0,5}^{-}$	max:	946,4 324	(15) (1)	2,295 (7)
$\beta_{0,4}^{-}$ $\beta_{0,4}^{-}$	max: avg:	1247,7 450	(1) (15) (1)	0,0053 (10)
$\beta_{0,3}^{-}$ $\beta_{0,3}^{-}$	max: avg:	1578,8 593	(15) (1)	4,815 (29)
$\beta_{0,2}^{-}$ $\beta_{0,2}^{-}$	max: avg:	$1655,7\\627$	(15) (1)	2,472 (33)
$\beta_{0,1}^{-}$ $\beta_{0,1}^{-}$	max: avg:	$\begin{array}{c} 2301,6\\918\end{array}$	(15) (1)	23,44 (28)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Te)	3,3348 - 4,8228		0,0449 (9)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Te) (Te)	27,202 27,4726		$0,1252\ (18)\ 0,233\ (3)$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Te) (Te) (Te)	30,9446 30,996 31,236	} } }	0,0667~(12)	$\mathrm{K}'eta_1$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Te) (Te) (Te)	$31,7008 \\ 31,774 \\ 31,812$	} } }	0,0145~(5)	$K'\beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{14,12}(\text{Te}) \\ \gamma_{(-1,1)}(\text{Te}) \\ \gamma_{14,10}(\text{Te}) \\ \gamma_{20,14}(\text{Te}) \\ \gamma_{10,6}(\text{Te}) \\ \gamma_{23,14}(\text{Te}) \end{array}$	$\begin{array}{c} 148,02 \ (5) \\ 159,867 \ (35) \\ 189,57 \ (2) \\ 210,40 \ (2) \\ 254,42 \ (1) \\ 291,79 \ (3) \end{array}$	0,0037 (6) 0,0049 (6) 0,0043 (5) 0,0053 (7) 0,0142 (9) 0,0069 (7)

	Energy	Photons
	keV	per 100 disint.
		•
$\gamma_{10} r(Te)$	$335\ 80\ (2)$	0.0725.(9)
$\gamma_{10,5}(10)$	370.27(3)	0,0126(0) 0.0286(11)
720,11(10)	399.97(1)	0,0200(11) 0.1264(31)
$\gamma_{20,10}(1e)$	$444\ 00\ (2)$	0,1204(01) 0.195(16)
$\gamma_{14,0}(10)$	468 84 (3)	0.0459(26)
$\gamma_{20,9(10)}$	481.36(2)	0,0433(20) 0,0232(31)
$\gamma_{23,10(10)}$	525,36,(3)	0,0252(51) 0.1451(35)
$\gamma_{14,3}(10)$	530.46(7)	0.036(9)
$\gamma_{20,12}(10)$ $\gamma_{26,10}(Te)$	572.01(5)	0.0176(8)
$\gamma_{20,10(10)}$	602,7260,(23)	$97\ 775\ (20)$
$\gamma_{1,0}(1e)$ $\gamma_{r,2}(Te)$	$632\ 40\ (2)$	0.1029(21)
$\gamma_{0,3}(10)$ $\gamma_{0,1}(Te)$	$645\ 8520\ (19)$	$7\ 422\ (15)$
$\gamma_{2,1}(10)$ $\gamma_{21,6}(Te)$	662.33(1)	0.024(11)
$\gamma_{5,0}(Te)$	709.33(2)	1.363(5)
$\gamma_{5,2}(\text{Te})$	713776(4)	2,273(7)
$\gamma_{0,3}(10)$ $\gamma_{2,1}(T_{e})$	722782(3)	10,708,(22)
$\gamma_{3,1}(10)$	$735\ 78\ (2)$	0.1312(16)
$\gamma_{23,0}(10)$ $\gamma_{7,2}(Te)$	$766\ 17\ (2)$	0,1012 (10) 0,0103 (9)
$\gamma_{7,3}(10)$	$775\ 27\ (7)$	0,0100(0) 0,0098(4)
$\gamma_{23,0}(10)$	$790\ 706\ (7)$	0,0000(1) 0.7415(24)
$\gamma_{0,2}(10)$ $\gamma_{22,5}(Te)$	$817\ 15\ (3)$	0,0744(12)
$\gamma_{23,3}(10)$ $\gamma_{23,3}(10)$	$856\ 87\ (3)$	0.0227(5)
$\gamma_{8,3}(10)$ $\gamma_{0,2}(Te)$	899.32(3)	0,0221(0) 0,0179(7)
$\gamma_{9,3}(10)$	$968\ 195\ (4)$	1.887(10)
$\gamma_{10,3}(10)$	$976\ 25\ (3)$	0.0832(7)
$\gamma_{g,2}(10)$ $\gamma_{(-1,0)}(\text{Te})$	997.8(3)	0.0033(23)
$\gamma(-1,2)(-3)$ $\gamma_{10,2}(Te)$	1045.125(4)	1.852(14)
$\gamma_{10,2}(10)$ $\gamma_{4,1}(Te)$	1053.9(3)	0.0053(10)
$\gamma_{4,1}(-2)$ $\gamma_{12,2}(Te)$	1086.67(5)	0.0367(9)
$\gamma_{(-1,2)}(\text{Te})$	1235(1)	0.0073(26)
$\gamma_{(-1,3)}(-1)$ $\gamma_{15,2}(Te)$	1263.45(7)	0.0422(19)
$\gamma_{17,2}(Te)$	1301.14(9)	0.0364(22)
$\gamma_{3,0}(\text{Te})$	1325,504(4)	1.587(7)
$\gamma_{5,1}(\mathrm{Te})$	1355,20(2)	1,0412 (38)
$\gamma_{20.3}(Te)$	1368,157(5)	2,620(8)
$\gamma_{21,3}(Te)$	1376,10(1)	0,4999 (43)
$\gamma_{22,3}(Te)$	1385,49(2)	0,062(6)
$\gamma_{6.1}(\text{Te})$	1436,554(7)	1,234 (8)
$\gamma_{20,2}(Te)$	1445,09(1)	0,334(7)
$\gamma_{7,1}(\text{Te})$	1488,94(2)	0,6770(37)
$\gamma_{23,2}(Te)$	1526,48(2)	0,414(5)
$\gamma_{25,2}(\text{Te})$	1565,97(7)	0,0109(12)
$\gamma_{8,1}(\text{Te})$	1579,65(3)	0,412 (5)
$\gamma_{9,1}(\text{Te})$	1622,10 (3)	0,0416 (19)
$\gamma_{10,1}(\text{Te})$	1690,971 (4)	47,46 (19)
$\gamma_{11,1}(\text{Te})$	1720,67 (3)	0,0946 (6)
$\gamma_{13,1}(\text{Te})$	1852,22 (7)	0,0030 (9)
· · · · · · · · · · · · · · · · · · ·		· · ·

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{16,1}(\mathrm{Te}) \\ \gamma_{18,1}(\mathrm{Te}) \\ \gamma_{6,0}(\mathrm{Te}) \\ \gamma_{19,1}(\mathrm{Te}) \\ \gamma_{20,1}(\mathrm{Te}) \\ \gamma_{21,1}(\mathrm{Te}) \\ \gamma_{22,1}(\mathrm{Te}) \\ \gamma_{23,1}(\mathrm{Te}) \\ \gamma_{8,0}(\mathrm{Te}) \\ \gamma_{27,1}(\mathrm{Te}) \\ \gamma_{10,0}(\mathrm{Te}) \\ \gamma_{11,0}(\mathrm{Te}) \\ \gamma_{13,0}(\mathrm{Te}) \end{array}$	$\begin{array}{c} 1918,74\ (6)\\ 2016,34\ (6)\\ 2039,27\ (1)\\ 2079,75\ (13)\\ 2090,930\ (7)\\ 2098,88\ (1)\\ 2108,27\ (2)\\ 2172,32\ (2)\\ 2172,32\ (2)\\ 2182,37\ (3)\\ 2283,62\ (6)\\ 2293,69\ (1)\\ 2323,39\ (3)\\ 2454,93\ (7)\\ \end{array}$	$\begin{array}{c} 0,0529\ (5)\\ 0,0098\ (8)\\ 0,0631\ (5)\\ 0,0224\ (22)\\ 5,493\ (24)\\ 0,0471\ (33)\\ 0,0444\ (23)\\ 0,0029\ (16)\\ 0,04147\ (31)\\ 0,0059\ (5)\\ 0,0327\ (41)\\ 0,0025\ (6)\\ 0,00160\ (12)\\ 0,00172\ (10)\\ 0$
$\gamma_{19,0}({ m Te}) \ \gamma_{20,0}({ m Te}) \ \gamma_{24,0}({ m Te})$	$\begin{array}{c} 2682,47 \ (13) \\ 2693,65 \ (1) \\ 2807,52 \ (24) \end{array}$	$\begin{array}{c} 0,00176 \ (6) \\ 0,0032 \ (14) \\ 0,0012 \ (5) \end{array}$

6 Main Production Modes

 $Sb - 123(n,\gamma)Sb - 124$ $\sigma: 3,88$ (12) barns Possible impurities: Sb - 122

- L.M. LANGER, N.H.LAZAR, R.J.D.MOFFAT. Phys. Rev. 91 (1953) 338 (Beta emission probabilities)
- J.MOREAU. Comp. Rend. Acad. Sci. (Paris) 239 (1954) 800 (Beta emission probabilities)
- T.AZUMA. J. Phys. Soc. Jpn 10 (1955) 167 (Beta emission probabilities)
- A.V.ZOLOTAVIN, E.P.GRIGORIEV, M.A.ABROVIAN. Izvest.Akad.Nauk SSSR, Ser.Fiz. 20 (1956) 289 (Columbia Tech.Transl. 20, 271 (1957))
- R.L.MACKLIN. Nucl. Instrum. Methods 1 (1957) 335 (Half-life)
- A.V.ZOLOTAVIN, E.P.GRIGORIEV, M.A.ABROVIAN. Izvest.Akad.Nauk SSSR, Ser.Fiz. 20, 289 (1956); Columbia Tech.Transl. 20 (1957) 271 (Beta emission probabilities)
- C.H.JOHNSON, A.GALONSKY, J.P.ULRICH. Phys. Rev. 109 (1958) 1243 (Half-life)
- J.P.CALI, L.F.LOWE. Nucleonics 17, 10 (1959) 86 (Half-life)
- S.T.HSUE, L.M.LANGER, S.M.TANG, D.A.ZOLLMAN. Nucl. Phys. 73 (1965) 379 (Beta emission probabilities)
- D.M.FLEMING, I.T. MYERS. Int. J. Appl. Radiat. Isotop. 17 (1966) 251 (Half-life)
- P.H. Stelson. Phys. Rev. 157 (1967) 1098 (ICC)
- E.P.GRIGORIEV, A.V. ZOLOTAVIN, V.O. SERGEEV, M.I. SOVTSOV. Izv. Akad. Nauk SSSR. Ser. Fiz. 32 (1968) 733
- (K-Conv. Elec. emission probabilities)
- S.A.REYNOLDS, J.F.EMERY, E.I.WYATT. Nucl. Sci. Eng. 32 (1968) 46 (Half-life)

- E.P.GRIGORIEV, A.V. ZOLOTAVIN, V.O. SERGEEV, M.I. SOVTSOV. Bull. Ac. Sci. USSR. Phys. Ser. 32 (1968)711(K-Conv. Elec. emission probabilities) - R.C.RAGAINI, W.B. WALTERS, R.A. MEYER. Phys. Rev. 187 (1969) 1721 (K ICC Mixing Ratio) - R.A. MEYER, W.B. WALTERS, R.C. RAGAINL. Nucl. Phys. A127 (1969) 595 (Gamma-ray emission probabilities Spin and Parity Gamma-ray energies) - J.R.SITES, W.A. STEYERT. Nucl. Phys. A156 (1970) 19 (Mixing Ratio) - Z.W.GRABOWSKI, K.S.KRANE, R.M.STEFFEN. Phys. Rev. C3 (1971) 1649 (Mixing Ratio) - K.R.BAKER, J.H.HAMILTON, A.V.RAMAYYA, G.HIGHLAND. Nucl. Phys. A186 (1972) 493 (Mixing Ratio) - R.L.HEATH. Report ANCR-1000-2 (1974) (Gamma-ray energies Gamma-ray emission probabilities) - J.R.JOHNSON, K.C. MANN. Can. J. Phys. 52 (1974) 406 (Gamma-ray emission probabilities K-Conv. Elec. emission probabilities) - A.K.SHARMA, R.KAUR, H.R. VERNA, K.K. SURI, P.N. TREHAN, J. Phys. Soc. Jap. 46 (1979) 1057 (Gamma-ray emission probabilities) - S.J.ROBINSON, W.D.HAMILTON, D.M.SNELLING. J. Phys. (London) G9 (1983) 921 (Mixing ratio) - Y.IWATA, M.YASUHARA, K.MAEDA, Y.YOSHIZAWA. Nucl. Instrum. Methods 219 (1984) 123 (Gamma-ray emission probabilities) - You Jianming, Liu Yunzuo, Hu Dailing. Z. Physik A331 (1988) 391 (Gamma-ray emission probabilities) - R.A. MEYER. Fizika (Zagreb) 22 (1990) 153 (Gamma-ray emission probabilities) - S.Subrahmanyeswara Rao, K.Bhaskara Rao, V.Seshagiri Rao, H.C.Padhi. Nuovo Cim. 103A (1990) 803 (ICC) - J.GOSWAMY, B.CHAND, D.MEHTA, N.SINGH, P.N.TREHA. Appl. Rad. Isotopes 44 (1993) 541 (Gamma-ray emission probabilities) - E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data) - I.A.KHARITONOV, T.E.SAZONOVA, S.V.SEPMAN, T.I.SHILNIKOVA, A.V.ZANEVSKY. Appl. Rad. Isotopes 52 (2000) 415(Half-life) - R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma energy) - C.DOLL, H.LEHMANN, H.G.BORNER, T.VON EGIDY. Nucl. Phys. A672 (2000) 3 (Nuclear structure) - I.M.BAND, M.B.TRZHASKOVSKAYA. At. Data. Nucl. Data Tables 88,1 (2002) (Theoretical ICC) - G. AUDI, A.H.WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 337-676 (Q value) - A.PATIL, D.SANTHOSH, K.V.SAI, M.SAINATH, K.VENKATARAMANIAH. Appl. Rad. Isotopes 64 (2006) 693
 - T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR, JR.. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (ICC)

(Gamma-ray emission probabilities)

 γ Emission intensities per 100 disintegrations

1 Decay Scheme

Le bismuth 207 se désintègre par capture électronique vers le plomb 207. Une faible transition par émission bêta plus a été mise en évidence. Bi 207 disintegrates by electron capture to Pb 207. A weak transition by positron emission has been reported

Bi-207 disintegrates by electron capture to Pb-207. A weak transition by positron emission has been reported.

2 Nuclear Data

 $T_{1/2}(^{207}{\rm Bi}$) : 32,9 (14) a $Q^+(^{207}{\rm Bi}$) : 2397,5 (21) keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	\lgft	P_K	P_L	P_{M+}
$\epsilon_{0,4}$ $\epsilon_{0,3}$ $\epsilon_{0,1}$	$\begin{array}{c} 57,6~(21)\\764,1~(21)\\1827,8~(21)\end{array}$	$\begin{array}{c} 7,03 \ (23) \\ 84,1 \ (6) \\ 8,8 \ (6) \end{array}$	Allowed Unique 1st Forbidden 2nd Forbidden	8,3 10,58 12,1	$0,733 (7) \\ 0,797 (8)$	$\begin{array}{c} 0,651 \ (6) \\ 0,199 \ (4) \\ 0,150 \ (3) \end{array}$	$\begin{array}{c} 0,349 \ (6) \\ 0,069 \ (1) \\ 0,049 \ (1) \end{array}$

2.2 β^+ Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta^+_{0,1}$	805,8 (21)	0,012~(2)	2nd Forbidden	12,6

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$ \begin{array}{c} \alpha_K \\ (10^{-2}) \end{array} $	$_{(10^{-2})}^{\alpha_L}$	$lpha_M \ (10^{-2})$	$ \begin{array}{c} \alpha_T \\ (10^{-2}) \end{array} $
$\begin{array}{c} \gamma_{2,1}(\mathrm{Pb})\\ \gamma_{1,0}(\mathrm{Pb})\\ \gamma_{2,0}(\mathrm{Pb})\\ \gamma_{3,1}(\mathrm{Pb})\end{array}$	$\begin{array}{c} 328,11 \ (10) \\ 569,699 \ (2) \\ 897,8 \ (1) \\ 1063,659 \ (3) \end{array}$	$\begin{array}{c} 0,0044 \ (35) \\ 99,87 \ (4) \\ 0,1313 \ (48) \\ 84,11 \ (31) \end{array}$	[M1] E2 M1+8,3%E2 M4+0,01%E5	$\begin{array}{c} 1,583 \ (23) \\ 1,82 \ (8) \\ 9,53 \ (23) \end{array}$	$\begin{array}{c} 0,439 \ (7) \\ 0,304 \ (12) \\ 2,47 \ (7) \end{array}$	$\begin{array}{c} 0,1081 \ (16) \\ 0,071 \ (3) \\ 0,591 \ (33) \end{array}$	2,16 (3) 2,22 (9) 12,78 (24)
$\gamma_{4,2}(\mathrm{Pb}) \ \gamma_{4,1}(\mathrm{Pb})$	$\begin{array}{c} 1442,2 \ (2) \\ 1770,236 \ (9) \end{array}$	$\begin{array}{c} 0,1319 \ (22) \\ 6,901 \ (26) \end{array}$	E2 M1+0,0025%E2	$\begin{array}{c} 0,271 \ (4) \\ 0,342 \ (5) \end{array}$	$0,0468 (7) \\ 0,0556 (8)$	$\begin{array}{c} 0,01098 \ (16) \\ 0,01292 \ (19) \end{array}$	$0,337 (5) \\ 0,442 (7)$

3 Atomic Data

3.1 Pb

ω_K	:	0,963	(4)
$\bar{\omega}_L$:	$0,\!379$	(15)
$\bar{\omega}_M$:	$0,\!0346$	
n_{KL}	:	0,811	(5)
\bar{n}_{LM}	:	$1,\!294$	

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}				
	$K\alpha_2$	72,8049		59,5
	$K\alpha_1$	74,97		100
	$K\beta_3$	84,451	}	
	$\mathrm{K}eta_1$	84,937	}	
	${ m K}eta_5^{\prime\prime}$	$85,\!47$	}	34,2
	$\mathrm{K}eta_2$	87,238	}	
	$\mathrm{K}eta_4$	$87,\!58$	}	10,3
	$\mathrm{KO}_{2,3}$	87,911	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$9,\!18$		
	$L\alpha$	$10,\!4496 - 10,\!5516$		
	$\mathrm{L}\eta$	$11,\!3494$		
	$\mathrm{L}eta$	$12,\!143 - 13,\!015$		
	$\mathrm{L}\gamma$	$15,\!101-15,\!84$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	56,028 - 61,669 68,181 - 74,969 80,3 - 88,0	$100 \\ 55,8 \\ 7,78$
Auger L	$5,\!2-15,\!7$	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5,2 - 15,7	54,8 (7)
e_{AK}	(Pb) KLL KLX KXY	56,028 - 61,669 68,181 - 74,969 80,3 - 88,0	2,9 (4) } }
$\begin{array}{c} ec_{1,0} \ T\\ ec_{1,0} \ K\\ ec_{1,0} \ L\\ ec_{1,0} \ M\\ ec_{3,1} \ T\\ ec_{3,1} \ K\\ ec_{3,1} \ L\\ ec_{3,1} \ M\\ ec_{3,1} \ N \end{array}$	 (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2,112 \ (29) \\ 1,548 \ (22) \\ 0,429 \ (7) \\ 0,1057 \ (16) \\ 9,53 \ (18) \\ 7,11 \ (17) \\ 1,84 \ (5) \\ 0,441 \ (25) \\ 0,1193 \ (30) \end{array}$
$\begin{array}{c} \beta_{0,1}^+ \\ \beta_{0,1}^+ \end{array}$	max: avg:	$\begin{array}{ccc} 805,8 & (21) \\ 383,4 & (9) \end{array}$	0,012 (2)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9,18 — 15,84		32,9~(6)	
$XK\alpha_2$	(Pb)	$72,\!8049$		21,75 (30)	$K\alpha$
$XK\alpha_1$	(Pb)	$74,\!97$		$36,\! 6$ (5)	}
$ ext{XK}eta_3$	(Pb)	84,451	}		
$XK\beta_1$	(Pb)	$84,\!937$	}	12,49(25)	$K' \beta_1$
$XK\beta_5''$	(Pb)	$85,\!47$	}		
$XK\beta_2$	(Pb)	$87,\!238$	Ĵ		
$XK\beta_4$	(Pb)	$87,\!58$	}	3,77(10)	$K' \beta_2$
$XKO_{2,3}$	(Pb)	87,911	Ĵ		,
,	. ,		2		

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$ \begin{array}{c} \gamma_{2,1}({\rm Pb}) \\ \gamma^{\pm} \\ \gamma_{1,0}({\rm Pb}) \\ \gamma_{2,0}({\rm Pb}) \\ \gamma_{3,1}({\rm Pb}) \\ \gamma_{4,2}({\rm Pb}) \\ \gamma_{4,1}({\rm Pb}) \end{array} $	$\begin{array}{c} 328,11 \ (10) \\ 511 \\ 569,698 \ (2) \\ 897,8 \ (1) \\ 1063,656 \ (3) \\ 1442,2 \ (2) \\ 1770,228 \ (9) \end{array}$	$\begin{array}{c} 0,0044 \ (35) \\ 0,024 \ (4) \\ 97,76 \ (3) \\ 0,1284 \ (47) \\ 74,58 \ (22) \\ 0,1315 \ (22) \\ 6,871 \ (26) \end{array}$

6 Main Production Modes

 $\begin{array}{l} Pb-206(d,n)Bi-207\\ Pb-207(d,2n)Bi-207\\ Pb-208(d,3n)Bi-207 \end{array}$

- R.A.RICCI. Physica 23 (1957) 693 (ICC, not used)
- G.HARBOTTLE. J. Inorg. Nucl. Chem. 12 (1959) 6 (Half-life)
- J.SOSNIAK, R.E.BELL. Can. J. Phys. 37,1 (1959) 1 (Half-life)
- E.H.APPELMAN. Phys. Rev. 121,1 (1961) (Half-life)

- A DE BEER, H.P.BLOK, J.BLOK. Physica 30 (1964) 1938 (Electron Capture Coefficients) - P.KLEINHEINZ, R.VUKANOVIC, L.SAMUELSSON, D.KRMPOTIC, H.LINDSTRÖM, K.SIEGBAHN. Nucl. Phys. A93 (1967) 63 (ICC) - D.P.DONNELLY, H.W.BAER, J.J.REIDY, M.L.WIEDENBECK. Nucl. Instrum. Methods 57 (1967) 219 (Gamma emission probabilities) - S.K.SEN, S.I.H.RIZVI. Nucl. Instrum. Methods 57 (1967) 227 (ICC) - B.VAN NOOIJEN, H.VAN KRUGTEN. Phys. Lett. 25 B,8 (1967) 510 (ICC)- E.BALDINGER, E.HALLER. Helv. Phys. Acta 40 (1967) 800 (ICC) - J.A.BEARDEN. Rev. Mod. Phys. 39,1 (1967) 78 (X-Rays energies) - S.I.H.Rizvi, S.K.Sen. B.A.P.S. 12 (1967) 715 (ICC, not used) - V.ANDERSEN, C.J.CHRISTENSEN. Nucl. Phys. A113 (1968) 81 (ICC) - V.ANDERSEN. Riso Report 195 (1969) (ICC) - G.HEDIN, A.BÄCKLIN. Ark. Fysik 38 (1969) 593 (ICC, Gamma emission probabilities) - E.BALDINGER, E.HALLER. Helv. Phys. Acta 42 (1969) 949 (ICC) - P.VENUGOPALA RAO, R.E.WOOD, J.M.PALMS, R.W.FINK. Phys. Rev 178,4 (1969) 1997 (Gamma emission probabilities) - G.AUBIN, J.BARRETTE, M.BARRETTE, S.MONARO. Nucl. Instrum. Methods 76 (1969) 93 (Gamma emission probabilities, not used) - B.Ahlesten, A.Backlin. Report NP-18288(LF-26) (1970) (K ICC (897 keV)) - C.J.ALLAN. Can. J. Phys. 49,2 (1971) 157 (ICC) - J.S.HANSEN, J.C.MCGEORGE, R.W.FINK, R.E.WOOD, P.VENUGOPALA RAO, J.M.PALMS. Z. Phys. 249 (1972) 373 (K fluorescence yield, not used) - D.C.ROBINSON, J.M.FREEMAN. Nucl. Phys. A181 (1972) 645 (Gamma emission probabilities) - T.RUPNIK. Phys. Rev. C6,4 (1972) 1433 (Half-life, Beta plus emission probability) - D.W.NIX, J.C.MCGEORGE, R.W.FINK. Phys. Lett. 46A,3 (1973) 205 (X-Ray emissions, not used) - J.B.WILLETT, G.T.EMERY. Ann. Phys. 78 (1973) 496 (Gamma emission probabilities) - F.T.AVIGNONE. Nucl. Instrum. Methods 116 (1974) 521 (ICC) - P.Mukherjee, B.K.Dasmahapatra. J. Phys. A7,16 (1974) 2008 (ICC) - L.J.JARDINE. Phys. Rev. C 11,4 (1975) 1385 (Gamma emission probabilities) - M.YANOKURA, H.KUDO, H.NAKAHARA, K.MIYANO, S.OHYA, O.NITOH. Nucl. Phys. A299 (1978) 92 (Half-life) - G.P.SINGH, R.K.MISHRA, A.K.SINGH, A.KUMAR. Czech. J. Phys. B29 (1979) 870 (Gamma emission probabilities) - Y.YOSHIKAWA, Y.IWATA, T.KAKU, T.KATOH, J.Z.RUAN, T.KOJIMA, Y.KAWADA. Nucl. Instrum. Methods 174 (1980) 109(Gamma emission probabilities) - M.TAN, R.A.BRAGA, R.W.FINK. Nucl. Phys. A388 (1982) 498 (Electron Capture Coefficients)

- W.BAMBYNEK, X-84 Proc. X-Ray and Inner-Shell Processes in Atoms, Molecules and Solids, A. Meisel Ed., Leipzig Aug. 20-23 (1984) (K fluorescence vield)
- A.M.MANDAL, A.P.PATRO. J. Phys. G11 (1985) 1025 (Electron Capture Coefficients, not used)
- Y.Fujita, M.Imamura, K.Omata, Y.Isozumi, S.Ohya. Nucl. Phys. A484 (1988) 77 (ICC)
- F.J.SCHIMA. IAEA-CRP GS/59 (1989) (Gamma emission probabilities)
- K.DEBERTIN, U.SCHÖTZIG. IAEA-CRP GS/55 (1989) (Gamma emission probabilities)
- D.E.Alburger, G.Harbottle. Phys. Rev. C 41,5 (1990) 2320 (Half-life)
- R.G.HELMER. Int. J. Appl. Radiat. Isotop. 41 (1990) 791 (Gamma emission probabilities)
- TECDOC-619. IAEA. A-1400 Vienna (1991) (X-Ray emission probabilities, not used)
- W.J.LIN, G.HARBOTTLE. J. Radioanal. Nucl. Chem. Letters 153,1 (1991) 51 (Half-life, Gamma emission probabilities)
- M.P.UNTERWEGGER, D.D.HOPPES, F.J.SCHIMA. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- LOGFT PROGRAM, ENSDF. BNL (1993) (lg ft)
- J.H.HUBBELL, P.N.TREHAN, NIRMAL SINGH, B.CHAND, D. MEHTA, M.L. GARG, R.R. GARG, SURINDER SINGH, S.J. PURI. Phys. Chem. Ref. Data 23-2 (1994) 339 (M fluorescence yield)
- B.DASMAHAPATRA, A.MUKHERJEE. Phys. Rev. A51,5 (1995) 3546 (X-Ray emission probabilities, not used)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (L fluorescence yield)
- E.SCHÖNFELD. EMISSION program, PTB (1997) (Auger and X-ray emission probabilities)
- R.G.HELMER, C.VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma energies)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR, P.O. TIKKANEN, S. RAMAN. Atom. Data and Nucl. Data Tables 91 (2002) 1
- (Theoretical internal conversion coefficients)
- M. P. UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (Q)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

1 Decay Scheme

Bi-211 decays mainly (99.724 (4) %) by alpha-particle emission to the ground state (83.56 (23) %), and (16.16 (23) %) to the 351-keV state in Tl-207. Bi-211 also has a weak beta minus decay branch (0.276 (4) %) that populates the ground state in Po-211.

Le bismuth 211 se désintègre par émission alpha vers l'état fondamental (83,56 (23) %), et l'état excité de 351-keV (16,16 (23) %) du thalium 207. Le bismuth 211 a aussi une faible branche de désintegration bêta moins (0,276 (4) %) vers l'état fondamental du polonium 211.

2 Nuclear Data

$T_{1/2}(^{211}\text{Bi})$:	$2,\!15$	(2)	\min
$T_{1/2}^{'}(^{211}\text{Po})$:	0,516	(3)	\mathbf{S}
$T_{1/2}^{(207} \text{Tl})$:	4,77	(2)	\min
$Q^{lpha}(^{211}\mathrm{Bi})$:	6750, 33	(46)	keV
$Q^{-}(^{211}\text{Bi})$:	574	(5)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	\mathbf{F}
$lpha_{0,1} lpha_{0,0}$	6399,8 (9) 6750,4 (6)	$\begin{array}{c} 16,16 \ (23) \\ 83,56 \ (23) \end{array}$	43 187

2.2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,0}^-$	574 (5)	0,276 (4)	1st Forbidden	5,99

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{1,0}(\mathrm{Tl})$	351,03 (4)	16,16 (24)	M1+E2	0,199(3)	0,0342 (5)	0,00801 (12)	0,243 (4)

3 Atomic Data

3.1 Tl

ω_K	:	$0,\!963$	(4)
$\bar{\omega}_L$:	0,367	(15)
n_{KL}	:	0,812	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_K				
	$K\alpha_2$	70,8325		59,24
	$K\alpha_1$	72,8725		100
	${ m K}eta_3$	82,118	}	
	$K\beta_1$	82,577	}	
	${ m K}eta_5^{\prime\prime}$	83,115	}	34
	$K\beta_2$	84,838	}	
	$\mathrm{K}eta_4$	$85,\!134$	}	10,1
	$\mathrm{KO}_{2,3}$	85,444	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	8,9531		
	$L\alpha$	$10,\!1718 - 10,\!2679$		
	$\mathrm{L}\eta$	$10,\!9942$		
	$\mathrm{L}eta$	$11,\!8117-12,\!9566$		
	$\mathrm{L}\gamma$	$13,\!8528 - 14,\!7362$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	54,587 - 59,954 66,37 - 72,86 78,12 - 85,50	$100 \\ 55,4 \\ 7,67$

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,1} lpha_{0,0}$	6278,5 (9) 6622,4 (6)	$\begin{array}{c} 16,16 \ (23) \\ 83,56 \ (23) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Tl)	5,18 - 15,31	1,617(21)
e _{AK}	(Tl) KLL KLX KXY	54,587 - 59,954 66,37 - 72,86 78,12 - 85,50	0,096 (11) } } }
ес _{1,0 К} ес _{1,0 L} ес _{1,0 М}	(Tl) (Tl) (Tl)	$\begin{array}{rrrr} 265,50 & (4) \\ 335,68 &- & 338,37 \\ 347,33 &- & 348,64 \end{array}$	$\begin{array}{c} 2,59 \ (5) \\ 0,446 \ (9) \\ 0,1044 \ (22) \end{array}$
$egin{array}{c} eta_{0,0}^- \ eta_{0,0}^- \ eta_{0,0}^- \end{array}$	max: avg:	$\begin{array}{ccc} 574 & (5) \\ 172,9 & (18) \end{array}$	0,276 (4)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Tl)	8,9531 - 14,7362		0,929 (19)	
$\begin{array}{c} \mathrm{XK}\alpha_2\\ \mathrm{XK}\alpha_1 \end{array}$	(Tl) (Tl)	70,8325 72,8725		$\begin{array}{c} 0,726 \ (16) \\ 1,225 \ (27) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82,118 82,577 83,115	} } }	0,417 (11)	$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84,838 85,134 85,444	} } }	0,124 (4)	$K' \beta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(\mathrm{Tl})$	351,03 (4)	13,00 (19)

7 Main Production Modes

 $Pb - 211(\beta^{-})Bi - 211$

- M. CURIE, A. DEBIERNE, A.S. EVE, H. GEIGER, O. HAHN, S.C. LIND, ST. MEYER, E. RUTHERFORD, E. SCHWEID-LER. Rev. Mod. Phys. 3 (1931) 427 (Half-life)
- F.N. SPIESS. Phys. Rev. vol. 94, no.5 (1954) 1292 (Half-life)
- R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER. Nucl. Phys. 35 (1962) 232 (Alpha emission probabilities)
- M. GIANNINI, D.PROSPERI, S.SCIUTI. Nuovo Cim. 25 (1962) 1314 (Branching ratio of the alpha particles emission)
- M. NURMIA, D. GIESSING, W. SIEVERS, L. VARGA. Ann.Acad.Sci.Fennicae Ser.A VI, no. 167 (1965) (Half-life, Branching ratio of the alpha particles emission)
- S.GORODETZKY, F.BECK, A.KNIPPER. Nucl. Phys. 82 (1966) 275 (Alpha emission probabilities, Multipolarities, Mixing ratio, K ICC)
- W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR. Can. J. Phys. 45 (1967) 2295 (Branching ratio of the alpha particles emission)

- C.BRIANCON, C.F.LEANG, R.WALEN. Comp. Rend. Acad. Sci. (Paris) 266 B (1968) 1533 (Gamma ray energies)
- VON H. MUNDSCHENK. Radiochim. Acta 14 (1970) 72 (Half-life)
- G.A. KOROLEV, A.A. VOROBYOV, Y.K. ZALITE. Nucl. Instrum. Methods 97 (1971) 323 (Half-life)
- B.GRENNBERG, A.Rytz. Metrologia 7 (1971) 65 (Alpha emission energies)
- D.F. URQUHART. AAEC Report TM 634 (1973) (Gamma ray energies)
- V.M. VAKHTEL, T. VYLOV, V.M.GOROZHANKIN, N.A.GALOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, YU.V.NORSEEV, V.G.CHUMIN. Conf. Dubna (1975) 149 (Gamma ray energies)
- K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK. Nukleonika 21 (1976) 935
- (Gamma ray energies)
- M.H. MOMENI. Nucl. Instrum. Methods 193 (1982) 185 (Gamma ray energies, Gamma-ray emission probabilities)
- M.M. HINDI, E.G.ADELBERGER, S.E.KELLOGG, T.MURAKAMI. Phys. Rev. C 38 (1988) 1370 (Gamma ray energies)
- J.T. ITURBE. Nucl. Instrum. Methods Phys. Res. A 274 (1989) 404 (Alpha emission energies)
- A. RYTZ. At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities)
- P. SCHUURMANS, J.WOUTERS, P.DE MOOR, N.SEVERIJNS, W.VANDERPOORTEN, J.VANHAVERBEKE, L.VANNESTE. Hyperfine Interactions 75 (1992) 423 (Alpha emission energies)
- M.J. MARTIN. Nucl. Data Sheets 70 (1993) 315 (Spin and Parity, Level energies)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A 729 (2003) 337 (Q)
- E. BROWNE. Nucl. Data Sheets 103 (2004) 183 (Spin and Parity, Level energies)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR. Nucl. Instrum. Methods Phys. Res. A 589 (2008) 202 (Theoretical ICC)

At-217 disintegrates 99,9933(24)% by alpha emission to levels in Bi-213 and 0,0067(24)% by beta minus emission to levels in Rn-217. The beta minus decay scheme of At-217 has not been studied. L'astate 217 se désintègre à 99,9933% par émission alpha vers des niveaux excités de bismuth 213 et par transitions bêta moins (0,0067%) vers le radon 217, cette partie n'a pas été étudiée.

2 Nuclear Data

$T_{1/2}(^{217}\text{At})$:	$32,\!3$	(4)	$10^{-3} { m s}$
$T_{1/2}(^{217}\text{Rn})$:	$0,\!54$	(5)	$10^{-3} { m s}$
$T_{1/2}^{(213}{\rm Bi})$:	$45,\!59$	(6)	\min
$Q^{-}(^{217}\text{At})$:	737	(6)	keV
$Q^{\alpha}(^{217}\text{At})$:	7201,3	(12)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	\mathbf{F}
$lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6150 \ (3) \\ 6441,0 \ (16) \\ 6606,5 \ (16) \\ 6941,8 \ (16) \\ 7199,6 \ (16) \end{array}$	$\begin{array}{c} 0,002\\ 0,0049\ (4)\\ 0,0167\ (8)\\ 0,0384\ (15)\\ 99,932\ (3) \end{array}$	5,2 36 49 379 1,16

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{1,0}({ m Bi}) \ \gamma_{2,1}({ m Bi}) \ \gamma_{4,2}({ m Bi}) \ \gamma_{2,0}({ m Bi}) \ \gamma_{3,0}({ m Bi})$	$257,88 (4) \\335,33 (10) \\455 \\593,1 (1) \\758,9 (1)$	$\begin{array}{c} 0,0446 \ (13) \\ 0,0062 \ (3) \\ 0,002 \\ 0,0115 \ (5) \\ 0,0049 \ (4) \end{array}$	M1+29%E2	0,434 (17)	0,0918 (16)	0,02212 (37)	0,555 (26)

3 Atomic Data

3.1 Bi

ω_K	:	0,964	(4)
$\bar{\omega}_L$:	$0,\!391$	(16)
n_{KL}	:	0,809	(5)

3.1.1 X Radiations

		Energy keV		Relative probability
X _K				
	$K\alpha_2$	74,8157		59,77
	$K\alpha_1$	77,1088		100
	$K\beta_3$	$86,\!835$	}	
	$K\beta_1$	87,344)	
	${ m K}eta_5^{\prime\prime}$	87,862	}	$34,\!25$
	$\mathrm{K}\beta_2$	89,732	}	
	$K\beta_4$	90,074)	10,48
	$\mathrm{KO}_{2,3}$	90,421	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$9,\!421$		
	$\mathrm{L}\gamma$	$-15,\!708$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	57,491 - 63,419 70,025 - 77,105 82,53 - 90,52	$100 \\ 56 \\ 7,84$
Auger L	$5,\!3-16,\!4$	

4 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6037 \ (3) \\ 6322,0 \ (16) \\ 6484,7 \ (16) \\ 6813,8 \ (16) \\ 7066,9 \ (16) \end{array}$	$\begin{array}{c} 0,002\\ 0,0049 \ (4)\\ 0,0167 \ (8)\\ 0,0384 \ (15)\\ 99,932 \ (3) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5,3 - 16,4	0,0077 (4)
e _{AK}	(Bi) KLL KLX KXY	57,491 - 63,419 70,025 - 77,105 82,53 - 90,52	0,00044 (3) } } }
ес _{1,0 К}	(Bi)	167,35 (4)	0,0125~(6)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XL} \\ { m XK}lpha_2 \\ { m XK}lpha_1 \end{array}$	(Bi) (Bi) (Bi)	9,421 - 15,708 74,8157 77,1088		0,00497 (23) 0,00351 (20) 0,0059 (4)	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86,835 87,344 87,862	} } }	0,00201 (11)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89,732 90,074 90,421	} } }	0,00062 (4)	$\mathrm{K}'eta_2$

CNDC /Huang Xiaolong, Wang Baosong

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}({ m Bi})$ $\gamma_{2,1}({ m Bi})$ $\gamma_{4,2}({ m Bi})$ $\gamma_{2,0}({ m Bi})$ $\gamma_{3,0}({ m Bi})$	$257,88 (4) \\335,33 (10) \\455 \\593,1 (1) \\758,9 (1)$	$\begin{array}{c} 0,0287\ (7)\\ 0,0062\ (3)\\ 0,002\\ 0,0115\ (5)\\ 0,0049\ (4) \end{array}$

7 Main Production Modes

 $\mathrm{Ac}-225$ decay chain

8 References

- A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P. HINCKS, J.V. JELLEY, A.N. MAY. Phys.Rev. 72 (1947) 253
- (Half-life)
- F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T. SEABORG, A. GHIORSO. Phys.Rev. 79 (1950) 435 (Half-life)
- H.DIAMOND, J.E.GINDLER. J.Inorg.Nucl. Chem. 25 (1963) 143 (Half-life)
- K.VALLI. Ann. Acad. Sci. Fennicae Ser.A VI,No.165 (1964) (Gamma-ray energies)
- B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N. MOSKVIN, O.M. NAZARENKO, V.F. RODIONOV. Izv.Akad. Nauk SSSR Ser.Fiz. 31 (1967) 568 (Alpha energies and intensities)
- C.-F.LEANG. Thesis Univ.Paris (1969) (Alpha energies and intensities,Beta minus decay branching ratio)
- T.VYLOV, N.A.GOLOVKOV, B.S.DZHELEPOV, R.B. IVANOV, M.A. MIKHAILOVA, Y.V. NORSEEV, V.G. CHUMIN. Bull. Acad. Sci. USSR Phys.Ser.41, No.8 (1977) 85 (Alpha energies)
- J.K.DICKENS, J.W.MCCONNELL. Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and emission probabilities)
- J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE. Phys.Rev. C25 (1982) 941 (Alpha energies)
- V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V. NORSEEV, V.I. FOMINYKH, V.V. TSUPKO-SITNIKOV. Bull.Rus.Acad. Sci. Phys. 59 (1995) 1854
 (Determinent descent hermathic metric)
- (Beta minus decay branching ratio)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- V.G.CHUMIN, J.K.JABBER, K.V.KALYAPKIN, S.A.KUDRYA, V.V. TSUPKO-SITNIKOV, K.YA. GROMOV, V.I. FO-MINYKH, T.A. FURYAEV. Bull.Rus.Acad. Sci. Phys. 61 (1997) 1606 (Alpha and beta minus decay branching ratio)
- V.G.Chumin, V.I.Fominykh, K.Ya.Gromov, M.Ya.Kuznetsova, V.V. Tsupko-Sitnikov, M.B. Yuldashev. Z.Phys. A358 (1997) 33

(Alpha energies and intensities, Gamma-ray energies and emission probabilities, Multipolarity)

- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (Q)
- M.S.BASUNIA. Nucl.Data Sheets 108 (2007) 633 (NDS)

Ra-225 disintegrates 100% by beta minus emission to levels in Ac-225. Le radium 225 se désintègre par émission bêta moins vers des niveaux excités de l'actinium 225.

2 Nuclear Data

$T_{1/2}(^{225}\text{Ra})$:	$14,\!82$	(19)	d
$T_{1/2}^{(225} { m Ac}$)	:	10,0	(1)	d
$Q^{-}(^{225}\text{Ra})$:	356	(5)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-}$	$\begin{array}{c} 200 \ (5) \\ 235 \ (5) \\ 316 \ (5) \\ 356 \ (5) \end{array}$	< 0.01 < 0.01 68.8 (20) 31.2 (20)	2nd Forbidden Unique 1st Forbidden Allowed 1st Forbidden	> 10,1 > 9,9 6,87 7,38

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_L	$lpha_M$	α_T
$\gamma_{1,0}({ m Ac})$	40,09 (5)	68,8 (17)	E1	0,974 (14)	0,24 (4)	1,293 (19)

3 Atomic Data

3.1 Ac

 $\begin{array}{rcl}
\omega_K & : & 0,969 & (4) \\
\overline{\omega}_L & : & 0,464 & (18) \\
n_{KL} & : & 0,799 & (5)
\end{array}$

3.1.1 X Radiations

		Energy keV	Relative probability
X _L	$egin{array}{c} { m L}\ell \ { m L}lpha \ { m L}\eta \ { m L}eta \ { m L}\gamma \end{array}$	$\begin{array}{r} 10,\!8701\\ 12,\!5002-12,\!6505\\ 14,\!0807\\ 14,\!6024-16,\!6263\\ 17,\!813-18,\!9228\end{array}$	

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger L	$5,\!87-19,\!69$	

4 Electron Emissions

		Energy keV		Electrons per 100 disint.
e_{AL}	(Ac)	5,87 -	· 19,69	15,7(7)
ес _{1,0 L} ес _{1,0 M} ес _{1,0 N}	(Ac) (Ac) (Ac)	20,24 - 35,09 - 38,82 -	24,22 - 36,87 - 39,78	$\begin{array}{c} 29,2 \ (8) \\ 7,2 \ (12) \\ 1,86 \ (27) \end{array}$
$egin{array}{c} eta_{0,3}^- \ eta_{0,3}^- \end{array} \ eta_{0,3}^- \end{array}$	max: avg:	$200 \\ 54,0$	(5) (15)	< 0,01
$egin{array}{c} eta_{0,2}^- \ eta_{0,2}^- \ eta_{0,2}^- \end{array}$	max: avg:	$235 \\ 70,5$	(5) (16)	< 0,01
$\beta_{0,1}^{-}$ $\beta_{0,1}^{-}$	max: avg:	$\begin{array}{c} 316\\ 88,3 \end{array}$	(5) (16)	68,8~(20)
$\begin{array}{c} \beta_{0,0}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: avg:	$\begin{array}{c} 356 \\ 100,7 \end{array}$	(5) (16)	31,2 (20)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Ac)	10,8701 — 18,9228	13,6(6)

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(Ac)$	40,09 (5)	30,0 (7)

6 Main Production Modes

Ra - 226(n,2n)Ra - 225

Descendant of U - 233()

7 References

- A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY. Phys.Rev. 72 (1947) 253 (Half-life)
- F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO. Phys.Rev. 79 (1950) 435 (Half-life)
- L.B.MAGNUSSON, F.WAGNER, JR., D.W.ENGELKEMEIR, M.S. FREEDMAN. ANL-5386 (1955) (Gamma ray energies emission probabilities)
- F.S.STEPHENS. UCRL-2970 (1955) (Gamma ray energies emission probabilities)
- J.K.DICKENS, J.W.MCCONNELL. Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma ray energies emission probabilities)
- R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD. Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma ray emission probabilities)
- I.Ahmad, J.E.Gindler, A.M.Friedman, R.R.Chasman, T.Ishii. Nucl. Phys. A472 (1987) 285 (Gamma ray energies)
- G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O. OWENS. Phys.Rev. C36 (1987) 420 (Half-life)
- Y.A.AKOVALI. Nucl. Data Sheets 60 (1990) 617 (NDS)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (Q)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, AND C.W.NESTOR, JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical Internal Conversion Coefficients)

Ac-225 disintegrates 100% by alpha emission to the ground state level and to excited levels in Fr-221. L'actinium se désintègre par émissions alpha vers le niveau fondamental et des niveux excités du francium 225.

2 Nuclear Data

$T_{1/2}(^{225}\text{Ac})$:	10,0	(1)	d
$T_{1/2}^{(221}$ Fr)	:	4,79	(2)	\min
$Q^{\dot{lpha}}(^{225}\mathrm{Ac}$)	:	$5935,\!1$	(14)	keV

2.1 α Transitions

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	F
$\alpha_{0,31}$	5438,6 (14)	0,0027 (8)	450
$\alpha_{0,30}$	5453,1(14)	0,000097~(2)	14960
$\alpha_{0,29}$	5476,0(14)	0,0020 (5)	980
$\alpha_{0,28}$	5488,8(14)	0,0006~(4)	3800
$\alpha_{0,27}$	5512,5(14)	0,0030 (4)	1020
$\alpha_{0,26}$	5526,5(14)	0,0023~(3)	1590
$\alpha_{0,25}$	5528,4(14)	0,0028 (8)	1340
$\alpha_{0,24}$	5534,2(14)	0,0083~(6)	485
$\alpha_{0,23}$	5541,8(14)	0,098~(19)	45
$\alpha_{0,22}$	5567,4(14)	0,00052 (18)	11700
$\alpha_{0,21}$	5586,7(14)	0,0020 (3)	3860
$\alpha_{0,20}$	5596,9(14)	0,0022 (7)	4000
$\alpha_{0,19}$	5615,0(14)	0,0052 (19)	2100
$\alpha_{0,18}$	5623,7(14)	0,013~(6)	930
$\alpha_{0,17}$	5640,4(14)	0,0072 (8)	2060
$\alpha_{0,16}$	5646,9(14)	0,055(12)	292
$\alpha_{0,15}$	5655,8(14)	0,084(10)	213
$\alpha_{0,14}$	5664,0(14)	0,017(7)	1160
$\alpha_{0,13}$	5681,5(14)	0,95(4)	$25,\!6$
$\alpha_{0,12}$	5700,6(14)	0,114(7)	268
$\alpha_{0,11}$	5711,0 (14)	1,09(5)	31,5
$\alpha_{0,10}$	5739,3(14)	4,16(23)	$11,\!6$
$\alpha_{0,9}$	5785,0(14)	1,31(4)	62,9
$\alpha_{0,8}$	5789,3(14)	0,021 (14)	4100
$\alpha_{0,7}$	5826,7(14)	2,03 (23)	66
$\alpha_{0,6}$	5834,2(14)	1,6(3)	91
$lpha_{0.5}$	5835,3(14)	1,24(10)	119
$\alpha_{0,4}$	5835,6(17)	9,0(5)	16,4
$\alpha_{0,3}$	5896,5(14)	6,2 (9)	48
$\alpha_{0,2}$	5898,0(21)	18,9(20)	16
$\alpha_{0,1}$	5909,3(14)	0,3	1135
$lpha_{0,0}$	5935,1 (14)	52,4(24)	8,7

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$
$\gamma_{2,1}(Fr)$	10.6	7.7 (10)	M1			383(5)	510(7)
$\gamma_{1,0}(Fr)$	26.02(10)	9.4(13)	E2		4390 (110)	1180(30)	5940(150)
$\gamma_{2,0}(\text{Fr})$	36.69(3)	19.8(17)	E2		806 (12)	217(4)	1092(16)
$\gamma_{3.0}(\mathrm{Fr})$	38,58(4)	9,1(9)	E2		630 (10)	169(3)	854 (13)
$\gamma_{8,4}(Fr)$	46,25(5)	0,0090(13)	[E1]		0,636(9)	0,155(2)	0,841(12)
$\gamma_{9,6}({ m Fr})$	49,12 (4)	0,0137(14)	[E1]		0,541 (8)	0,1320(19)	0,715(11)
$\gamma_{9,5}({ m Fr})$	50,2	0,15	[E2]		174,2 (25)	47,0 (7)	236,0(34)
$\gamma_{34,32}(\mathrm{Fr})$	53,4(4)	0,074	[M1]		13,3~(4)	3,18(8)	17,6(5)
$\gamma_{13,10}({\rm Fr})$	57,71 (4)	0,0075~(12)	(E1)		0,352 (5)	0,0854~(12)	0,465~(7)
$\gamma_{6,3}({ m Fr})$	62, 6(3)	0,44~(10)	[E2]		59,8(16)	16,2(5)	81,2~(23)
$\gamma_{4,2}({ m Fr})$	62,95(3)	5,81(36)	M1		8,24 (12)	1,964(28)	10,85 (15)
$\gamma_{5,2}(\mathrm{Fr})$	63,5(3)	0,0286 (41)	[E1]		0,273 (5)	0,0660(12)	0,360(7)
$\gamma_{6,2}(\mathrm{Fr})$	64,27(3)	1,13(21)	M1+E2		17(3)	4,4 (8)	23(4)
$\gamma_{7,3}(Fr)$	69,86(5)	0,23(6)	E2		35,3(5)	9,55(14)	47,9(7)
$\gamma_{7,2}(Fr)$	71,71(4)	0,57(6)	E2		31,1(5)	8,43(12)	42,3(6)
$\gamma_{4,1}(Fr)$	73,55(9)	0,73 (19)	E2 E1		27,6(4)	7,48(11)	37,5(6)
$\gamma_{5,1}(Fr)$	(3,80(3))	0,383(29) 0.107(20)	EI (M1 + E9)		0,182(3)	0,0440(0)	0,240(3)
$\gamma_{6,1}(\mathbf{Fr})$	(4,65 (5) 78 8	0,197(39) 0.082(13)	(M1+E2) M1		9,00(13)	2,32(4) 1.010(14)	12,10(10) 5.63(8)
$\gamma_{11,8}(Fr)$	87.41(3)	1.4(1)	M1		4,27(0) 3.16(5)	1,019(14) 0.754(10)	3,03(8)
$\gamma_{10,7}(\mathbf{Fr})$	94.90(2)	0.449(43)	M1		249(3)	0.594(10)	328(5)
$\gamma_{10,8}(Fr)$	96.16(5)	0.23(7)	M1+E2		4.5(10)	1.2(3)	6.0(14)
$\gamma_{40}(Fr)$	99.67(5)	3.09(22)	M1+E2		2.32(8)	0.56(2)	3.06(11)
$\gamma_{5,0}(\mathrm{Fr})$	99.91(6)	1.20(9)	E1		0.0814(11)	0.0196(3)	0.1073(15)
$\gamma_{6,0}(\mathrm{Fr})$	100,90(4)	0,54(19)	M1+E2		3,4 (14)	0.9(4)	4,6 (19)
$\gamma_{13,9}(Fr)$	103,48 (10)	0,033(12)	[M1,E2]	5(2)	3,7(18)	1,0(5)	10 (3)
$\gamma_{7,0}(\mathrm{Fr})$	108,40(3)	2,87(19)	M1+E2	7,2(4)	2,30(12)	0,58(4)	10,27 (25)
$\gamma_{9,3}(\mathrm{Fr})$	111,53 (3)	0,427 (29)	(E1)	0,282(4)	0,0609 (9)	0,01461 (21)	0,363(5)
$\gamma_{24,16}(\mathrm{Fr})$	112,80(2)	0,00284 (41)	[E1]	0,275~(4)	0,0591 (9)	0,01417~(21)	0,353~(5)
$\gamma_{23,15}(\mathrm{Fr})$	114	0,0094~(14)	M1	7,93~(12)	1,466(21)	0,350~(5)	9,86(14)
$\gamma_{8,1}({ m Fr})$	119,85(3)	0,104~(7)	[E1]	0,239~(4)	0,0503~(7)	0,01207 (17)	0,305~(4)
$\gamma_{14,9}(\mathrm{Fr})$	121,08(7)	0,022 (6)	(E1)	0,233 (4)	0,0490 (7)	0,01176(17)	0,298 (4)
$\gamma_{11,6}(Fr)$	123,75(4)	0,112(8)	[E1]	0,221 (4)	0,0463(7)	0,0111(2)	0,282(4)
$\gamma_{11,5}(\mathrm{Fr})$	124,81(3)	0,205(13)	M1+E2	3,87	1,593	0,409	6,01
$\gamma_{12,7}(Fr)$	126,12(5)	0,0100(9)	(EI)	0,212(3)	0,0440(7)	0,0106(2)	0,270(4)
$\gamma_{15,9}(Fr)$	129,22(7) 122,62(7)	0,010(9)	[MI, E2]	3(3)	1,3(3)	0,39(13)	3(2)
$\gamma_{12,6}(\mathbf{F}\mathbf{r})$	133,02(3) 134,854(30)	0,0242 (20) 0.0303 (37)	(E1)	0,164(3) 0.180(3)	0,0379(0)	0,00907 (13) 0.00885 (13)	0,234(3) 0.220(3)
$\gamma_{12,4}(Fr)$	134,054(50) 137.4(1)	0,0000(01)	(111)	0,100(3)	0,0310 (0)	0,00000 (10)	0,229(3)
$\gamma_{20,14}(Fr)$	139.6	0,0023(3)	M1+E2	24(21)	11(3)	0.29(9)	39(17)
$\gamma_{17} \circ (Fr)$	144.73(22)	0.0022(6)	(M1+E2)	2.57	0.914	0.232	3.79
$\gamma_{13,7}(Fr)$	145.17(3)	0.174(11)	(E1)	0.1513(22)	0.0305(5)	0.00730(11)	0.191(3)
$\gamma_{9.0}(\mathrm{Fr})$	150,06(3)	0,815(14)	E1	0,1397(20)	0,0280(4)	0,0067(1)	0,1766 (25)
$\gamma_{13,6}(\mathrm{Fr})$	152,65(3)	0,0230(15)	[E1]	0,1341(19)	0,0268(4)	0,00640 (9)	0,1694(24)
$\gamma_{13,4}(Fr)$	153,925(30)	0,239(15)	E1	0,1315(19)	0,0262 (4)	0,00627 (9)	0,1660(23)
$\gamma_{10,3}(\mathrm{Fr})$	157,253 (30)	1,73(18)	M1+E2	3,1(4)	0,59(3)	0,143(9)	3,8(3)
$\gamma_{18,9}({ m Fr})$	161,35(7)	0,013~(6)	[M1,E2]	1,6(14)	$0,\!64~(10)$	0,16~(4)	2,5(13)
$\gamma_{23,11}(\mathrm{Fr})$	169,18 (4)	0,037~(20)	[M1,E2]	1,4(12)	0,53~(6)	0,136~(24)	2,1 (11)
$\gamma_{10,1}({ m Fr})$	169,9	$0,0139\ (14)$					
$\gamma_{15,7}({ m Fr})$	170,77(5)	0,015(8)	(E1)	0,1026 (15)	0,0201 (3)	0,00479(7)	0,1290 (18)
$\gamma_{15,6}({ m Fr})$	178,31 (3)	0,0180 (13)	E1	0,0925 (13)	0,0180 (3)	0,00429 (6)	0,1162 (16)
$\gamma_{16,7}({ m Fr})$	179,78(4)	0,030(11)	(M1,E2)	1,2~(10)	$0,\!43~(3)$	0,109(14)	1,8(10)
$\gamma_{11,3}(\mathrm{Fr})$	186,1	0,0127(14)	54	0.0004 (10)	0.0100= (22)	0.00000 (0)	0.10/5 (15)
$\gamma_{17,7}(\mathrm{Fr})$	186,29(3)	0,0046(6)	$\mathbf{E1}$	0,0834 (12)	0,01607 (23)	0,00383 (6)	0,1045 (15)
$\gamma_{16,6}(Fr)$	187,23	0,0103(7)	E 1	0.0016 (19)	0.01571.(99)	0.00975(a)	0 1099 (14)
$\gamma_{11,2}(Fr)$	187,97(3) 105.75(2)	0.354(33)	世1 M1 + E9	0,0810(12)	0.01371(22)	0,00375(6)	0,1023 (14)
γ10,0(F Γ)	199,79 (3)	0,57 (9)	1011十凸2	1,1 (0)	0,314 (3)	0,079 (4)	1,5 (0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{23,10}(Fr)$	197.50(3)	0.0284(33)	E1	0.0726(11)	0.01386(20)	0.00331(5)	0.0908(13)
$\gamma_{12,2}(Fr)$	197.72(12)	0.041(5)	[E1]	0.0724(11)	0.01382(20)	0.00330(5)	0.0906(13)
$\gamma_{11,1}(Fr)$	198,51(21)	0,0205(14)	[E1]	0,0718(11)	0,01369(20)	0,00327(5)	0,0898(13)
$\gamma_{29,13}(Fr)$	205,19(12)	0,0015(5)		, , ,	, ()	, , ,	, , ,
$\gamma_{13,2}(Fr)$	216,90(3)	0,343(21)	(E1)	0,0582 (9)	0,01096 (16)	0,00261(4)	0,0726(10)
$\gamma_{19,4}(Fr)$	220,43 (8)	0,0060(18)	. ,				
$\gamma_{11,0}(\mathrm{Fr})$	224,67(3)	0,119 (9)	[E1]	0,0537~(8)	0,01005~(14)	0,00239 (4)	0,0669 (9)
$\gamma_{13,1}(\mathrm{Fr})$	228,2 (4)	0,0046~(12)					
$\gamma_{41,32}(\mathrm{Fr})$	231,19 (7)	0,012~(7)	(M1)	$1,079\ (16)$	0,197~(3)	0,0468~(7)	1,338 (19)
$\gamma_{14,2}(\mathrm{Fr})$	236,0 (6)	0,0017 (3)					
$\gamma_{20,4}(Fr)$	238,64 (8)	0,0022 (7)	(M1)	0,988~(14)	0,180(3)	0,0428 (6)	$1,225\ (17)$
$\gamma_{15,3}(\mathrm{Fr})$	240,69(3)	0,0124(11)	[E1]	0,0457(7)	0,00847(12)	0,00202(3)	0,0568 (8)
$\gamma_{23,9}(Fr)$	243,13(5)	0,0067(9)	[M1]	0,938(14)	0,1707(24)	0,0407(6)	1,163(16)
$\gamma_{16,3}(Fr)$	249,60(3)	0,0170(13)	(E2)	0,1033(15)	0,1145(16)	0,0305(5)	0,258(4)
$\gamma_{13,0}(Fr)$	253,48(3)	0,139(8)	[E1]	0,0405(6)	0,00747(11)	0,001776 (25) 0.001722 (25)	0,0504(7)
$\gamma_{17,3}(Fr)$	250,1(2) 270,21(2)	0,00039(7)	[E] E1	0,0390(0)	0,00729(11) 0.00501(0)	0,001733(25) 0.001405(20)	0,0492(7)
$\gamma_{15,0}(\mathbf{Fr})$	279,21(3) 282.11(20)	0,0317(23)		0,0525(5)	0,00591(9) 0.1120(16)	0,001405(20)	0,0405(0)
$\gamma_{36,21}(F1)$	282,11(20) 284.78(3)	0,00097(9)	[N11] [F1]	0,022(9) 0.0311(5)	0,1129(10) 0.00564(8)	0,0209(4) 0.001340(10)	0,771(11) 0.0385(5)
$\gamma_{23,7}(F1)$	204,70(5) 298.33(5)	0,0077 (0)		0,0011 (0)	0,00504 (8)	0,001340 (13)	0,0385 (5)
$\gamma_{33,13}(Fr)$	298.33(5)	0.0028(7)	(M1.E2)	0.30(24)	0.077(20)	0.019(4)	0.4(3)
$\gamma_{23,12}(Fr)$	317.23(18)	0,0020 (1)	E1	0.0244(4)	0.00437(7)	0.001037(15)	0.0302(4)
$\gamma_{34,13}(Fr)$	317.23(18)	0.00065(33)	M1	0.451(7)	0.0816(12)	0.0194(3)	0.558(8)
$\gamma_{32,10}(Fr)$	321,77(4)	, , ,		, , , ,	, , ,	, , , ,	, , , ,
$\gamma_{27,6}(Fr)$	321,77(4)	0,00340 (41)	[E1]	0,0237 (4)	0,00423~(6)	0,001003(14)	0,0292 (4)
$\gamma_{21,0}(Fr)$	348,35(5)	0,0030 (3)					
$\gamma_{23,3}(Fr)$	354,57~(6)	0,0020 (7)	[E1]	0,0191 (3)	0,00338 (5)	0,000800 (12)	0,0236 (3)
$\gamma_{33,10}(\mathrm{Fr})$	$356,\! 6$	0,00026~(11)					
$\gamma_{24,3}(Fr)$	362,394(30)	0,0055(5)	(E1)	0,0182 (3)	0,00321 (6)	0,0007610(11)	0,0225 (3)
$\gamma_{22,0}(Fr)$	367,74(12)	0,00052(18)		0.01604 (04)			0.0000 (0)
$\gamma_{34,10}(Fr)$	375,03(5)	0,0019(5)	[E1]	0,01694 (24)	0,00297(5)	0,000704(10)	0,0209(3)
$\gamma_{31,7}(Fr)$	388,10(7)	0,00125(21) 0,00010(16)					
$\gamma_{37,12}(F1)$	403,13(10) 406.06(3)	0,00019(10)	[F1]	0.01432(20)	0 00240 (4)	0 000580 (0)	0.01750.(25)
$\gamma_{33,8}(F1)$	400,00(3) 417.92(2)	0,0075(5)		0,01452 (20)	0,00249 (4)	0,000505 (5)	0,01755 (25)
$\gamma_{47,97}(Fr)$	429.80(18)	0.00038(19)					
$\gamma_{36,10}(Fr)$	434.82(5)	0.0029(3)					
$\gamma_{40,14}(Fr)$	442,16(8)	0.0045(7)					
$\gamma_{30,3}(Fr)$	443,43 (10)	0,0001					
$\gamma_{33,7}(Fr)$	443,44 (10)	0,0015(5)	[E2]	0,0310(5)	0,0137(2)	0,00353(5)	0,0494 (7)
$\gamma_{28,0}(Fr)$	446,31 (10)	0,0006 (4)					
$\gamma_{33,6}(Fr)$	451,04 (5)	0,0036~(6)	[M1]	0,1739~(25)	0,0312 (5)	0,00742~(11)	0,215 (3)
$\gamma_{33,4}(Fr)$	452,24 (3)	0,13~(1)	[M1]	0,1727 (25)	0,0310 (5)	0,00737 (11)	0,213 (3)
$\gamma_{29,0}(\mathrm{Fr})$	458,79(8)	0,00053 (13)		<i>.</i>			<i>.</i>
$\gamma_{34,7}(Fr)$	462,43 (13)	0,00045(11)	[E1]	0,01092 (16)	0,00187 (3)	0,000442 (7)	0,01338 (19)
$\gamma_{34,6}(Fr)$	469,48(5)	0,0028(4)					
$\gamma_{32,2}(Fr)$	480,95(11)	0,0340(22)					
$\gamma_{32,1}(Fr)$	491,45(10)	0,00035(14)					
$\gamma_{31,0}(Fr)$	490,9(3) 408.6(6)	0,0015(7)					
$\gamma_{45,19}(\mathbf{Fr})$	490,0 (0) 519 5 (7)	0,00063 (21)					
$\gamma_{33,3}(F1)$	512,5(7) 515,27(3)	0,00035(21) 0.0246(15)	[M1]	0.1210.(17)	0.0218.(3)	0.00518 (8)	0.1506(21)
$\gamma_{22,0}(\mathrm{Fr})$	510,21(3) 517.64(3)	0.0240(10) 0.0159(10)		0,1213 (17)	0,0210 (0)	0,00010 (0)	0,1000 (21)
$\gamma_{36.7}(\text{Fr})$	522.17(4)	0.00208(15)					
$\gamma_{33,1}(Fr)$	525.95(17)	0,0403 (25)	[M1]	0.1154(17)	0,0206(3)	0.00490(7)	0,1425 (20)
$\gamma_{36.6}(Fr)$	529.64(3)	0.0076(7)	r1	-, ()	-,(0)	-,(•)	-, ()
$\gamma_{36.4}(Fr)$	530,89 (4)	0,0047(5)					
$\gamma_{34,3}(Fr)$	532,12 (9)	0,00077 (21)	[E1]	0,00823 (12)	0,001389(20)	0,000327 (5)	0,01005(14)
$\gamma_{37,4}(Fr)$	538,1 (1)	0,0038 (10)		. /	. ,	. /	. ,

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{43,12}(Fr)$	545.8(6)	0.00053(14)					
$\gamma_{33.0}(Fr)$	551,81(3)	0,0059(16)	[M1]	0,1016(15)	0,0181(3)	0,00431(6)	0,1254(17)
$\gamma_{35,2}(Fr)$	564,34(11)	0,00022 (9)		, , ,	, (),	, , ,	/ (/
$\gamma_{40,8}(Fr)$	567,48(5)	0,0012 (4)					
$\gamma_{34,0}(Fr)$	570,86(3)	0,0040(5)	[E1]	0,00716(10)	0,001201 (17)	0,000283(4)	0,00874(12)
$\gamma_{36,3}({ m Fr})$	590, 45(5)	0,00083(14)					
$\gamma_{36,2}(Fr)$	594,05(4)	0,0029(3)					
$\gamma_{37,2}(Fr)$	600,94 (3)	0,006					
$\gamma_{35,0}({ m Fr})$	600,94(3)	0,0024 (5)					
$\gamma_{41,8}({ m Fr})$	603, 13 (4)	0,00173~(21)					
$\gamma_{43,9}(\mathrm{Fr})$	628,95(10)	0,00032 (7)					
$\gamma_{37,0}(\mathrm{Fr})$	637,1~(7)	0,00012					
$\gamma_{38,0}(\mathrm{Fr})$	645,94 (12)	0,00015 (5)					
$\gamma_{41,5}({ m Fr})$	649,07 (4)	0,0017~(5)					
$\gamma_{47,10}(\mathrm{Fr})$	656, 29 (11)	0,00049~(21)					
$\gamma_{42,7}(Fr)$	657,89(5)	0,0014 (3)					
$\gamma_{42,4}(Fr)$	667, 18 (8)	0,0021 (18)					
$\gamma_{46,9}({ m Fr})$	674,9(3)	0,00010 (5)					
$\gamma_{39,0}({ m Fr})$	679,53~(6)	0,00066~(12)					
$\gamma_{43,5}({ m Fr})$	679,57~(6)						
$\gamma_{47,9}({ m Fr})$	702,02 (14)	0,00016 (7)					
$\gamma_{48,10}({ m Fr})$	747,0(1)	0,0011 (4)					
$\gamma_{47,4}({ m Fr})$	752,48 (12)	0,00026 (7)					
$\gamma_{43,1}({ m Fr})$	754,09 (13)	0,00023~(7)					
$\gamma_{42,0}(\mathrm{Fr})$	767,9(3)	0,00030 (6)					
$\gamma_{43,0}({ m Fr})$	780,6~(6)	0,000055 (14)					
$\gamma_{44,0}({ m Fr})$	$808,\!48$ (10)	0,0021 (3)					
$\gamma_{46,0}({ m Fr})$	824,2 (7)	0,000049					

3 Atomic Data

3.1 Fr

ω_K	:	$0,\!967$	(4)
$\bar{\omega}_L$:	$0,\!440$	(18)
n_{KL}	:	0,803	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_K				
	$K\alpha_2$	$83,\!23$		60,92
	$K\alpha_1$	86,10		100
	$K\beta_3$	96,815	}	
	$K\beta_1$	$97,\!474$) }	
	${ m K}eta_5^{\prime\prime}$	98,069	}	34,88
	$K\beta_2$	100,16	}	
	$K\beta_4$	100,548) }	$11,\!3$
	$\mathrm{KO}_{2,3}$	100,972	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$10,\!380$		
	$L\alpha$	$11,\!89-12,\!03$		
	$\mathrm{L}\eta$	$13,\!254$		
	$\mathrm{L}eta$	$13,\!877-15,\!639$		
	$\mathrm{L}\gamma$	16.752 - 17.799		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY	63,576 - 70,787 77,720 - 86,101 91,84 - 101,12	$100 \\ 57,4 \\ 8,24$
Auger L	5,73 - 18,52	

4 α Emissions

	$\frac{\rm Energy}{\rm keV}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
		0.0011 (4)
$\alpha_{0,48}$	4903,6(14)	0,0011(4)
$\alpha_{0,47}$	4992,7(14)	0,0013(3)
$\alpha_{0,46}$	5019,3(14)	0,00015(5)
$\alpha_{0,45}$	5025,5(14)	0,00083(21)
$\alpha_{0,44}$	5035,5(14)	0,0021(3)
$\alpha_{0,43}$	5064,1(14)	0,00114 (18)
$\alpha_{0,42}$	5076,8(14)	0,0038(19)
$\alpha_{0,41}$	5094,1(14)	0,015(7)
$\alpha_{0,40}$	5129,0(14)	0,0058(8)
$\alpha_{0,39}$	5162,1(14)	0,00066(12)
$\alpha_{0,38}$	5195,1(14)	0,00015(5)
$\alpha_{0,37}$	5203,3(14)	0,0101(10)
$\alpha_{0,36}$	5210,2(14)	0,022(1)
$\alpha_{0,35}$	5239,3(14)	0,0026(5)
$\alpha_{0,34}$	5269,1(14)	0,048(19)
$\alpha_{0,33}$	5287,6(14)	0,214(10)
$\alpha_{0,32}$	5321,2(14)	0,007(7)
$\alpha_{0,31}$	5341,9(14)	0,0027 (8)
$\alpha_{0,30}$	5356,2(14)	0,000097(2)
$\alpha_{0,29}$	5379,0(14)	0,0020(5)
$\alpha_{0,28}$	5391,2(14)	0,0006(4)
$\alpha_{0,27}$	5414,5(14)	0,0030(4)
$\alpha_{0,26}$	5428,3(14)	0,0023 (3)
$\alpha_{0,25}$	5430,1(14)	0,0028 (8)
$\alpha_{0,24}$	5435,8(14)	0,0083(6)
$\alpha_{0,23}$	5443,3(14)	0,098 (19)
$\alpha_{0,22}$	5468,4(14)	0,00052(18)
$\alpha_{0,21}$	5487,4(14)	0,0020 (3)
$\alpha_{0,20}$	5497,4 (14)	0,0022(7)
$\alpha_{0,19}$	5515,2(14)	0,0052(19)
$\alpha_{0,18}$	5523,7(14)	0,013(6)
$\alpha_{0,17}$	5540,1(14)	0,0072(8)
$\alpha_{0,16}$	5546,5(14)	0,055(12)
$\alpha_{0,15}$	5555,3(14)	0,084(10)
$\alpha_{0,14}$	5563,3(14)	0,017(7)
$\alpha_{0,13}$	5580,5(14)	0,95(4)
$\alpha_{0,12}$	5599,3(14)	0,114(7)
$\alpha_{0,11}$	5609,0(14)	1,09(5)
$\alpha_{0,10}$	5637,3(14)	4,16 (23)
$\alpha_{0,9}$	5682,2(14)	1,31(4)
$\alpha_{0,8}$	5686,4(14)	0,021 (14)
$\alpha_{0,7}$	5723,1(14)	2,03(23)
$\alpha_{0,6}$	5730,5(14)	1,0 (3)
$\alpha_{0,5}$	5731,6(14)	1,24 (10)
$\alpha_{0,4}$	5731,9 (17)	9,0(5)

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	5791,7 (14) 5793,1 (21) 5804,2 (14) 5829,6 (14)	$\begin{array}{c} 6,2 \ (9) \\ 18,9 \ (20) \\ 0,3 \\ 52,4 \ (24) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Fr)	5,73 - 18,52	23,8 (12)
e _{AK}	(Fr)		0,115(9)
	KLĹ	63,576 - $70,787$	}
	KLX	77,720 - 86,101	}
	KXY	91,84 - 101,12	}
ес _{13,9 К}	(Fr)	2,4 (1)	0,015~(7)
$ec_{7,0 K}$	(Fr)	7,27 (3)	1,84(15)
ес _{7,0 Т}	(Fr)	7,3 - 108,3	$2,\!62~(18)$
$ec_{1,0 L}$	(Fr)	7,39 - 11,00	7,0 (9)
$ec_{9,3 \rm K}$	(Fr)	10,40 (3)	0,088~(6)
$ec_{2,0 L}$	(Fr)	18,06 - $21,66$	14,6(12)
$ec_{8,1 K}$	(Fr)	18,72 (3)	0,0191~(12)
$ec_{3,0 L}$	(Fr)	$19,\!95$ - $23,\!56$	6,7~(6)
$ec_{1,0 M}$	(Fr)	$21,\!38$ - $23,\!03$	1,88(25)
$ec_{11,6 \text{ K}}$	(Fr)	22,62 (4)	0,0192~(14)
$ec_{11,5 \text{ K}}$	(Fr)	$23,\!68$ (3)	0,113~(7)
$ec_{1,0 N}$	(Fr)	$24,\!87$ - $25,\!77$	$0,\!49~(7)$
$ec_{9,5 L}$	(Fr)	31,6 - $35,2$	0,1080 (16)
$ec_{2,0 M}$	(Fr)	32,05 - $33,70$	$3,\!93\ (33)$
$ec_{3,0 M}$	(Fr)	$33,\!94$ - $35,\!59$	1,81(17)
$ec_{2,0 N}$	(Fr)	$35,\!54$ - $36,\!44$	1,02~(9)
$ec_{3,0 N}$	(Fr)	$37,\!43$ - $38,\!33$	0,474 (45)
$ec_{6,3 L}$	(Fr)	44,0 - 47,6	0,32~(7)
$ec_{13,7 \rm K}$	(Fr)	44,04 (3)	0,0221 (14)
$ec_{4,2 L}$	(Fr)	44,32 - $47,92$	4,04~(25)
$ec_{9,5 M}$	(Fr)	45,6 - $47,2$	0,02914 (43)
$ec_{6,2 L}$	(Fr)	$45,\!637$ - $49,\!246$	$0,\!80~(16)$
$ec_{9,0 K}$	(Fr)	48,93 (2)	0,0968~(22)
$ec_{7,3 L}$	(Fr)	51,22 - $54,82$	0,166~(42)
$ec_{13,4}$ K	(Fr)	52,80 (3)	0,0270 (18)
$ec_{7,2}$ L	(Fr)	53,10 - 56,71	0,411 (41)
1			

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.
eca 1 T	(Fr)	54.91 - 58.52	0.52(14)
$ec_{5,1}$ L	(Fr)	55,23 - 58,84	0,0562 (43)
ec _{10.3 K}	(Fr)	56,12 (3)	1,12 (17)
$ec_{6.1 L}$	(Fr)	56,2 - 59,8	0,136(27)
ес _{6,3 М}	(Fr)	58,0 - 59,6	0,086 (20)
$ec_{4,2 M}$	(Fr)	58,31 - $59,96$	0,96(6)
$ec_{6,2 M}$	(Fr)	$59,\!627$ - $61,\!277$	0,207 (42)
$ec_{11,8 L}$	(Fr)	60,2 - $63,8$	0,053~(8)
ес _{7,3 М}	(Fr)	$65,\!21$ - $66,\!86$	0,045~(11)
$ec_{7,2}$ M	(Fr)	67,09 - $68,74$	0,111(11)
$ec_{23,11}$ K	(Fr)	68,05 (4)	0,017~(16)
$ec_{7,3}$ N	(Fr)	68,7 - $69,6$	0,0118 (30)
$ec_{10,7 L}$	(Fr)	68,78 - $72,38$	0,86~(6)
$ec_{4,1 M}$	(Fr)	68,90 - $70,55$	0,142 (37)
$ec_{5,1 M}$	(Fr)	69,22 - $70,87$	$0,0136\ (10)$
$ec_{6,1}$ M	(Fr)	70,19 - 71,84	0,035~(7)
$ec_{7,2}$ N	(Fr)	70,58 - 71,48	0,0292 (29)
$ec_{11,8}$ M	(Fr)	74,2 - $75,8$	0,0125(19)
$ec_{10,6}$ L	(Fr)	76,3 - $79,9$	0,261 (25)
$ec_{10,5 L}$	(Fr)	77,53 - 81,13	0,149(46)
$ec_{16,7 K}$	(Fr)	78,65 (4)	0,013(11)
$ec_{4,0}$ L	(Fr)	81,02 - 84,62	1,76(13)
$ec_{5,0}$ L	(Fr)	81,28 - 84,88	0,088(7)
$ec_{6,0}$ L	(Fr)	82,3 - 85,9	0,33(14)
$ec_{10,7}$ M	(Fr)	82,77 - 84,42	0,204(15)
$ec_{13,9}$ L	(Fr)	84,85 - 88,40	0,011(0)
$ec_{11,2}$ K	(Fr) (En)	80,84 (3)	0,0432 (23)
$ec_{7,0}$ L	(Ff) (En)	89,8 - 93,4	0,380(48) 0.062(6)
$ec_{10,6}$ M	(FI) (En)	90,3 - 91,9 01.52 02.17	0,002(0) 0.040(12)
ес _{10,5} м	(FI) (Er)	91,32 - 93,17 02.0 06.5	0,040 (13) 0.0101 (13)
ec9,3 L	$(\mathbf{F}\mathbf{r})$	92,9 - 90,3 04.62 (3)	0,0191(13) 0.16(0)
ecio,0 K	(\mathbf{Fr})	94,02 (3) 95.01 - 96.66	0,10(9) 0.426(32)
$ec_{4,0}$ M	(\mathbf{Fr})	95,01 - 90,00 95,27 - 96,92	0,420(32) 0.0212(16)
$ec_{5,0}$ M	(\mathbf{Fr})	96.3 - 97.9	0,0212 (10) 0.086 (39)
$ec_{6,0}$ M	(\mathbf{Fr})	103.8 - 105.4	0,000(03) 0.148(14)
ec_{115}	(Fr)	106.18 - 109.78	0.0465(29)
ecz o N	(\mathbf{Fr})	107.3 - 108.2	0.0388(33)
001,0 N ес13 9 к	(Fr)	115.77 (3)	0.0186(12)
ес _{11 5 М}	(Fr)	120,17 - 121.82	0.0119(7)
	(Fr)	131,43 - 135.04	0.01940 (44)
ec _{10.3.1}	(Fr)	138,619 - 142,228	0,212 (21)
ес _{10.3} м	(Fr)	152,609 - 154,259	0.051(5)
ec _{10.0} L	(Fr)	177,12 - 180,72	0,0465 (29)
ес _{10.0 М}	(Fr)	191,11 - 192,76	0,0117 (9)
ec _{33,4 K}	(Fr)	351,11 (3)	0,0185 (14)
,	. /		

6 Photon Emissions

6.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
$egin{array}{c} XL \ XKlpha_2 \ XKlpha_1 \end{array}$	(Fr) (Fr) (Fr)	$10,\!380 - 17,\!799$ $83,\!23$ $86,\!1$		18,7 (9) 1,00 (8) 1,64 (12)	} Κα }
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Fr) (Fr) (Fr)	96,815 97,474 98,069	} } }	0,57~(5)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Fr) (Fr) (Fr)	$100,16 \\ 100,548 \\ 100,972$	} } }	0,19~(2)	$K' \beta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{2,1}({ m Fr}) \ \gamma_{1,0}({ m Fr}) \ \gamma_{2,0}({ m Fr}) \ \gamma_{3,0}({ m Fr})$	10,626,0 (1)36,69 (3)38,58 (4)	$\begin{array}{c} 0,015 \ (2) \\ 0,00159 \ (21) \\ 0,0181 \ (15) \\ 0,0107 \ (10) \end{array}$
$\gamma_{8,4}(\mathrm{Fr}) \ \gamma_{9,6}(\mathrm{Fr}) \ \gamma_{9,5}(\mathrm{Fr})$	$\begin{array}{c} 46,24 \ (5) \\ 49,12 \ (4) \\ 50,2 \end{array}$	$\begin{array}{c} 0,0049 \ (7) \\ 0,0080 \ (8) \\ 0,00062 \end{array}$
$\gamma_{34,32}(Fr)$ $\gamma_{13,10}(Fr)$	53,4(4) 57,71(4)	$\begin{array}{c} 0,004\\ 0,0051 \ (8)\\ 0.0052 \ (12) \end{array}$
$\gamma_{6,3}(\mathrm{Fr})$ $\gamma_{4,2}(\mathrm{Fr})$ $\gamma_{5,2}(\mathrm{Fr})$	$\begin{array}{c} 62,0 \ (3) \\ 62,94 \ (3) \\ 63,5 \ (3) \end{array}$	$\begin{array}{c} 0,0033 \ (12) \\ 0,49 \ (3) \\ 0,021 \ (3) \end{array}$
$\gamma_{6,2}(\mathrm{Fr})$ $\gamma_{7,3}(\mathrm{Fr})$ $\gamma_{7,2}(\mathrm{Fr})$	$\begin{array}{c} 64,27 \ (3) \\ 69,86 \ (5) \\ 71,71 \ (4) \end{array}$	$\begin{array}{c} 0,047 \ (4) \\ 0,0047 \ (12) \\ 0,0132 \ (13) \end{array}$
$\gamma_{4,1}(\mathrm{Fr})$ $\gamma_{5,1}(\mathrm{Fr})$ $\gamma_{6,1}(\mathrm{Fr})$	73,55 (9) 73,85 (3) 74,82 (5)	0,019 (5) 0,309 (23) 0.015 (3)
$\gamma_{11,8}(Fr)$ $\gamma_{10,7}(Fr)$ $\gamma_{10,7}(Fr)$	$\begin{array}{c} 73,8\\ 87,41 \ (3)\\ 94,90 \ (2) \end{array}$	$\begin{array}{c} 0,013 \ (0) \\ 0,0123 \ (19) \\ 0,271 \ (19) \\ 0.105 \ (10) \end{array}$
$\gamma_{10,5}(Fr)$ $\gamma_{4,0}(Fr)$	96,16 (5) 99,67 (5)	$\begin{array}{c} 0,105 (10) \\ 0,033 (7) \\ 0,76 (5) \end{array}$

 CNDC /Huang Xiaolong, Wang Baosong

keVper 100 disint. $\gamma_{5,0}(Fr)$ 99,89 (6)1,08 (8) $\gamma_{6,0}(Fr)$ 100,86 (4)0,0030 (7) $\gamma_{7,0}(Fr)$ 108,38 (3)0,255 (16) $\gamma_{9,3}(Fr)$ 111,52 (3)0,313 (21) $\gamma_{24,16}(Fr)$ 112,80 (2)0,0021 (3) $\gamma_{23,15}(Fr)$ 1140,00087 (13) $\gamma_{8,1}(Fr)$ 119,85 (3)0,080 (5) $\gamma_{14,9}(Fr)$ 121,06 (7)0,017 (5) $\gamma_{11,6}(Fr)$ 123,75 (4)0,087 (6) $\gamma_{11,5}(Fr)$ 124,81 (3)0,0292 (18) $\gamma_{12,7}(Fr)$ 126,10 (5)0,0079 (7) $\gamma_{15,9}(Fr)$ 129,22 (7)0,0027 (5) $\gamma_{12,6}(Fr)$ 133,60 (3)0,0196 (16) $\gamma_{12,4}(Fr)$ 134,85 (3)0,032 (3) $\gamma_{26,14}(Fr)$ 137,4 (1)0,0023 (3) $\gamma_{23,13}(Fr)$ 139,60,00139 (21) $\gamma_{17,9}(Fr)$ 144,7 (2)0,00046 (12) $\gamma_{13,6}(Fr)$ 152,64 (3)0,0197 (13) $\gamma_{13,6}(Fr)$ 157,25 (3)0,36 (3) $\gamma_{18,9}(Fr)$ 161,35 (7)0,0036 (9) $\gamma_{23,11}(Fr)$ 169,18 (4)0,012 (5) $\gamma_{10,1}(Fr)$ 169,90,0139 (14) $\gamma_{15,6}(Fr)$ 178,29 (3)0,0161 (12) $\gamma_{15,6}(Fr)$ 187,20,0103 (7) $\gamma_{15,6}(Fr)$ 187,20,0103 (7) $\gamma_{11,2}(Fr)$ 186,10,0127 (14) $\gamma_{17,7}(Fr)$ 186,29 (3)0,042 (5) $\gamma_{10,0}(Fr)$ 157,57 (3)0,036 (3) $\gamma_{12,2}(Fr)$ 197,7 (1)0,038 (5) <th></th> <th>Energy</th> <th>Photons</th>		Energy	Photons
$\begin{array}{llllllllllllllllllllllllllllllllllll$		keV	per 100 disint.
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{5.0}(Fr)$	99,89(6)	1,08(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{6,0}(Fr)$	100.86(4)	0.096(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{13.9}(Fr)$	103.48 (10)	0.0030(7)
$\begin{split} &\gamma_{9,3}(\mathrm{Fr}) & 111,52 (3) & 0,313 (21) \\ &\gamma_{24,16}(\mathrm{Fr}) & 112,80 (2) & 0,0021 (3) \\ &\gamma_{23,15}(\mathrm{Fr}) & 114 & 0,00087 (13) \\ &\gamma_{8,1}(\mathrm{Fr}) & 119,85 (3) & 0,080 (5) \\ &\gamma_{14,9}(\mathrm{Fr}) & 121,06 (7) & 0,017 (5) \\ &\gamma_{11,6}(\mathrm{Fr}) & 123,75 (4) & 0,087 (6) \\ &\gamma_{11,5}(\mathrm{Fr}) & 124,81 (3) & 0,0292 (18) \\ &\gamma_{12,7}(\mathrm{Fr}) & 126,10 (5) & 0,0079 (7) \\ &\gamma_{15,9}(\mathrm{Fr}) & 129,22 (7) & 0,0027 (5) \\ &\gamma_{12,6}(\mathrm{Fr}) & 133,60 (3) & 0,0196 (16) \\ &\gamma_{12,4}(\mathrm{Fr}) & 134,85 (3) & 0,032 (3) \\ &\gamma_{26,14}(\mathrm{Fr}) & 137,4 (1) & 0,0023 (3) \\ &\gamma_{23,13}(\mathrm{Fr}) & 139,6 & 0,00139 (21) \\ &\gamma_{17,9}(\mathrm{Fr}) & 144,7 (2) & 0,00046 (12) \\ &\gamma_{13,7}(\mathrm{Fr}) & 145,15 (3) & 0,146 (9) \\ &\gamma_{9,0}(\mathrm{Fr}) & 150,05 (3) & 0,693 (12) \\ &\gamma_{13,6}(\mathrm{Fr}) & 152,64 (3) & 0,0197 (13) \\ &\gamma_{13,4}(\mathrm{Fr}) & 153,92 (3) & 0,205 (13) \\ &\gamma_{10,3}(\mathrm{Fr}) & 157,25 (3) & 0,36 (3) \\ &\gamma_{18,9}(\mathrm{Fr}) & 161,35 (7) & 0,0036 (9) \\ &\gamma_{23,11}(\mathrm{Fr}) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(\mathrm{Fr}) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(\mathrm{Fr}) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(\mathrm{Fr}) & 179,78 (4) & 0,0108 (8) \\ &\gamma_{11,3}(\mathrm{Fr}) & 186,1 & 0,0127 (14) \\ &\gamma_{17,7}(\mathrm{Fr}) & 186,29 (3) & 0,034 (7) \\ &\gamma_{11,2}(\mathrm{Fr}) & 187,96 (3) & 0,53 (3) \\ &\gamma_{10,0}(\mathrm{Fr}) & 195,74 (3) & 0,148 (9) \\ &\gamma_{23,10}(\mathrm{Fr}) & 197,50 (3) & 0,026 (3) \\ &\gamma_{12,2}(\mathrm{Fr}) & 197,7 (1) & 0,038 (5) \\ &\gamma_{11,1}(\mathrm{Fr}) & 198,47 (23) & 0,0188 (13) \\ &\gamma_{23,10}(\mathrm{Fr}) & 224,59 (3) & 0,112 (8) \\ &\gamma_{13,3}(\mathrm{Fr}) & 224,59 (3) & 0,112 (8) \\ &\gamma_{14,2}(\mathrm{Fr}) & 236,0 (6) & 0,0017 (3) \\ &\gamma_{23,9}(\mathrm{Fr}) & 233,64 (8) & 0,0006 (18) \\ &\gamma_{14,2}(\mathrm{Fr}) & 236,0 (6) & 0,0017 (3) \\ &\gamma_{23,9}(\mathrm{Fr}) & 238,64 (8) & 0,0010 (3) \\ &\gamma_{23,9}(\mathrm{Fr}) & 238,64 (8) & 0,0003 (4) \\ \end{matrix}$	$\gamma_{13,3}(=-)$ $\gamma_{7,0}(\text{Fr})$	108.38(3)	0.255(16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{1,0}(11)$ $\gamma_{0,3}(Fr)$	111.52(3)	0.313(21)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{9,3}(1)$	112.80(2)	0.0021(3)
$\begin{split} &\gamma_{8,1}(\mathrm{Fr}) & 119,85 (3) & 0,080 (5) \\ &\gamma_{14,9}(\mathrm{Fr}) & 121,06 (7) & 0,017 (5) \\ &\gamma_{11,6}(\mathrm{Fr}) & 123,75 (4) & 0,087 (6) \\ &\gamma_{11,5}(\mathrm{Fr}) & 124,81 (3) & 0,0292 (18) \\ &\gamma_{12,7}(\mathrm{Fr}) & 126,10 (5) & 0,0079 (7) \\ &\gamma_{15,9}(\mathrm{Fr}) & 129,22 (7) & 0,0027 (5) \\ &\gamma_{12,6}(\mathrm{Fr}) & 133,60 (3) & 0,0196 (16) \\ &\gamma_{12,4}(\mathrm{Fr}) & 134,85 (3) & 0,032 (3) \\ &\gamma_{26,14}(\mathrm{Fr}) & 137,4 (1) & 0,0023 (3) \\ &\gamma_{23,13}(\mathrm{Fr}) & 144,7 (2) & 0,00046 (12) \\ &\gamma_{13,7}(\mathrm{Fr}) & 144,7 (2) & 0,00046 (12) \\ &\gamma_{13,6}(\mathrm{Fr}) & 152,64 (3) & 0,146 (9) \\ &\gamma_{9,0}(\mathrm{Fr}) & 150,05 (3) & 0,693 (12) \\ &\gamma_{13,6}(\mathrm{Fr}) & 152,64 (3) & 0,0197 (13) \\ &\gamma_{13,6}(\mathrm{Fr}) & 157,25 (3) & 0,36 (3) \\ &\gamma_{18,9}(\mathrm{Fr}) & 161,35 (7) & 0,0036 (9) \\ &\gamma_{23,11}(\mathrm{Fr}) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(\mathrm{Fr}) & 169,9 & 0,0139 (14) \\ &\gamma_{15,7}(\mathrm{Fr}) & 170,77 (5) & 0,013 (7) \\ &\gamma_{15,6}(\mathrm{Fr}) & 178,29 (3) & 0,0161 (12) \\ &\gamma_{16,7}(\mathrm{Fr}) & 179,78 (4) & 0,0108 (8) \\ &\gamma_{11,3}(\mathrm{Fr}) & 186,1 & 0,0127 (14) \\ &\gamma_{17,7}(\mathrm{Fr}) & 186,29 (3) & 0,026 (3) \\ &\gamma_{11,2}(\mathrm{Fr}) & 187,96 (3) & 0,53 (3) \\ &\gamma_{10,0}(\mathrm{Fr}) & 195,74 (3) & 0,148 (9) \\ &\gamma_{23,10}(\mathrm{Fr}) & 197,7 (1) & 0,038 (5) \\ &\gamma_{11,2}(\mathrm{Fr}) & 220,43 (8) & 0,0060 (18) \\ &\gamma_{11,2}(\mathrm{Fr}) & 228,2 (4) & 0,0046 (12) \\ &\gamma_{13,3}(\mathrm{Fr}) & 228,2 (4) & 0,0046 (12) \\ &\gamma_{13,3}(\mathrm{Fr}) & 228,2 (4) & 0,0046 (12) \\ &\gamma_{13,3}(\mathrm{Fr}) & 238,64 (8) & 0,0010 (3) \\ &\gamma_{14,2}(\mathrm{Fr}) & 238,64 (8) & 0,0117 (10) \\ &\gamma_{23,9}(\mathrm{Fr}) & 243,12 (5) & 0,0031 (4) \\ \\ \end{aligned}$	$\gamma_{24,10}(Fr)$ $\gamma_{22,15}(Fr)$	114	0.00087(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{23,13}()$ $\gamma_{8,1}(Fr)$	119.85(3)	0.080(5)
$\begin{split} &\gamma_{11,6}(Fr) & 123,75 (4) & 0,087 (6) \\ &\gamma_{11,5}(Fr) & 124,81 (3) & 0,0292 (18) \\ &\gamma_{12,7}(Fr) & 126,10 (5) & 0,0079 (7) \\ &\gamma_{15,9}(Fr) & 129,22 (7) & 0,0027 (5) \\ &\gamma_{12,6}(Fr) & 133,60 (3) & 0,0196 (16) \\ &\gamma_{12,4}(Fr) & 134,85 (3) & 0,032 (3) \\ &\gamma_{26,14}(Fr) & 137,4 (1) & 0,0023 (3) \\ &\gamma_{26,14}(Fr) & 137,4 (1) & 0,0023 (3) \\ &\gamma_{23,13}(Fr) & 149,6 & 0,00139 (21) \\ &\gamma_{17,9}(Fr) & 144,7 (2) & 0,00046 (12) \\ &\gamma_{13,7}(Fr) & 145,15 (3) & 0,146 (9) \\ &\gamma_{9,0}(Fr) & 150,05 (3) & 0,693 (12) \\ &\gamma_{13,6}(Fr) & 152,64 (3) & 0,0197 (13) \\ &\gamma_{13,6}(Fr) & 157,25 (3) & 0,36 (3) \\ &\gamma_{10,3}(Fr) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(Fr) & 169,9 & 0,0139 (14) \\ &\gamma_{15,7}(Fr) & 170,77 (5) & 0,013 (7) \\ &\gamma_{15,6}(Fr) & 178,29 (3) & 0,0161 (12) \\ &\gamma_{16,7}(Fr) & 179,78 (4) & 0,0108 (8) \\ &\gamma_{11,3}(Fr) & 186,1 & 0,0127 (14) \\ &\gamma_{17,7}(Fr) & 186,29 (3) & 0,0042 (5) \\ &\gamma_{16,6}(Fr) & 187,2 & 0,0103 (7) \\ &\gamma_{11,2}(Fr) & 187,96 (3) & 0,53 (3) \\ &\gamma_{10,0}(Fr) & 197,50 (3) & 0,026 (3) \\ &\gamma_{12,2}(Fr) & 197,7 (1) & 0,038 (5) \\ &\gamma_{11,1}(Fr) & 198,47 (23) & 0,0188 (13) \\ &\gamma_{29,13}(Fr) & 205,07 (11) & 0,0015 (5) \\ &\gamma_{13,2}(Fr) & 216,89 (3) & 0,32 (2) \\ &\gamma_{19,4}(Fr) & 228,2 (4) & 0,0046 (12) \\ &\gamma_{41,32}(Fr) & 231,16 (7) & 0,005 (3) \\ &\gamma_{14,2}(Fr) & 236,0 (6) & 0,0017 (3) \\ &\gamma_{23,9}(Fr) & 243,12 (5) & 0,0031 (4) \\ \end{matrix}$	$\gamma_{14.9}(Fr)$	121.06(7)	0.017(5)
$\begin{split} &\gamma_{11,5}(Fr) & 124,81 (3) & 0,0292 (18) \\ &\gamma_{12,7}(Fr) & 126,10 (5) & 0,0079 (7) \\ &\gamma_{15,9}(Fr) & 129,22 (7) & 0,0027 (5) \\ &\gamma_{12,6}(Fr) & 133,60 (3) & 0,0196 (16) \\ &\gamma_{12,4}(Fr) & 134,85 (3) & 0,032 (3) \\ &\gamma_{26,14}(Fr) & 137,4 (1) & 0,0023 (3) \\ &\gamma_{23,13}(Fr) & 139,6 & 0,00139 (21) \\ &\gamma_{17,9}(Fr) & 144,7 (2) & 0,00046 (12) \\ &\gamma_{13,7}(Fr) & 145,15 (3) & 0,146 (9) \\ &\gamma_{9,0}(Fr) & 150,05 (3) & 0,693 (12) \\ &\gamma_{13,6}(Fr) & 152,64 (3) & 0,0197 (13) \\ &\gamma_{13,4}(Fr) & 153,92 (3) & 0,205 (13) \\ &\gamma_{10,3}(Fr) & 157,25 (3) & 0,36 (3) \\ &\gamma_{10,3}(Fr) & 161,35 (7) & 0,0036 (9) \\ &\gamma_{23,11}(Fr) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(Fr) & 169,18 (4) & 0,012 (5) \\ &\gamma_{10,1}(Fr) & 169,9 & 0,0139 (14) \\ &\gamma_{15,7}(Fr) & 170,77 (5) & 0,013 (7) \\ &\gamma_{15,6}(Fr) & 178,29 (3) & 0,0161 (12) \\ &\gamma_{16,7}(Fr) & 179,78 (4) & 0,0108 (8) \\ &\gamma_{11,3}(Fr) & 186,1 & 0,0127 (14) \\ &\gamma_{17,7}(Fr) & 186,29 (3) & 0,0042 (5) \\ &\gamma_{16,6}(Fr) & 187,2 & 0,0103 (7) \\ &\gamma_{11,2}(Fr) & 187,96 (3) & 0,53 (3) \\ &\gamma_{10,0}(Fr) & 197,50 (3) & 0,026 (3) \\ &\gamma_{12,2}(Fr) & 197,7 (1) & 0,038 (5) \\ &\gamma_{11,1}(Fr) & 198,47 (23) & 0,0188 (13) \\ &\gamma_{29,13}(Fr) & 205,07 (11) & 0,0015 (5) \\ &\gamma_{13,2}(Fr) & 216,89 (3) & 0,32 (2) \\ &\gamma_{19,4}(Fr) & 228,2 (4) & 0,0046 (12) \\ &\gamma_{41,32}(Fr) & 231,16 (7) & 0,005 (3) \\ &\gamma_{14,2}(Fr) & 238,64 (8) & 0,0010 (3) \\ &\gamma_{15,3}(Fr) & 243,12 (5) & 0,0031 (4) \\ \\ \end{matrix}$	$\gamma_{14,3}(=-)$ $\gamma_{11.6}(Fr)$	123.75(4)	0.087(6)
$\begin{split} &\gamma_{12,7}(Fr) & 126,10 & (5) & 0,0079 & (7) \\ &\gamma_{15,9}(Fr) & 129,22 & (7) & 0,0027 & (5) \\ &\gamma_{12,6}(Fr) & 133,60 & (3) & 0,0196 & (16) \\ &\gamma_{12,4}(Fr) & 134,85 & (3) & 0,032 & (3) \\ &\gamma_{26,14}(Fr) & 137,4 & (1) & 0,0023 & (3) \\ &\gamma_{23,13}(Fr) & 139,6 & 0,00139 & (21) \\ &\gamma_{17,9}(Fr) & 144,7 & (2) & 0,00046 & (12) \\ &\gamma_{13,7}(Fr) & 145,15 & (3) & 0,146 & (9) \\ &\gamma_{9,0}(Fr) & 150,05 & (3) & 0,693 & (12) \\ &\gamma_{13,6}(Fr) & 152,64 & (3) & 0,0197 & (13) \\ &\gamma_{13,4}(Fr) & 153,92 & (3) & 0,205 & (13) \\ &\gamma_{10,3}(Fr) & 157,25 & (3) & 0,36 & (3) \\ &\gamma_{10,3}(Fr) & 157,25 & (3) & 0,36 & (3) \\ &\gamma_{10,3}(Fr) & 161,35 & (7) & 0,0036 & (9) \\ &\gamma_{23,11}(Fr) & 169,18 & (4) & 0,012 & (5) \\ &\gamma_{10,1}(Fr) & 169,9 & 0,0139 & (14) \\ &\gamma_{15,7}(Fr) & 170,77 & (5) & 0,013 & (7) \\ &\gamma_{15,6}(Fr) & 178,29 & (3) & 0,0161 & (12) \\ &\gamma_{16,7}(Fr) & 179,78 & (4) & 0,0108 & (8) \\ &\gamma_{11,3}(Fr) & 186,1 & 0,0127 & (14) \\ &\gamma_{17,7}(Fr) & 186,29 & (3) & 0,0042 & (5) \\ &\gamma_{16,6}(Fr) & 187,2 & 0,0103 & (7) \\ &\gamma_{11,2}(Fr) & 187,96 & (3) & 0,53 & (3) \\ &\gamma_{10,0}(Fr) & 195,74 & (3) & 0,148 & (9) \\ &\gamma_{23,10}(Fr) & 197,50 & (3) & 0,026 & (3) \\ &\gamma_{12,2}(Fr) & 197,7 & (1) & 0,038 & (5) \\ &\gamma_{11,3}(Fr) & 228,27 & (4) & 0,0015 & (5) \\ &\gamma_{13,2}(Fr) & 216,89 & (3) & 0,32 & (2) \\ &\gamma_{19,4}(Fr) & 220,43 & (8) & 0,0060 & (18) \\ &\gamma_{11,0}(Fr) & 224,59 & (3) & 0,112 & (8) \\ &\gamma_{13,1}(Fr) & 228,24 & 0,0046 & (12) \\ &\gamma_{41,32}(Fr) & 231,16 & (7) & 0,005 & (3) \\ &\gamma_{14,2}(Fr) & 236,0 & (6) & 0,0017 & (3) \\ &\gamma_{23,9}(Fr) & 243,12 & (5) & 0,0031 & (4) \\ \\ \end{pmatrix}$	$\gamma_{11,0}(Fr)$	124.81(3)	0.0292(18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,7}(Fr)$	126.10(5)	0.0079(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,\gamma}(\mathrm{Fr})$	129.22(7)	0.0027(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,g}(Fr)$	133.60(3)	0.0196(16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,0}(Fr)$	134.85(3)	0.032(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,4}(11)$	137.4(1)	0.0023(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{20,14}(Fr)$	139.6	0.00139(21)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{23,13}(r)$	144.7(2)	0,00100(21) 0,00046(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{17,9}(Fr)$	$145\ 15\ (3)$	0.146(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{13,7}(\mathbf{r})$	150.05(3)	0,110(0) 0,693(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{9,0}(11)$	152,64 (3)	0.0197(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{13,0}(Fr)$	153,92 (3)	0.205(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{13,4}(Fr)$	153,32 (3) 157,25 (3)	0.36(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,3}(Fr)$	161,26(0) 161,35(7)	0,30(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{18,9}(11)$	169,38(4)	0,0000(5) 0.012(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{23,11}(r)$	169.9	0.012(0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,1}(Fr)$	170.77(5)	0.013(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{15,7}(Fr)$	178, 29(3)	0.0161(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{15,0}(Fr)$	179,28(0) 179,78(4)	0,0101(12) 0,0108(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,7}(Fr)$	186.1	0,0100(0) 0,0127(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{11,3}(Fr)$	186.29(3)	0,0121(14) 0,0042(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{1\ell,\ell}(\mathbf{r})$	187.2	0,0042(0) 0,0103(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,0}(Fr)$	187.96(3)	0.53(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{11,2}(\mathbf{Fr})$	195,74(3)	0.148(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{22,10}(Fr)$	197.50(3)	0.026(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,0}(Fr)$	197.7(1)	0.038(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{11,2}(1)$ $\gamma_{11,1}(Fr)$	$198\ 47\ (23)$	0.0188(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{20,12}(Fr)$	205 07 (11)	0.0015(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12.9,13}(Fr)$	216.89(3)	0.32(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,2}(\mathbf{Fr})$	220.43(8)	0,02(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{11,4}(Fr)$	223, 10(0) 22459(3)	0 112 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{12,1}(Fr)$	2282(4)	0.0046(12)
$\begin{array}{ccccccc} \gamma_{41,32}(\mathrm{Fr}) & 231,10 \ (1) & & 0,005 \ (3) \\ \gamma_{14,2}(\mathrm{Fr}) & 236,0 \ (6) & 0,0017 \ (3) \\ \gamma_{20,4}(\mathrm{Fr}) & 238,64 \ (8) & 0,0010 \ (3) \\ \gamma_{15,3}(\mathrm{Fr}) & 240,68 \ (3) & 0,0117 \ (10) \\ \gamma_{23,9}(\mathrm{Fr}) & 243,12 \ (5) & 0,0031 \ (4) \end{array}$	$\gamma_{13,1}(r)$ $\gamma_{41,23}(Fr)$	231 16 (7)	0.005(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{141,32}(Fr)$	236.0(1)	0.0017(3)
$\begin{array}{ll} \gamma_{20,4}(11) & 230,04 (6) & 0,0010 (3) \\ \gamma_{15,3}(Fr) & 240,68 (3) & 0,0117 (10) \\ \gamma_{23,9}(Fr) & 243,12 (5) & 0,0031 (4) \end{array}$	$\gamma_{14,2}(11)$ $\gamma_{20,4}(Fr)$	238,64 (8)	0.0010(3)
$\gamma_{23,9}(\text{Fr}) = 243,12 (5) = 0,0031 (4)$	$\gamma_{15,2}(Fr)$	240.68(3)	0.0117(10)
(20,9(11) 210,12 (0) 0,0001 (4)	$\gamma_{10,3}(11)$ $\gamma_{00,0}(Fr)$	243,00(5) 243,12(5)	0.0031(4)
I	/20,9(++)	= 10,12 (0)	0,0001 (1)

	Energy	Photons
	keV	per 100 disint.
$\gamma_{16.3}(Fr)$	249,60(3)	0,0135(10)
$\gamma_{13.0}(Fr)$	253,46(3)	0,132(8)
$\gamma_{17.3}(Fr)$	256,0(2)	0,00037(7)
$\gamma_{15.0}(Fr)$	279,18(3)	0,0305(22)
$\gamma_{36,21}(Fr)$	282,1 (2)	0,00055(5)
$\gamma_{23,7}(Fr)$	284,75(3)	0,0074(6)
$\gamma_{25,7}(Fr)$	298,33(5)	0,0020 (3)
$\gamma_{34,13}(Fr)$	317,23(18)	0,00042 (21)
$\gamma_{27,6}(Fr)$	321,77(4)	0,0033(4)
$\gamma_{21,0}(Fr)$	348,33(5)	0,0030(3)
$\gamma_{23,3}(Fr)$	354,56(6)	0,0020(7)
$\gamma_{33,10}(Fr)$	356,6	0,00026(11)
$\gamma_{24,3}(Fr)$	362,38(3)	0,0054 (5)
$\gamma_{22.0}(Fr)$	367,74(12)	0,00052 (18)
$\gamma_{34.10}(Fr)$	374,98(5)	0,0019(5)
$\gamma_{31,7}(Fr)$	388,07(7)	0,00125 (21)
$\gamma_{37,12}(Fr)$	403,13 (10)	0,00019(16)
$\gamma_{33,8}({\rm Fr})$	405,95(3)	0,0078 (5)
$\gamma_{32,5}(Fr)$	417,90(2)	0,0056 (5)
$\gamma_{47,27}(Fr)$	429,80(18)	0,00038 (19)
$\gamma_{36,10}(Fr)$	434,82(5)	0,0029 (3)
$\gamma_{40,14}(Fr)$	442,16(8)	0,0045~(7)
$\gamma_{33,7}({ m Fr})$	443,43(10)	0,0014 (5)
$\gamma_{30,3}({ m Fr})$	443,43(10)	0,0001
$\gamma_{28,0}(Fr)$	446,31 (10)	0,0006~(4)
$\gamma_{33,6}(Fr)$	451,04(5)	0,0030 (5)
$\gamma_{33,4}(Fr)$	452,23 (3)	$0,\!107~(8)$
$\gamma_{29,0}(Fr)$	458,79 (8)	$0,00053\ (13)$
$\gamma_{34,7}(Fr)$	462,43 (13)	0,00044~(11)
$\gamma_{34,6}(Fr)$	469,48(5)	0,0028~(4)
$\gamma_{32,2}(Fr)$	480,85(11)	0,0340~(22)
$\gamma_{32,1}(Fr)$	$491,\!45(10)$	0,00035~(14)
$\gamma_{31,0}({\rm Fr})$	496,9(3)	0,0015~(7)
$\gamma_{45,19}(Fr)$	498,6(6)	0,00083~(21)
$\gamma_{33,3}({\rm Fr})$	512,5(7)	0,00055 (21)
$\gamma_{33,2}(Fr)$	515,13 (3)	$0,0214\ (13)$
$\gamma_{32,0}(Fr)$	517,51(3)	$0,0159\ (10)$
$\gamma_{36,7}(Fr)$	522,14 (4)	0,00208 (15)
$\gamma_{33,1}(Fr)$	525,94(17)	0,0353 (22)
$\gamma_{36,6}({\rm Fr})$	529,59(3)	0,0076~(7)
$\gamma_{36,4}(Fr)$	530,87(4)	0,0047(5)
$\gamma_{34,3}(Fr)$	532,11 (9)	0,00076 (21)
$\gamma_{37,4}(Fr)$	538,1(1)	0,0038 (10)
$\gamma_{43,12}(Fr)$	545,8(6)	0,00053 (14)
$\gamma_{33,0}({\rm Fr})$	551,79(3)	0,0052 (14)
$\gamma_{35,2}({\rm Fr})$	564,34(11)	0,00022 (9)
$\gamma_{40,8}({ m Fr})$	567,48(5)	0,0012 (4)

	Energy keV	Photons per 100 disint.
$\gamma_{34,0}(Fr)$	570,69(3)	0,0040 (5)
$\gamma_{36,3}(Fr)$	590,42(5)	0,00083(14)
$\gamma_{36,2}(Fr)$	593,87(4)	0,0029 (3)
$\gamma_{35,0}({\rm Fr})$	600,92 (3)	0,0024 (5)
$\gamma_{37,2}(Fr)$	600,92 (3)	0,006
$\gamma_{41,8}(Fr)$	603,09 (4)	0,00173~(21)
$\gamma_{43,9}({\rm Fr})$	$628,95\ (10)$	0,00032 (7)
$\gamma_{37,0}(Fr)$	637,1~(7)	0,00012
$\gamma_{38,0}(Fr)$	645,94(12)	0,00015 (5)
$\gamma_{41,5}(Fr)$	649,03~(4)	0,0017~(5)
$\gamma_{47,10}(Fr)$	656, 18(11)	0,00049~(21)
$\gamma_{42,7}(Fr)$	$657,\!88~(5)$	0,0014 (3)
$\gamma_{42,4}(Fr)$	667, 14(8)	0,0021 (18)
$\gamma_{46,9}(Fr)$	674,9(3)	0,00010 (5)
$\gamma_{39,0}({\rm Fr})$	679, 36(6)	0,00066~(12)
$\gamma_{47,9}(Fr)$	702,00(14)	0,00016 (7)
$\gamma_{48,10}(Fr)$	747,0(1)	0,0011 (4)
$\gamma_{47,4}(Fr)$	752,46(12)	0,00026 (7)
$\gamma_{43,1}(Fr)$	754,04 (13)	0,00023~(7)
$\gamma_{42,0}(Fr)$	767,9(3)	0,00030 (6)
$\gamma_{43,0}({\rm Fr})$	$780,\! 6\ (6)$	$0,000055\ (14)$
$\gamma_{44,0}({ m Fr})$	$808,\!48(10)$	0,0021 (3)
$\gamma_{46,0}({ m Fr})$	824,2~(7)	0,000049

7 Main Production Modes

- Ra 226(d, 3n)Ac 225
- Th 232(p,4n)Ac 225
- $\mathrm{U}-233$ decay chain
- $\mathrm{Th}-229$ decay chain

8 References

- A.C.ENGLISH, T.E. CRANSHAW, P. DEMERS, J.A.HARVEY, E.P. HINCKS, J.V. JELLEY, A.N. MAY. Phys. Rev. 72 (1947) 253 (Half-life)
- F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A. GHIORSO. Phys.Rev. 79 (1950) 435 (Half-life)
- G. GRAEFFE, K.VALLI, J. AALTONEN. Ann. Acad. Sci. Fenn. Ser.A VI, No.145 (1964) (Alpha energies and intensities)
- G.BASTIN-SCOFFIER. Comp. Rend. Acad. Sci. (Paris) 265B (1967) 863 (Alpha energies and intensities)
- B.S.DZHELEPOV, R.B.IVANOV, M.A. MIKHAILOVA, L.N. MOSKVIN, O.M. NAZARENKO, V.F. RODIONOV. Izv. Akad. Nauk SSSR Ser.Fiz., 31 (1967) 568 (Alpha energies and intensities)
- C.-F.LEANG. Compt.Rend. 265B (1967) 417 (Gamma ray energies and intensities)

- C.-F.LEANG, F.GAUTIER. J. Phys. (Paris) 30 (1969) 296 (Gamma ray energies)
- B.S.DZHELEPOV, A.V.ZOLOTAVIN, R.B.IVANOV, M.A. MIKHAILOVA, V.O. SERGEEV, M.I. SOVTSOV. Proc.21st Ann. Conf. Nucl.Spectrosc.Struct. At.Nuclei Moscow, Pt.1 (1971) 140 (Gamma ray energies and intensities, Conv. Elec. Intensities)
- B.S.DZHELEPOV, R.B.IVANOV, M.A. MIKHAILOVA, V.O. SERGEEV. Izv. Akad.Nauk SSSR Ser.Fiz. 36 (1972) 2080 (Gamma ray energies and intensities, Conv. Elec. Intensities)
- N.A.GOLOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.BMIKHAILOVA, V.G.BCHUMIN. Sov. J. Nucl. Phys. 15 (1972) 349
 - (Alpha intensities)
- T.VYLOV, N.A.GOLOVKOV, B.S.DZHELEPOV, R.B. IVANOV, M.A. MIKHAILOVA, Y.V.B NORSEEV, V.G.B CHUMIN. Bull. Acad. Sci. USSR Phys.Ser., 41, No.8 (1977) 85 (Gamma ray energies and intensities, Multipolarity)
- A.RYTZ. At.Data Nucl.Data Tables 23 (1979) 507
- (Alpha energies and intensities)
- J.K.DICKENS, J.W.MCCONNELL. Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma ray energies and intensities)
- R.G.HELMER, C.W.REICH, M.A.LEE, I. AHMAD. Int. J. Appl. Radiat. Isotop. 37 (1986) 139
- (Gamma ray energies, intensities and emission probabilities)
- G.ARDISSON, M.C. KOUASSI, J. DALMASSO. Priv.Comm. (1990) (Gamma ray energies and intensities, Multipolarity)
- M.C.KOUASSI, J.DALMASSO, H.MARIA, G.ARDISSON, M. HUSSONNOIS. J. Radioanal. Nucl. Chem. 144 (1990) 387 (Gamma ray energies and intensities)
- Y.A.AKOVALI. Nucl. Data Sheets 60 (1990) 617 (NDS)
- Y.A.AKOVALI. Nucl.Data Sheets 61 (1990) 623 (NDS)
- M.C.KOUASSI, J.DALMASSO, M.HUSSONNOIS, V.BARCI, G. ARDISSON. J.Radioanal. Nucl. Chem. 153 (1991) 293 (Gamma ray energies and intensities)
- K.YA.GROMOV, M.YA.KUZNETSOVA, YU.N.NORSEEV, N.I.RUKHADZE, V.I. FOMINYKH, V.V. TSUPKO-SITNIKOV, V.G. CHUMIN, M.B. YULDASHEV, YU.S. BUTABAEV, R.A. NIYAZOV. Bull. Acad. Sci. USSR 58 (1994) 29 (Gamma ray energies and intensities)
- V.G.CHUMIN, S.S.ELISEEV, K.YA. GROMOV, YU.V. NORSEEV, V.I. FOMINYKH, V.V. TSUPKO-SITNIKOV. Bull. Acad. Sci. USSR 59 (1995) 1854
- (Gamma ray energies, intensities and emission probabilities)
- R.K.Sheline, C.F.Liang, P.Paris. Phys. Rev. C51 (1995) 1192
- (Gamma ray emission probabilities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- G.ARDISSON, J.GASPARRO, V.BARCI, R.K. SHELINE. Phys. Rev. C62 (2000) 064306 (Gamma ray energies and intensities)
- J.GASPARRO, G.ARDISSON, V.BARCI, R.K. SHELINE. Phys. Rev. C62 (2000) 064305 (Gamma ray energies, intensities and emission probabilities)
- S.A.KUDRYA, V.M. GOROZHANKIN, K.YA.GROMOV, SH.R. MALIKOV, L.A. MALOV, V.A. SERGIENKO, V.I. FO-MINYKH, V.V. TSUPKO-SITNIKOV, V.G.CHUMIN, E.A.YAKUSHEV. Bull. Acad. Sci. USSR 67 (2003) 7 (Gamma ray energies and intensities, Alpha energies and intensities, Conv. Elec. energies and intensities, Multipolarity)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (Q)

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

 γ Emission intensities per 100 disintegrations

CNDC /Huang Xiaolong, Wang Baosong

 γ Emission intensities per 100 disintegrations

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

Ra-228 disintegrates 100 % by beta minus emissions to the excited states of Ac-228. Le radium 228 se désintègre par émission bêta moins vers les niveaux excités de l'actinium 228.

2 Nuclear Data

$T_{1/2}(^{228}\text{Ra})$:	5,75	(4)	a
$T_{1/2}^{(228} { m Ac}$)	:	$6,\!15$	(2)	h
$Q^{-}(^{228}\text{Ra}\)$:	$45,\!8$	(7)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-}$	$\begin{array}{c} 12.7 \ (7) \\ 25.6 \ (7) \\ 39.1 \ (7) \\ 39.5 \ (7) \end{array}$	$\begin{array}{c} 30 \ (10) \\ 8,7 \ (9) \\ 49 \ (10) \\ 12 \ (10) \end{array}$	Allowed 1st Forbidden Allowed 1st Forbidden	5,11 6,2 6,45 7,07

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_L	$lpha_M$	α_T
$\gamma_{1,0}({ m Ac}) \ \gamma_{2,0}({ m Ac}) \ \gamma_{4,3}({ m Ac}) \ \gamma_{3,2}({ m Ac}) \ \gamma_{4,2}({ m Ac}) \ \gamma_{4,2}({ m Ac})$	$\begin{array}{c} 6,28 \ (3) \\ 6,67 \ (2) \\ 12,88 \ (11) \\ 13,520 \ (36) \\ 26,40 \ (11) \end{array}$	$12 (10) \\ 89 (14) \\ 2,30 (46) \\ 11,0 (7) \\ 28 (10)$	$\begin{array}{c} \mathrm{M2}\\ \mathrm{E2}\\ \mathrm{E1}\\ \mathrm{E1}\\ \mathrm{M1} + \mathrm{E2} \end{array}$	151 (3)	$\begin{array}{c} 4930000 \ (140000) \\ 1172000 \ (24000) \\ 5,11 \ (14) \\ 4,48 \ (7) \\ 37,2 \ (7) \end{array}$	$\begin{array}{c} 6680000 \ (190000) \\ 1560000 \ (40000) \\ 6,67 \ (18) \\ 5,86 \ (10) \\ 201 \ (4) \end{array}$
3 Atomic Data

3.1 Ac

ω_K	:	0,969	(4)
$\bar{\omega}_L$:	$0,\!464$	(18)
n_{KL}	:	0,799	(5)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ac)	5,87 - 19,67	12(5)
$ec_{1.0 M}$	(Ac)	1,28 - 3,06	9(7)
$ec_{2,0}$ M	(Ac)	1,67 - 3,45	67(11)
$ec_{1,0 N}$	(Ac)	5,01 - 5,97	2,5(21)
$ec_{2,0 N}$	(Ac)	5,40 - $6,36$	17,8(28)
$ec_{4,2}$ L	(Ac)	6,6 - $10,5$	$21 \ (8)$
$ec_{4,3 M}$	(Ac)	7,88 - 9,66	$1,53\ (31)$
$ec_{3,2}$ M	(Ac)	8,52 - 10,30	$7,\!17~(46)$
$ec_{4,3 N}$	(Ac)	$11,\!61 - 12,\!57$	$0,\!39~(8)$
$ec_{3,2}$ N	(Ac)	12,25 - 13,21	1,82~(12)
$ec_{4,2}$ M	(Ac)	21,4 - $23,2$	5,2(19)
$ec_{4,2}$ N	(Ac)	25,1 - $26,1$	1,38 (49)
$\beta_{0,4}^{-}$ $\beta_{0,4}^{-}$	max: avg:	12,7 (7)	30 (10)
β_{-2}^{-}	max	25.6 (7)	8.7(9)
$\beta_{0,3}^{-}$	avo.	20,0 (1)	0,1 (0)
$\rho_{0,3}$	avg.	20.1 (7)	40 (10)
$\rho_{0,2}$	max:	59,1 (7)	49 (10)
$\beta_{0,2}$	avg:		
$\beta_{0,1}^-$	max:	39,5 (7)	12(10)
$\beta_{0,1}^-$	avg:		

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Ac)	10,8701 — 18,9228	9,6 (19)

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(Ac)$ $\gamma_{2,0}(Ac)$ $\gamma_{4,3}(Ac)$ $\gamma_{3,2}(Ac)$ $\gamma_{4,2}(Ac)$	$\begin{array}{c} 6,28 \ (3) \\ 6,67 \ (2) \\ 12,88 \ (11) \\ 13,520 \ (36) \\ 26,40 \ (11) \end{array}$	$\begin{array}{c} 0,0000018 \ (15) \\ 0,000057 \ (9) \\ 0,30 \ (6) \\ 1,6 \ (1) \\ 0,14 \ (5) \end{array}$

6 Main Production Modes

 $Th - 232(\alpha)Ra - 228$

7 References

- M. CURIE, A. DEBIERNE, A.S. EVE, H. GEIGER, O. HAHN, S.C. LIND, ST. MEYER, E. RUTHERFORD, E. SCHWEID-LER. Rev. Mod. Phys. 3 (1931) 427-445 (Half-life)
- R.A. DUDLEY. MIT Report NYO-9504 (1960) 85-86 (Half-life)
- J. TOUSSET, A. MOUSSA. J. Phys. Radium 22 (1961) 683-685
- (Beta emission energies, Beta emission probabilities, Gamma ray energies)
- C.W. MAYS, D.R. ATHERTON, R.D. LLOYD, H.F. LUCAS, B.J. STOVER, F.W. BRUENGER. Utah Univ. Report COO-225 (1962) 92-105 (Half-life)
- M. HERMENT, A. GIZON. Ann.Rept. ISN Grenoble (1972) 115 (Beta emission energies)
- P.C. SOOD, A. GIZON, D.G. BURKE, B. SINGH, C.F. LIANG, R.K. SHELINE, M.J. MARTIN, R.W. HOFF. Phys. Rev. C 52 (1995) 88-92

(Beta emission energies, Beta emission probabilities, Gamma ray energies, Gamma-ray emission probabilities, Multipolarities, Spin and Parity)

- A. ARTNA-COHEN. Nucl. Data Sheets 80 (1997) 723-785 (Spin and Parity, Multipolarities, Mixing ratio, Beta emission energies, Beta emission probabilities, Gamma ray energies, Half-life)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A 729 (2003) 337-676 (Q)

1 Decay Scheme

Th-231 disintegrates 100 % by beta minus emission to the levels in Pa-231. Le thorium 231 se désintègre par émissions bêta moins vers des niveaux excités de protactinium 231.

2 Nuclear Data

$T_{1/2}(^{231}\text{Th})$:	$25,\!522$	(10)	h
$T_{1/2}^{(231}$ Pa)	:	32,76	(11)	$10^{3} {\rm a}$
$Q^{-}(^{231}\text{Th})$:	$391,\! 6$	(15)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,14}^{-} \\ \beta_{0,13}^{-} \\ \beta_{0,12}^{-} \\ \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \end{array}$	keV 39,8 (15) 71,4 (15) 73,6 (15) 144,3 (15) 173,4 (15) 208,1 (15) 217,4 (15) 289,3 (15) 290,2 (15)	\times 100 0,0032 (2) 0,066 (2) 0,00078 (5) 2,7 (4) 0,31 (23) 12,2 (15) 1,36 (24) 13 (8) 41 (16) 22 (15)	1st Forbidden Allowed Allowed Allowed Allowed	$7,33 \\ 6,79 \\ 8,76 \\ 6,11 \\ 7,3 \\ 5,95 \\ 6,96 \\ 6,4 \\ 5,88 \\ 6,1$
$egin{array}{c} \beta_{0,4} \ \beta_{0,3}^- \ \beta_{0,2}^- \end{array}$	$\begin{array}{c} 307,4 \ (15) \\ 313,9 \ (15) \\ 333,0 \ (15) \end{array}$	$\begin{array}{c} 29 \ (18) \\ 0,43 \ (2) \\ 0,17 \ (17) \end{array}$	Allowed 1st Forbidden 1st Forbidden	6,1 7,97 8,2
$\beta_{0,0}^-$	391,6(15)	0,022~(7)	1st Forbidden	9,57

231	Th	
90	ΤΠ	141

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{1,0}(\mathbf{Pa})$	0.2	0.498					
$\gamma_{1,0}(\mathbf{I} \mathbf{a})$	10.25	0,430 0 737					
$\gamma_{5.4}(Pa)$	17.2	45(16)	(M1)			135.7	193
$\gamma_{6,4}(\text{Pa})$	18,07	22(10)	M1+E2		349	304	800
$\gamma_{4,2}(Pa)$	25,65(2)	74,6(39)	${ m E1}$		3,26(5)	0,843(12)	4,37(7)
$\gamma_{5,2}(Pa)$	42,89(7)	0,1275(34)	[E1]		0,85(2)	0,21(1)	1,14(2)
$\gamma_{10,8}(Pa)$	44,08 (17)	0,22 (23)	[M1+E2]		240 (210)	70(60)	300 (300)
$\gamma_{2,0}(\mathrm{Pa})$	58,5719(24)	75,1 (27)	E2		113,6(16)	31,3(5)	155,5(22)
$\gamma_{11,9}(\mathrm{Pa})$	63,86~(3)	0,82 (36)	M1+E2		25(11)	6, 6 (31)	34(15)
$\gamma_{3,1}(\mathrm{Pa})$	68,5(1)	0,438~(13)	E2		53,5~(8)	14,8(3)	73,3(12)
$\gamma_{8,5}({ m Pa})$	72,7518 (45)	0,333~(22)	[E1]		0,211 (3)	0,0517~(7)	0,280 (4)
$\gamma_{3,0}(\mathrm{Pa})$	77,69	0,0042(7)			<i>.</i>		
$\gamma_{9,6}(\text{Pa})$	81,2280 (14)	8,2 (13)	M1(+E2)		6,1(10)	1,5(3)	8,1(14)
$\gamma_{9,5}(Pa)$	82,0870 (17)	3,7(6)	M1(+E2)		5,9(9)	1,5(3)	7,9(13)
$\gamma_{4,0}(\text{Pa})$	84,2148 (13)	23,4(17)	EI		1,77(2)	0,57(10)	2,50(25)
$\gamma_{8,4}(Pa)$	89,95(2)	1,171(35)	E1 [E1]		0,121(2) 0.110(2)	0,0294(4)	0,1598(22) 0.1462(21)
$\gamma_{6,1}(Pa)$	93,02(4)	0,0459(54)	$\begin{bmatrix} \mathbf{D} \mathbf{I} \end{bmatrix}$ M1 \pm F 9		0,110(2)	0,0209(4) 1 12(7)	0,1405(21)
$\gamma_{9,4}(Pa)$	99,2814(31) 102.2700(13)	0,90(7)	M1+E2		4,43(24)	1,13(7) 0.0210(3)	0,0(4) 0.1141(16)
$\gamma_{6,0}(\mathbf{Fa})$	102,2700(13) 105.81(3)	0,491(12) 0.0087(6)	[E1]		0,080(1) 0.0787(11)	0,0210(3) 0.0102(3)	0,1141(10) 0.1043(15)
$\gamma_{9,3}(1a)$	105,81(3) 106,61(3)	0,0007(0) 0.0197(8)	[E1]		0.0772(11)	0.0192(3) 0.0188(3)	0,1043(13) 0,1023(14)
$\gamma_{\rm N}$ γ_{\rm	115,63(3)	0,0121(47)	[M1+E2]	54(52)	33(12)	0.9(4)	10(4)
$\gamma_{10.5}(Pa)$	116,831 (23)	0.0302(12)	E1	0.262(4)	0.0608(9)	0.01478(21)	0.342(5)
$\gamma_{9,2}(Pa)$	124.916(19)	0.0763(20)	E1	0.226(4)	0.0511(8)	0.01241(18)	0.294(4)
$\gamma_{10.4}(Pa)$	134,03(2)	0,0318(10)	${ m E1}$	0,192(3)	0,0426 (6)	0,01033(15)	0,249(4)
$\gamma_{11,7}(\text{Pa})$	135,667(11)	0,72(9)	M1(+E2)	6,1(14)	1,40 (19)	0,35(6)	8,0 (11)
$\gamma_{13,9}(Pa)$	136,75(7)	0,00547(19)	[E1]	0,184(3)	0,0404(6)	0,00981(14)	0,237(3)
$\gamma_{10,3}(\mathrm{Pa})$	140,55(4)	0,0047 (19)	[M1+E2]	3(3)	1,5(4)	0,40(12)	5,3(25)
$\gamma_{11,6}(\text{Pa})$	145,061 (40)	0,0201 (11)	[E2]	0,237~(4)	1,627~(23)	0,448~(7)	2,46(3)
$\gamma_{11,5}(\mathrm{Pa})$	145,941 (20)	0,198~(27)	M1+E2	3,4(10)	1,27~(10)	0,33~(4)	5,1(8)
$\gamma_{11,4}(\mathrm{Pa})$	163,105 (4)	0,92~(7)	M1(+E2)	3,9(4)	0,783~(22)	0,190 (9)	4,9(4)
$\gamma_{8,1}(Pa)$	165,00(5)	0,00857 (35)	[E2]	0,209(3)	0,917~(13)	0,252 (4)	1,464(2)
$\gamma_{11,3}(Pa)$	169,66(3)	0,00161(8)	[E1]	0,1113(16)	0,0233(4)	0,00564(8)	0,1421(20)
$\gamma_{8,0}(Pa)$	174,16(2)	0,067(27)	[M1+E2]	1,8(16)	0,68(5)	0,177(22)	2,7 (15)
$\gamma_{9,0}(Pa)$	183,486 (25) 188,76 (2)	0,0375(9)	E1 [E1]	0,0928(13)	0,0191(3)	0,00463(7)	0,1181(17) 0.1105(15)
$\gamma_{11,2}(Pa)$	188,70(2) 217.04(2)	0,00378(33)		0,0809(13) 0.0624(0)	0,01782(23) 0.01248(18)	0,00431(0) 0.00201(5)	0,1105(15) 0.0780(11)
$\gamma_{13,6}(\mathbf{Fa})$	217,94(3) 236 01(3)	0,0434(9) 0.01002(32)	[E1]	0,0024(9) 0.0521(8)	0,01246(16) 0.01028(15)	0,00301(3) 0.00248(4)	0,0789(11) 0.0657(0)
$\gamma_{13,4}(1a)$	230,01(0) 240.275(50)	0,01002 (32) 0.000308 (43)	[E1]	0,0521(0)	0.00984(14)	0,00240(4) 0,00237(4)	0,0001(9)
$\gamma_{12,3}(Pa)$	240,210(00) 242.52(4)	0.000500(45)	[M1+E2]	0,000(1) 07(6)	0.22(4)	0.055(7)	10(7)
$\gamma_{14,6}(Pa)$	249.60(7)	0.00085(7)	[III E 1]	0.0459(7)	0.00898(13)	0.00216(3)	0.0578(8)
$\gamma_{14,5}(Pa)$	250.45(7)	0.00071(7)	[E1]	0.0455(7)	0.00891(13)	0.00215(3)	0.0573(8)
$\gamma_{14.4}(Pa)$	267,63(8)	0,00148 (15)	[E1]	0,0393 (6)	0,00760 (11)	0,00183 (3)	0,0493 (7)
$\gamma_{14,3}(Pa)$	274,1(1)	0,000058 (27)	[M1+E2]	0,5(4)	0,15 (4)	0,038 (8)	0,7(5)
$\gamma_{12,1}(Pa)$	308,78(7)	0,0003748 (19)	[E1]	0,0287(4)	0,00544 (8)	0,001306 (19)	0,0358(5)
$\gamma_{13,1}(\mathrm{Pa})$	311,00(5)	0,005(1)	M1+E2	0,5(3)	0,11(3)	0,027(6)	0,6 (3)
$\gamma_{12,0}(\mathrm{Pa})$	317,89(8)	0,0001039(5)	[E1]	0,0269(4)	0,00508 (8)	0,001221 (18)	0,0336 (5)
$\gamma_{13,0}(\mathrm{Pa})$	320,21 (8)	0,00022 (7)	[M1+E2]	0,34~(27)	0,09~(4)	0,023~(7)	0,5~(4)
$\gamma_{14,0}(\mathrm{Pa})$	351,84 (11)	0,000090 (24)	[M1+E2]	0,26~(21)	0,066~(24)	0,016~(6)	0,35~(25)

3 Atomic Data

3.1 Pa

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	$0,\!488$	(18)
n_{KL}	:	0,795	(5)

3.1.1 X Radiations

		$egin{array}{c} { m Energy} \\ { m keV} \end{array}$		Relative probability
X_{K}				
	$K\alpha_2$	92,288		62,14
	$K\alpha_1$	$95,\!869$		100
	$\mathrm{K}eta_3$	$107,\!595$	}	
	$\mathrm{K}eta_1$	$108,\!422$	}	
	${ m K}eta_5^{\prime\prime}$	$109,\!072$	}	$35,\!84$
	$K\beta_2$	111.405	}	
	$K\beta_4$	111,87	}	12,15
	$\mathrm{KO}_{2,3}$	112,38	}	,
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$11,\!3676$		
	$L\alpha$	$13,\!1215 - 13,\!2887$		
	$\mathrm{L}\eta$	$14,\!9488$		
	$\mathrm{L}eta$	$15,\!3584-17,\!6655$		
	$ m L\gamma$	$18,\!9396 - 20,\!1126$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	$egin{array}{rl} 70,081-78,822\ 85,989-95,858\ 101,87-112,59\ 5,9-21,0 \end{array}$	$100 \\ 59,2 \\ 8,76$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(Pa)	5,9 - 21,0	68(3)
e _{AK}	(Pa)		0,038 (5)
	KLĹ	70,081 - 78,822	}
	KLX	85,989 - 95,858	}
	KXY	101,87 - 112,59	}
$ec_{4,2 L}$	(Pa)	4,540 - 8,912	45,3(24)
$ec_{5,4}$ M	(Pa)	11,8 - $13,8$	31 (11)
$ec_{6,4}$ M	(Pa)	12,71 - $14,63$	8,2(36)
$ec_{4,2}$ M	(Pa)	20,284 - $22,203$	11,7~(6)
$ec_{5,2 L}$	(Pa)	21,78 - $26,16$	0,0507 (14)
$ec_{10,8 L}$	(Pa)	22,98 - 27,35	0,16 (16)
$ec_{11,7\ \mathrm{K}}$	(Pa)	23,071 (11)	0,49(11)
$ec_{11,5 \text{ K}}$	(Pa)	33,34 (2)	0,110(33)
$ec_{2,0 L}$	(Pa)	37,467 - 41,839	54,5(20)
$ec_{11,9}$ L	(Pa)	42,76 - 47,13	0,59(26)
$ec_{3,1}$ L	(Pa)	47,4 - 51,8	0,316 (9)
$ec_{11,4}$ K	(Pa)	50,509 (4)	0,61(7)
$ec_{8,5 L}$	(Pa)	51,647 - 56,019	0,0549(37)
$ec_{2,0}$ M	(Pa)	53,211 - 55,130	15,0(5)
$ec_{11,9}$ M	(Pa)	58,50 - 60,42	0,16(7)
ес _{9,6} L	(Pa)	60,123 - 64,495	5,5(9)
$ec_{9,5 L}$	(Pa)	00,982 - 05,354	2,47 (38) 0.0872 (38)
$ec_{3,1}$ M	(Pa)	05,1 - 00,1 62,110 67,482	0,0873 (28)
ec _{4,0} L	(\mathbf{ra})	03,110 - 07,402 68.84 - 73.22	11,00(10) 0.1222(42)
ес _{8,4} L	$(\mathbf{I} \mathbf{a})$ $(\mathbf{P}_{\mathbf{n}})$	75,867 77,786	0,1222 (42) 1.36 (27)
ес _{9,6 М}	$(\mathbf{I} \mathbf{a})$ $(\mathbf{P}_{\mathbf{n}})$	76,726 78.645	1,30(27) 0.63(13)
$ec_{9,5}$ M	$(\mathbf{P}_{\mathbf{n}})$	70,120 - 10,045 78,176 82,548	0,03(13) 0.607(42)
ecg,4 L	$(\mathbf{P}_{\mathbf{a}})$	78,854 = 80,773	38(7)
$ec_{4,0}$ M	(Pa)	93920 - 95839	0.155(12)
ec _{9,4} M	(Pa)	114562 - 118934	0,100(12) 0.112(15)
$ec_{11,4}$ L	(Pa)	142,000 - 146,372	0,122 (10) 0,122 (5)
$\beta_{0.14}^{-}$	max:	39,8 (15)	0,0032 (2)
$\beta_{0.14}^{-14}$	avg:	10,1 (5)	
$\beta_{0,13}^{-}$	max:	71,4 (15)	0,066~(2)
$\beta_{0,13}^{-}$	avg:	18,3 (4)	
β_{012}^{-1}	max:	73,6 (15)	0,00078 (5)
$\beta_{0,12}^{-,12}$	avg:	18,9 (4)	· \ /
$\beta_{0,11}^{-1}$	\max	144.3 (15)	2.7(4)
$\beta_{0,11}^{-1}$	avg:	38.1 (5)	-;• (-)
β_{-}^{-}	mav	173.4 (15)	0.31.(93)
P0,10	шал.	110,4 (10)	0,31(23)

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV		Electrons per 100 disint.
$\beta_{0,10}^{-}$	avg:	46,2	(5)	
$\beta_{0.9}^{-}$	max:	208,1	(15)	12,2(15)
$\beta_{0,9}^{-}$	avg:	56,2	(5)	
$\beta_{0.8}^{-}$	max:	217,4	(15)	1,36(24)
$\beta_{0,8}^{-}$	avg:	$58,\!9$	(5)	
$\beta_{0.6}^{-}$	max:	289,3	(15)	13 (8)
$\beta_{0,6}^{-}$	avg:	80,1	(5)	
$\beta_{0.5}^{-}$	max:	290,2	(15)	41 (16)
$\beta_{0,5}^{-}$	avg:	80,4	(5)	
$\beta_{0.4}^{-}$	max:	307,4	(15)	29(18)
$\beta_{0,4}^{-1}$	avg:	$85,\! 6$	(5)	
$\beta_{0.3}^{-}$	max:	$313,\!9$	(15)	$0,\!43~(2)$
$\beta_{0,3}^{-,3}$	avg:	$87,\! 6$	(5)	
$\beta_{0.2}^{-}$	max:	333,0	(15)	0,17(17)
$\beta_{0,2}^{-,-}$	avg:	$93,\!4$	(5)	
$\beta_{0,0}^{-}$	max:	$391,\! 6$	(15)	0,022 (7)
$\beta_{0,0}^{-}$	avg:	111.6	(5)	

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pa)	11,3676 - 20,1126		65(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	92,288 95,869		$\begin{array}{c} 0,37 \ (4) \\ 0,59 \ (7) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107,595 108,422 109,072	} } }	0,21 (2)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$111,405 \\ 111,87 \\ 112,38$	} } }	0,071 (8)	$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{4,2}(\text{Pa})$	25,64(2)	13,9(7)
$\gamma_{5,2}(\text{Pa})$	42,86(7)	0,0596(15)
$\gamma_{10.8}(Pa)$	44,08 (17)	0,00074(21)
$\gamma_{2.0}(\text{Pa})$	58,5700(24)	0,480 (16)
$\gamma_{11.9}(Pa)$	63,86(3)	0,0235(21)
$\gamma_{3.1}(\text{Pa})$	68,5(1)	0,00590(15)
$\gamma_{8.5}(Pa)$	72,7510 (25)	0,260(17)
$\gamma_{3.0}(\text{Pa})$	77,69	0,0042(7)
$\gamma_{9.6}(\text{Pa})$	81,2280(14)	0,905(23)
$\gamma_{9.5}(Pa)$	82,0870 (13)	0,418(13)
$\gamma_{4.0}(\text{Pa})$	84,2140 (13)	6,70 (7)
$\gamma_{8,4}(Pa)$	89,95(2)	1,01(3)
$\gamma_{6,1}(\text{Pa})$	93,02(4)	0,040(3)
$\gamma_{9,4}(\text{Pa})$	99,278(3)	0,137(6)
$\gamma_{6,0}(\text{Pa})$	102,2700(13)	0,441(11)
$\gamma_{9,3}(\text{Pa})$	105,81(3)	0,0079(5)
$\gamma_{10.7}(\text{Pa})$	106,61(3)	0,0179(7)
$\gamma_{8,2}(Pa)$	115,63 (3)	0,00110 (16)
$\gamma_{10.5}(\text{Pa})$	116,82(2)	0,0225 (9)
$\gamma_{9,2}(Pa)$	124,914 (17)	0,0590(15)
$\gamma_{10.4}(\text{Pa})$	134,03(2)	0,0255(8)
$\gamma_{11.7}(Pa)$	135,664(11)	0,0797(22)
$\gamma_{13.9}(Pa)$	136,75(7)	0,00442 (15)
$\gamma_{10.3}(\text{Pa})$	140,54(4)	0,00074 (7)
$\gamma_{11.6}(Pa)$	145,06(4)	0,0058 (3)
$\gamma_{11,5}(\text{Pa})$	145,94(2)	0,0324(12)
$\gamma_{11,4}(\text{Pa})$	163,101(4)	0,156(5)
$\gamma_{8,1}(Pa)$	165,00(5)	0,00348(14)
$\gamma_{11,3}(\text{Pa})$	169,66 (3)	0,00141 (7)
$\gamma_{8,0}(Pa)$	174,15(2)	0,0180(6)
$\gamma_{9,0}(\mathrm{Pa})$	183,480 (25)	0,0335 (8)
$\gamma_{11,2}(Pa)$	188,76(2)	0,0034 (3)
$\gamma_{13,6}(\text{Pa})$	217,94 (3)	0,0402 (8)
$\gamma_{13,4}(\text{Pa})$	236,01 (3)	0,0094 (3)
$\gamma_{12,3}(Pa)$	240,27 (5)	0,00029 (4)
$\gamma_{13,3}(Pa)$	242,50 (4)	0,00082 (5)
$\gamma_{14,6}(\text{Pa})$	249,60(7)	0,00080 (7)
$\gamma_{14,5}(\text{Pa})$	$250,\!45$ (7)	0,00067 (7)
$\gamma_{14,4}(\text{Pa})$	$267,\!62$ (8)	0,00141 (14)
$\gamma_{14,3}(\text{Pa})$	274,1(1)	0,000034 (12)
$\gamma_{12,1}(\mathrm{Pa})$	$308,\!78\ (7)$	0,0003618 (18)
$\gamma_{13,1}(\mathrm{Pa})$	311,00(5)	$0,00315\ (14)$
$\gamma_{12,0}(\text{Pa})$	$317,\!87\ (8)$	0,0001005 (5)
$\gamma_{13,0}({\rm Pa})$	$320,\!15~(8)$	0,00015 (3)
$\gamma_{14,0}(\text{Pa})$	351,8(1)	0,000067 (13)

6 Main Production Modes

 $Th - 230(n,\gamma)Th - 231$

7 References

- G.B. KNIGHT, R.L. MACKLIN. Phys. Rev. 75 (1949) 34 (Half-life)
- A. JAFFEY, J. LERNER, S. WARSHAW. Phys. Rev. 82 (1951) 498 (Half-life)
- M.S. FREEDMAN, A.H. JAFFEY, F. WAGNER, JR., J. MAY. Phys. Rev. 89 (1953) 302 (Gamma ray intensities)
- M.J. CABELL. Can. J. Phys. 36 (1958) 989 (Half-life)
- F. ASARO, F.S. STEPHENS, J.M. HOLLANDER, I. PERLMAN. Phys. Rev. 117 (1960) 492 (Gamma ray emission probabilities)
- K. KOBAYASHI, T. HASHIMOTO, I. KIMURA. J. Nucl. Sci. Technol. 8 (1971) 492 (Half-life,Gamma ray energies,intensities and emission probabilities)
- E. BROWNE, F. ASARO. Phys. Rev. C7 (1973) 2545 (Gamma ray energies, intensities and emission probabilities)
- W. TEOH. Nucl. Instrum. Methods 109 (1973) 509 (Gamma ray energies and intensities)
- P. Hornshoj, P. Tidemand-Petersson, R. Kaczarowski, B. Kotlinska, J. Zylicz. Nucl. Phys. A248 (1975) 406
- (Gamma ray energies and intensities, Internal conversion electrons intensities, beta emission probabilities, Multipolarity)
- S.A. BARANOV, V.M. SHATINSKII, A.G. ZELENKOV, V.A. PCHELIN. Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma ray energies and intensities)
- H.G. BORNER, G. BARREAU, W.F. DAVIDSON, P. JEUCH, T. VON EGIDY, J. ALMEIDA, D.H. WHITE. Nucl. Instrum. Methods 166 (1979) 251 (Gamma ray energies)
- R. VANINBROUKX, B. DENECKE. Nucl. Instrum. Methods 193 (1982) 191 (Gamma ray emission probabilities)
- C. Baktash, E. Der Mateosian, O.C. Kistner, A.W. Sunyar, D. Horn, C.J. Lister. Bull. Am. Phys. Soc. 28 (1983) 41
- (Gamma ray intensities and emission probabilities)
- H. CHATANI. Nucl. Instrum. Methods 205 (1983) 501
- (Half-life,Gamma ray emission probabilities)
- R.G. HELMER, C.W. REICH. Int. J. Appl. Radiat. Isotop. 35 (1984) 783 (Gamma ray emission probabilities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- H. CHATANI. Nucl. Instrum. Meth. Phys.Res. A425 (1999) 277 (Gamma ray energies, intensities and emission probabilities)
- E. BROWNE. Nucl. Data Sheets 93 (2001) 763 (Level energies, spin, parity)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR, JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Calculated ICC)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 129 (Q)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR., Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC)

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

1 Decay Scheme

Le thorium 232 se désintègre par émission alpha vers le radium 228 de période 5,75 a. Th-232 disintegrates by alpha emissions to Ra-228 which has a half-life of 5,75 a.

2 Nuclear Data

$T_{1/2}(^{232}\text{Th})$:	$14,\!02$	(6)	$10^{9} {\rm a}$
$T_{1/2}^{(228}$ Ra)	:	5,75	(3)	a
$Q^{\dot{\alpha}}(^{232}\text{Th})$:	$4081,\! 6$	(14)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	F
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 3876,9 \ (14) \\ 4017,8 \ (14) \\ 4081,6 \ (14) \end{array}$	$\begin{array}{c} 0,068 \ (20) \\ 21,0 \ (13) \\ 78,9 \ (13) \end{array}$	$\begin{array}{c} 16\\ 1,02\\ 1 \end{array}$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{1,0}(\mathrm{Ra}) \ \gamma_{2,1}(\mathrm{Ra})$	$63,811 (10) \\ 140,88 (1)$	$\begin{array}{c} 21,1 \ (13) \\ 0,068 \ (20) \end{array}$	E2 E2	0,283 (4)	59,1 (9) 1,450 (21)	$\begin{array}{c} 16,05 \ (23) \\ 0,394 \ (6) \end{array}$	80,4 (12) 2,26 (4)

3 Atomic Data

3.1 Ra

ω_K	:	0,968	(4)
$\bar{\omega}_L$:	$0,\!452$	(18)
n_{KL}	:	$0,\!801$	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_{K}				
	$K\alpha_2$	$85,\!43$		61,22
	$K\alpha_1$	88,47		100
	$K\beta_3$	99,432	}	
	$K\beta_1$	100,13	}	
	$\mathrm{K}eta_5''$	100,738	}	$35,\!09$
	Kβ ₂	102.89	}	
	$K\beta_4$	103,295	}	11,51
	$\mathrm{KO}_{2,3}$	103,74	}	,
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$10,\!624$		
	$L\alpha$	$12,\!196-12,\!338$		
	$\mathrm{L}\eta$	$13,\!662$		
	$\mathrm{L}eta$	$14,\!237 - 15,\!448$		
	${ m L}\gamma$	$17,\!276 - 18,\!354$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	65,149 - 72,729 79,721 - 88,466 94,27 - 103,91 5,71 - 19,09	$100 \\ 57,8 \\ 8,35$

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 3810,0 \ (14) \\ 3948,5 \ (14) \\ 4011,2 \ (14) \end{array}$	$\begin{array}{c} 0,068 \ (20) \\ 21,0 \ (13) \\ 78,9 \ (13) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ra)	5,71 - 19,09	8,18 (29)
e _{AK}	(Ra) KLL KLX KXY	65,149 - 72,729 79,721 - 88,466 94,27 - 103,91	0,00019 (6) } } }
$ec_{2,1}$ L	(Ra)	121,65 - 125,44	0,030 (9)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	$10,\!624 - 18,\!354$		7,2~(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Ra}) \\ (\mathrm{Ra}) \end{array}$	$85,\!43$ $88,\!47$		$0,0017 (5) \\ 0,0028 (8)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99,432 100,13 100,738	} } }	0,00097~(28)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102,89 \\ 103,295 \\ 103,74$	} } }	0,00032 (10)	$K' \beta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.	
$\gamma_{1,0}(\mathrm{Ra})$ $\gamma_{2,1}(\mathrm{Ra})$	$63,811 (10) \\ 140,88 (1)$	$0,259 (15) \\ 0,021 (6)$	

7 References

- A.F.KOVARIK, N.I.ADAMS JR. Phys. Rev. 54 (1938) 413 (Half-life)
- D.C.DUNLAVEY, G.T.SEABORG. Phys. Rev. 87 (1952) 165 (Alpha emission probabilities)
- G.PHILBERT, J.GENIN, L.VIGNERON. J. Phys. Radium 15 (1954) 16 (alpha emission)
- R.L.MACKLIN, H.S.POMERANCE. J. Nuclear Energy 2 (1956) 243 (Half-life)
- G.Albouy. Ann. Phys. 1 (1956) 99 (Alpha emission probabilities)
- E.Picciotto, S.Wilgain. Nuovo Cimento 4 (1956) 1525 (Half-life)
- F.E.SENFTLE, T.A.FARLEY, N.LAZAR. Phys.Rev. 104 (1956) 1629 (Half-life)
- B.G.HARVEY, H.G.JACKSON, T.A.EASTWOOD, G.C.HANNA. Can. J. Phys. 35 (1957) 258 (Alpha emission energies)
- G.E.KOCHAROV, A.P.KOMAR, G.A.KOROLEV. Sov. Phys. JETP 9 (1959) 48 (Alpha emission probabilities)
- R.E.BELL, S.BJORNHOLM, J.C.SEVERIENS. Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd 32,12 (1960) (Half-life)
- T.A.FARLEY. Can. J. Phys. 38 (1960) 1059 (Half-life)
- G.E.KOCHAROV, G.A.KOROLEV. Izv. Akad. Nauk SSSR 25 (1961) 237 (Alpha emission energies, Alpha emission probabilities)
- G.A.KOROLEV, G.E.KOCHAROV. Izv. Akad. Nauk SSSR 26 (1962) 233 (Alpha emission energies)
- L.J.LEROUX, L.E.GLENDENIN. Nat. Conf. Nucl. Energy, Application of Isotopes and Radiation, Pretoria, South Africa, F.L.Warren, Ed. (1963) 83 (Half-life)
- H.W.TAYLOR. Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray emission probabilities)
- S.SADASIVAN, V.M.RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)
- T.MITSUGASHIRA, M.MAKI, S.SUZUKI, Y.SHIOKAWA. Radiochem. Radioanal. Lett. 58 (1983) 199 (Gamma-ray emission probabilities, Gamma ray energies, Alpha emission probabilities)
- J.-C.ROY, L.BRETON, J.-E.COTE, J.TURCOTTE. Nucl. Instrum. Methods 215 (1983) 409 (Gamma-ray emission probabilities)
- S.K.SAHA, S.M.SAHAKUNDU. J. Phys. (London) G15 (1989) 73 (Alpha emission energies, Alpha emission probabilities, Gamma ray energies, Gamma-ray emission probabilities)
- N.E.HOLDEN. Pure Appl. Chem. 62 (1990) 941 (Half-life evaluation)
- A.Rytz. At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission probabilities, Alpha emission energies)

- R.BONETTI, C.CHIESA, A.GUGLIELMETTI, R.MATHEOUD, G.POLI, V.L.MIKHEEV, S.P.TRETYAKOVA. Phys. Rev. C51 (1995) 2530
- (Spontaneous fission probability, cluster decay)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 529 (Atomic Data)
- A.ARTNA-COHEN. Nucl. Data Sheets 80 (1997) 723 (Spin and Parity, Multipolarities)
- I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor Jr., P.O.Tikkanen, S.Raman. At. Data Nucl. Data Tables 81 (2002) 1
 - (Conv. Elec. emission probabilities and energies)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 337 (Q)
- T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR. Proc. Intern. Conf. Nuclear Data for Science and Technology, Santa Fe, New Mexico, 26 September-1 October, 2004 1 (2005) 268 (Conv. Elec. emission energies and probabilities)

1 Decay Scheme

Th-233 decays by beta minus emission to levels in Pa-233. Le thorium 233 se désintègre par émission beta moins vers des niveaux excités du protactinium 233.

2 Nuclear Data

$T_{1/2}(^{233}\text{Th})$:	$22,\!15$	(8)	\min
$T_{1/2}^{(233)}$ Pa)	:	$26,\!98$	(2)	d
$Q^{-}(^{233}\text{Th})$:	1243, 1	(14)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{keV} \\ \\ 224,4 \ (14) \\ 258,3 \ (14) \\ 431,5 \ (14) \\ 478,5 \ (14) \\ 573,2 \ (14) \\ 657,6 \ (14) \\ 689,2 \ (14) \\ 788,7 \ (14) \\ 795,3 \ (14) \\ 985,8 \ (14) \\ 1041,4 \ (14) \\ 1073,9 \ (14) \\ 1148,4 \ (14) \end{array}$	$\times 100$ 0,0434 (9) 0,205 (2) 0,385 (4) 1,19 (3) 0,0174 (22) 0,15 (3) 1,23 (3) 0,217 (13) 0,821 (14) 0,60 (3) 0,074 (8) 0,692 (12) 10,4 (4)	allowed allowed allowed 1st forbidden allowed allowed 1st forbidden 1st forbidden 1st forbidden allowed allowed allowed allowed	6,7 6,2 6,6 6,3 8,4 7,6 6,8 7,7 7,2 8,1 8,6 7,7 6,6
$eta_{0,1}^{-} \ eta_{0,0}^{-}$	$\begin{array}{c} 1236,4~(14)\\ 1243,1~(14)\end{array}$	$50 (6) \\ 34 (6)$	1st forbidden 1st forbidden	$^{6,1}_{6,2}$

Energy $P_{\gamma+ce}$ Multipolarity α_L α_K α_M α_T keV $\times 100$ $\gamma_{1,0}(\text{Pa})$ 6.65(5)51(6)2280(50)3080 (60) (M1)8,22(5)12,3(4)(M1 + E2) $\gamma_{5,4}(Pa)$ $\gamma_{6.4}$ (Pa) 17,40(5)8,83 (31) E12,29(5)0,586(12)3,07(6) $\gamma_{4,2}(Pa)$ 29,373(10)46,53(4) $\gamma_{6,2}(\text{Pa})$ E257,10(2)8,81 (33) 128,4(26)176(4) $\gamma_{2,0}(\mathrm{Pa})$ 35,4(7)63,92(6)0,072(31)(E2)74,6(15)20,6(4)102,1 (21) $\gamma_{3,1}(Pa)$ 7 (6) $\gamma_{3,0}(Pa)$ 70,49 (10) 0.029(27)[M1 + E2]28(19)40(30) $\gamma_{7,5}(\mathrm{Pa})$ 74,51(5)0,436(20)[M1]7,43(15)1,79(4)9,85(20) $\gamma_{(-1,1)}(Pa)$ 80 86,477 (10) 4.48(16)0.22(6) $\gamma_{4,0}(\mathrm{Pa})$ E11.13(4)1.43(8)87,99(3)0,1985(24)[E1] 0,128(3)0,0312(6)0,169(3) $\gamma_{5,1}(\text{Pa})$ $\gamma_{5.0}(Pa)$ 94,65(5)0,884(11)E10,105(2)0,0257(5)0,140(3) $\gamma_{(-1,2)}(Pa)$ 105,2(1)0,0412,7(5)0,0027 0,00303(5) $\gamma_{9,6}(Pa)$ 108,5(1)M1+E20,65(13)3,5(6)115,14(5)0,03(8)[M1+E2]5(6)0,9(4) $\gamma_{8,4}(Pa)$ 3,4(13)10(4)0,038(4)9,3(5)12,2(4) $\gamma_{9,5}(\mathrm{Pa})$ 117,692 (20) M1+E22,16(12)0,53(4)0,202(4)131,101(25)0,0641(17)E10,0451 (9) 0,01094(22) $\gamma_{8,3}(Pa)$ 0,262(5)134,285 (20) 0,016(5)[M1 + E2] $\gamma_{10,6}(Pa)$ 1,48(24)0,37(8)8,0(14)6,1(17) $\gamma_{9,3}(\mathrm{Pa})$ 141,74 (10) 0,088(15) $\gamma_{10,5}(Pa)$ 143,23(2)M1+E25,0(14)1,21(16)0.30(6)6,7(12) $\gamma_{(-1,3)}(Pa)$ 147.50.0018(6) $\gamma_{10,4}(Pa)$ 151,409(20)0,040(4)[M1 + E2]3,4(7)1,08(6)0,276(19)4,9(6) $\gamma_{11.6}(Pa)$ 153,49(18)0,0480(8)[E1] 0,140(3)0,0301(6)0,00728(14)0,180(4)0,176(4) $\gamma_{9,2}(Pa)$ 155,239(20)0,000270(35)E10,137(3)0,0292(6)0,00708(10)162,504(12)[E1] 0,123(3)0,0260(5)0,157(3) $\gamma_{7,1}(Pa)$ 0,194(3)0,0063(1) $\gamma_{11,5}(Pa)$ 162,504 0,185[E1]0,1230(18)0,0260(5)0,0063(1)0,157(3)0,287(5)169,162(10)[E1] 0,1120(22)0,00568(12)0,1431(29) $\gamma_{7,0}(Pa)$ 0,0235(5)0,1099(20)170,60(6)0,578(10) $\gamma_{11,4}(Pa)$ [E1] 0,0230(5)0,00556(11)0,1403(28) $\gamma_{17,15}(Pa)$ 179,05(8)0,125(25)(M1 + E2)2,7(8)0,602(15)0,148(10)3,5(8)0,0048(1) $\gamma_{10,2}(Pa)$ 180,76(3)0,000123(3)[E1]0,096(2)0,0199(4)0,1223(24) $\gamma_{11,3}(\text{Pa})$ 186.80(18)0.067(27)[M1 + E2]1.5(13)0.531(9)0.137(10)2.2(13) $\gamma_{12,11}(Pa)$ 190,552(14)0,367(8)2,60(5)0,499(10)0,1204(24)3,26(6)M1 $\gamma_{8,1}(Pa)$ 194,97(7)0,1183(19)E10,0806(16)0,0164(3)0,00397(8)0,1024(20) $\gamma_{8,0}(Pa)$ 201,62 (5) 0,0242 (9) E10,0746(15)0,0151(3)0,00365(7)0,0946(19) $\gamma_{17,14}(Pa)$ 210,67(8)0,044(18)[M1+E2]1,1(9)0,35(3)0,0890(21)1,5(10) $\gamma_{(-1,4)}(Pa)$ 211,3(2)0,0202 (9) E10,0662(12)0,01331(26)0,00321(6)0,0839(17) $\gamma_{9,0}(\mathrm{Pa})$ 212,34(5)0,0070(7)0,32(4)0,081(4)(M1 + E2)1,0(9) $\gamma_{13,10}(Pa)$ 216,54(8)0,031(12)1,4(9)2,02(4) $\gamma_{18,15}(Pa)$ 226,1(2)0,0516(22)M1 + (E2)1,61(3)0.308(6)0,0743(15)237,86 (6) 0,00202(43)[E1]0,0511(10)0,0101(2)0,00243(5)0,0645(13) $\gamma_{10,0}(Pa)$ $\gamma_{(-1,5)}(\mathrm{Pa})$ 242.30.0029(6)246, 14(6)0,0043(6)[E1] 0,0473(9)0,00929(19)0,00224(4)0,0596(12) $\gamma_{12,8}(Pa)$ $\gamma_{11,1}(Pa)$ 250,65(16)0,0062(4)[E2]0,1043(21)0,156(3)0,0423(8)0,317(6) $\gamma_{13.8}(Pa)$ 252,78(9)0,0152(21)[M1+E2]1,0(3)0,215(20)0,052(4)1,3(3)[M1 + E2] $\gamma_{11,0}(Pa)$ 257,30 (15) 0,09(3)0,6(6)0,18(4)0,045(7)0,8(6)278,7(4)0,0047(6) $\gamma_{12,7}(Pa)$ $\gamma_{13,7}(Pa)$ 285,24(7)0,030(4)[M1+E2]0,74(20)0,152(18)0,037(4)0,94(22)0,0032 (3) $\gamma_{(-1,6)}(\mathrm{Pa})$ 309,90,00383 (41) 0,0272(4) $\gamma_{14,10}(Pa)$ 316.1E10,00515(10)0,00124(2)0,0340(7) $\gamma_{15,10}(\mathrm{Pa})$ 347,64(6)0,0234(13)[M1]0,49(1)0,0932(18)0,0224(5)0,613(12)359,74(4)0,1355(21)M10,446(9)0.0848(19)0,0204(4)0,559(11) $\gamma_{13,5}(Pa)$ 361,285(22)0.0224(6)0.0255(5) $\gamma_{12,4}(Pa)$ [E1] 0.0205(4)0.00380(8)0.000912(2) $\gamma_{13,4}(\text{Pa})$ 367,92(7)0,0056(11)0,420(8)0,0797(16)0,525(10)[M1]0,0192(4) $\gamma_{12.3}(Pa)$ 377,27 (11) 0,040(3)[M1+E2]0,36(7)0,071(8)0,0172(17)0,46(8) $\gamma_{(-1,7)}(Pa)$ 383,50,0019(6) $\gamma_{19,15}(Pa)$ 398,8(5)0,0158(10)[M1]0,337(7)0,0639(13)0,0154(3)0,422(8)

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	α_M	α_T
$\gamma_{(-1,8)}(Pa)$	408.8(5)	0.0005(4)					
$\gamma_{16,11}(Pa)$	412,5(5)	0,0115(10)	[M1]	0,308~(6)	0,0583 (12)	0,0140 (3)	0,385~(8)
$\gamma_{(-1,9)}(\mathrm{Pa})$	418,4 (5)	0,0091(7)		()	(>		
$\gamma_{19,14}(\text{Pa})$	430,9(4)	0,0239(5)	(M1)	0,273 (5)	0,0517(10)	0,01245(24)	0,342~(6)
$\gamma_{20,15}(ra)$ $\gamma_{12,1}(Pa)$	433,2(4) 440.94(4)	0.249(10)	(M1 + E2)	0.24(4)	0.046(6)	0.0111(13)	0.30(5)
$\gamma_{12,0}(Pa)$	447,762 (20)	0,134(5)	[M1+E2]	0,23 (4)	0,045(5)	0,0108(11)	0,29(4)
$\gamma_{(-1,10)}(\mathrm{Pa})$	454,2(5)	0,04					
$\gamma_{14,5}(\text{Pa})$	459,222 (7)	1,274(17)	M1	0,230(5)	0,0435 (9)	0,01047~(21)	0,288~(6)
$\gamma_{(-1,11)}(Pa)$	464,8 467,40,(6)	0,0026(3) 0.0167(17)	[M1 E2]	0.13(10)	0.029.(13)	0.007	0.16(11)
$\gamma_{(-1,12)}(Pa)$	473,9(5)	0,0101(11) 0,0033(7)	[111,12]	0,10 (10)	0,020 (10)	0,001	0,10 (11)
$\gamma_{15,5}(\mathrm{Pa})$	490,80 (6)	0,1338(21)	M1	0,193~(4)	0,0363~(7)	0,00874 (18)	0,241~(5)
$\gamma_{(-1,13)}(Pa)$	497,1 (4)	0,0128(4)	2.64			0.0000 x (10)	0.000 (7)
$\gamma_{15,4}(\text{Pa})$	499,02(4)	0,1938(27) 0.0055(2)	M1	0,184(3)	0,0347(5)	0,00835(12)	0,230(5)
$\gamma_{(-1,14)}(Fa)$	503,5(0) 513.4(4)	0.0133(4)					
$\gamma_{(-1,16)}(Pa)$ $\gamma_{(-1,16)}(Pa)$	517,0(4)	0,0046(3)					
$\gamma_{17,10}(\mathrm{Pa})$	$526,\!69(6)$	0,052 (4)	[M1, E2]	0,09~(7)	0,02~(1)	0,005~(3)	0,12 (8)
$\gamma_{(-1,17)}(Pa)$	531,8(4)	0,0070(7)	() (1)	0.1404 (00)	0.0004 (5)	0.0000 (10)	0.1554 (95)
$\gamma_{17,9}(Pa)$	552,21 (8) 553 7	0,0194(6) 0,0030(3)	(M1)	0,1404(28)	0,0264(5)	0,00635 (13)	0,1754(35)
$\gamma_{(-1,18)}(Pa)$	554,9	0,0030(3) 0,0031(3)					
$\gamma_{17,8}(Pa)$	562,93 (8)	0,0636 (8)	[M1]	$0,1334\ (27)$	0,0251 (5)	0,00603 (12)	0,167~(3)
$\gamma_{18,10}(\text{Pa})$	573,7(4)	0,0384 (12)	[M1]	0,1268~(25)	0,0238 (5)	0,00573 (12)	0,158 (3)
$\gamma_{(-1,20)}(\text{Pa})$	578,7	0,0017(5)					
$\gamma_{(-1,21)}(Pa)$ $\gamma_{17,7}(Pa)$	595.39(6)	0.0016(3) 0.1346(19)	(M1)	0.1148(22)	0.0216(4)	0.00518(10)	0.143(3)
$\gamma_{18,9}(Pa)$	599,3(2)	0,0335(6)	[M1]	0,1129(22)	0,0212(4)	0,00509(10)	0,141(3)
$\gamma_{18,8}(\text{Pa})$	610,0 (3)	0,0643 (14)	[M1]	0,1077 (20)	0,0202 (4)	0,00485 (9)	0,134(3)
$\gamma_{18,7}(\text{Pa})$	642,4(2)	0,0226 (6)	[M1]	0,0938 (19)	0,0176(4)	0,00422 (8)	0,1171(23)
$\gamma_{16,1}(Pa)$	663,3(5) 660.0(5)	0,0041(6) 0.0018	[M1]	0,0862 (17)	0,0161(3)	0,00388 (8)	0,1075(22)
$\gamma_{16,0}(1a)$ $\gamma_{17,5}(Pa)$	669.901(16)	0,557(7)	[M1]	0.0839(17)	0.0157(3)	0.00377(8)	0.1047(21)
$\gamma_{17,4}(Pa)$	678,04 (10)	0,0686 (28)	[M1,E2]	0,05(4)	0,010(5)	0,0025(12)	0,06 (4)
$\gamma_{(-1,22)}(Pa)$	681,2~(6)	0,0143 (4)					
$\gamma_{(-1,23)}(Pa)$	690	0,0021(5)					
$\gamma_{(-1,24)}(Pa)$	098,5(6) 703 7(6)	0,0106(5) 0,0091(5)					
$\gamma_{18.6}(Pa)$	703,7(0) 707,8(3)	0,0091(5) 0,0093(5)	[E2]	0,0148(3)	0,00455 (9)	0,00115(2)	0,0209(4)
$\gamma_{18,5}(\mathrm{Pa})$	717,0 (2)	0,0458(10)	(M1)	0,0701(14)	0,0131 (3)	0,00314 (6)	0,0874 (17)
$\gamma_{18,4}(\text{Pa})$	725,1(2)	0,0687(11)	(M1)	0,068(1)	0,01271 (25)	0,00305~(6)	0,0848 (17)
$\gamma_{(-1,26)}(Pa)$	727,8 741,1,(2)	0,0029(2) 0.0237(5)	[F1]	0.00502 (10)	0.000860 (17)	0.000204 (4)	0.00615 (12)
$\gamma_{(-1,27)}(Pa)$	741,1(2) 744.9(5)	0.0053(2)		0,00502 (10)	0,000000 (17)	0,000204 (4)	0,00013 (12)
$\gamma_{(-1,28)}(Pa)$	751,6 (6)	0,0023 (4)					
$\gamma_{17,1}(\mathrm{Pa})$	757,90 (7)	0,0324 (7)					
$\gamma_{17,0}(\text{Pa})$	764,55(6)	0,0891(13)					
$\gamma_{(-1,29)}(Pa)$	707,5 774 0 (4)	0,0032(2) 0.0108(5)					
$\gamma_{19.8}(Pa)$	783,2(5)	0,00600(32)	[M1]	0,05550(11)	0,01034 (20)	0,00248(5)	0,0692(14)
$\gamma_{(-1,31)}(\mathrm{Pa})$	784,2(5)	0,0022 (2)					
$\gamma_{18,1}(\text{Pa})$	805,0 (2)	0,0215(6)	[E1]	0,00432 (9)	0,00073 (2)	0,000174 (4)	0,00529 (11)
$\gamma_{20,9}(Pa)$	806,4 (5) 811 6 (2)	0,0123(5) 0,0060(2)	[E1]	0 00426 (0)	0 000720 (15)	0.000171(4)	0 00521 (10)
$\gamma_{19.7}(Pa)$	815.9 (4)	0,0207 (6)	[M1]	0,0498(10)	0,0093(2)	0,00223(5)	0,0621(10)
$\gamma_{20,8}({ m Pa})$	817,0 (6)	0,0095(5)	LJ	, (-)	, ()	, (-)	, ()
$\gamma_{(-1,32)}(Pa)$	832,0 (3)	0,0075					
$\gamma_{(-1,33)}(\mathrm{Pa})$	846,8 (7)	0,0013					

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{20,7}(Pa)$ $\gamma_{(-1,34)}(Pa)$ $\gamma_{(-1,35)}(Pa)$ $\gamma_{19,6}(Pa)$ $\gamma_{19,6}(Pa)$	849,5 (5) 870,7 (7) 874,0 (5) 880,9 (5) 890,1 (5)	$\begin{array}{c} 0,0039 \ (3) \\ 0,0031 \ (2) \\ 0,00120 \ (4) \\ 0,0098 \ (4) \\ 0,1104 \ (15) \end{array}$	E2	0,0100(2) 0.0396(8)	0,00258 (5) 0.00735 (15)	0,000640 (13) 0.00176 (4)	0,0135(3) 0.0493(10)
$\begin{array}{l} \gamma_{19,5}(ra) \\ \gamma_{19,4}(Pa) \\ \gamma_{(-1,36)}(Pa) \\ \gamma_{(-1,37)}(Pa) \\ \gamma_{(-1,38)}(Pa) \\ \gamma_{(-1,39)}(Pa) \\ \gamma_{20,3}(Pa) \\ \gamma_{(-1,40)}(Pa) \\ \gamma_{(-1,41)}(Pa) \\ \gamma_{(-1,42)}(Pa) \end{array}$	$\begin{array}{c} 890,1 \ (3)\\ 898,3 \ (5)\\ 918,9 \ (5)\\ 935,2 \ (7)\\ 941,9 \ (8)\\ 942,8\\ 948,3 \ (5)\\ 955 \ (1)\\ 960,8 \ (8)\\ 962,8 \ (9) \end{array}$	$\begin{array}{c} 0,1104\ (13)\\ 0,0023\ (4)\\ 0,006\\ 0,0369\ (7)\\ 0,0048\ (3)\\ 0,0019\ (3)\\ 0,0060\ (3)\\ 0,0002\ (3)\\ 0,00041\ (2)\\ 0,0015\ (2)\\ \end{array}$	[M1] [M1]	0,0390 (8)	0,00717 (14)	0,00170(4) 0,00172(3)	0,0493 (10) 0,0481 (10)
$\begin{array}{l} \gamma_{(-1,43)}(\mathrm{Pa}) \\ \gamma_{19,1}(\mathrm{Pa}) \\ \gamma_{19,0}(\mathrm{Pa}) \\ \gamma_{(-1,44)}(\mathrm{Pa}) \\ \gamma_{(-1,45)}(\mathrm{Pa}) \\ \gamma_{(-1,45)}(\mathrm{Pa}) \\ \gamma_{(-1,46)}(\mathrm{Pa}) \\ \gamma_{(-1,48)}(\mathrm{Pa}) \\ \gamma_{(-1,49)}(\mathrm{Pa}) \\ \gamma_{(-1,50)}(\mathrm{Pa}) \\ \gamma_{(-1,51)}(\mathrm{Pa}) \\ \gamma_{(-1,52)}(\mathrm{Pa}) \\ \gamma_{(-1,53)}(\mathrm{Pa}) \end{array}$	$\begin{array}{c} 968,2 \ (9)\\ 978,2 \ (5)\\ 984,8 \ (5)\\ 994 \ (1)\\ 1001 \ (1)\\ 1007 \ (1)\\ 1001 \ (1)\\ 1026,5 \ (10)\\ 1092,5 \ (10)\\ 1132,1\\ 1139,1\\ 1144 \ (1)\\ 1201 \ (1)\\ \end{array}$	$\begin{array}{c} 0,0083 \ (3)\\ 0,00582 \ (30)\\ 0,01024 \ (30)\\ 0,0006 \ (1)\\ 0,0008 \ (2)\\ 0,0014 \ (2)\\ 0,0019 \ (2)\\ 0,0075\\ 0,006\\ 0,0006 \ (2)\\ 0,0004 \ (1)\\ 0,0027\\ 0,006 \end{array}$	[E1] [E1]	0,00306 (6) 0,00303 (6)	0,00051 (1) 0,00051 (1)	0,000121 (2) 0,000120 (2)	0,00374 (7) 0,00369 (7)

3 Atomic Data

3.1 Pa

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	$0,\!488$	(18)
n_{KL}	:	0,795	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_{K}				
	$K\alpha_2$	92,288		62,14
	$K\alpha_1$	$95,\!869$		100
	$K\beta_3$	107,595	}	
	$K\beta_1$	108,422) }	
	${ m K}eta_5^{\prime\prime}$	109,072	}	$34,\!78$
	Kβa	111.405	}	
	$\mathrm{K}\beta_4$	111,87	}	11,22
	$\mathrm{KO}_{2,3}$	112,38	}	,

		Energy keV	Relative probability
X_{L}			
	$\mathrm{L}\ell$	$11,\!366$	
	$L\alpha$	$13,\!122-13,\!291$	
	$\mathrm{L}\eta$	$14,\!946$	
	$\mathrm{L}eta$	$15,\!3-16,\!7$	
	$ m L\gamma$	$19,\!9-21,\!6$	
	·		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	70,081 - 78,822 88,03 - 95,56 101,78 - 112,40 5,9 - 21,6	$100 \\ 60 \\ 8,76$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pa)	5,9 - 21,6	8,6 (10)
e _{AK}	(Pa) KLL KLX KXY	70,081 - 78,822 88,03 - 95,56 101,78 - 112,40	0,041 (5) } }
$\begin{array}{c} ec_{1,0} \ M\\ ec_{8,4} \ K\\ ec_{9,5} \ K\\ ec_{1,0} \ N\\ ec_{4,2} \ L\\ ec_{8,3} \ K\\ ec_{10,6} \ K\\ ec_{4,2} \ M\\ ec_{4,2} \ N \end{array}$	(Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 34,2 \ (9) \\ 0,013 \\ 0,0270 \ (31) \\ 9,27 \ (26) \\ 4,97 \ (19) \\ 0,013 \\ 0,015 \\ 1,272 \ (49) \\ 0,332 \ (12) \end{array}$

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy	Electrons
		keV	per 100 disint.
			1
6C10 5 V	(Pa)	30.63 (2)	0.057(16)
еса о т	(Pa)	36.0 - 40.4	6.39(23)
ес <u>10</u> 4 К	(Pa)	38.9 (2)	0.034
ec _{10,4} K	(Pa)	42.82 - 47.19	0.052(22)
ecs o I	(Pa)	49.38 - 53.76	0,002(22) 0,020(17)
ес <u>з,</u> 0 Г	(Pa)	49,908 (12)	0.020(11)
$ec_{7,1}$ K	(Pa)	50	0.01968(29)
eco M	(Pa)	517 - 537	1.76(6)
ecz 5 1	(Pa)	5340 - 57 78	0.299(14)
eca o N	(Pa)	55,40 $51,1055,7$ - $56,7$	0,235(14) 0,475(16)
$ec_{2,0}$ N	(Pa)	56.57 (1)	0.0281(7)
ec11.4 K	(Pa)	58,00 (6)	0,0201(1) 0.0557(14)
есэ 1 м	(Pa)	58,56 - 60.48	0.014(6)
eca o t	(Pa)	65.372 - 69.744	2.08(8)
~~4,0 L ес17 15 V	(Pa)	66.45 (8)	0.075(22)
~~17,15 K C5 1 I	(Pa)	66.88 - 71.26	0.0217(6)
00,1 L ес л в м	(Pa)	69.15 - 71.07	0.0720(34)
$ec_{7,3}$ M	(Pa)	73 13 - 74 16	0.0120(91) 0.0193(9)
	(Pa)	73,10 $74,1073,54$ - $77,91$	0.0814(18)
ес <u>11 2 к</u>	(Pa)	74.20 (18)	0.031(27)
еста 11 К	(Pa)	77.956 (14)	0,001(21) 0.224(6)
ес <u>и</u> о м	(Pa)	81 116 - 83 035	0,221(0) 0.41(7)
ес <u></u> о м	(Pa)	89 29 - 91 21	0.01992(45)
ec _{17,14} K	(Pa)	98.07 (8)	0.020(16)
ec13 10 K	(Pa)	104 (2)	0.029
ecis,10 K	(Pa)	113.5 (2)	0.0275(12)
ec10,15 K	(Pa)	122.12 - 126.50	0.0138(20)
есто, 5 L	(Pa)	130.4 - 134.8	0.011
ес13 я к	(Pa)	140.18 (9)	0.014
ec11.0 K	(Pa)	144.70 (15)	0.031(31)
ec11.4 I	(Pa)	149.5 - 153.9	0.01166(33)
ec17 15 I	(Pa)	157.95 - 162.32	0.0167 (6)
ес <u>11 з т</u> .	(Pa)	165.7 - 170.1	0.0111(5)
ec19 11 L	(Pa)	169.447 - 173.819	0.0430(11)
ес137 к	(Pa)	172.64 (7)	0.017
ec _{12,11} M	(Pa)	185.191 - 187.110	0.01037(27)
ec12.3 K	(Pa)	264.67 (11)	0.015
ec12.5 K	(Pa)	328.34 (4)	0.046 (8)
ес <u>12,1</u> к ес <u>12 о</u> к	(Pa)	335.17 (2)	0.0240(42)
ec _{14.5} k	(Pa)	346,626 (7)	0.227(6)
ec19 s T	(Pa)	356,2 - 360.6	0.029
ес _{15,5} г	(Pa)	378,2 (6)	0.035
ес ₁₅ 4 к	(Pa)	386.42 (4)	0.042
ec14 5 L	(Pa)	438.117 - 442.489	0,043(1)
ес _{17 8 к}	(Pa)	450,33 (8)	0.01
ec _{14.5 M}	(Pa)	453,861 - 455.780	0,01035(24)
ec17 7 K	(Pa)	482,79 (6)	0.02
11,1 11		/ (-)	<i>,</i> -

KRI /V.P. Chechev, N.K. Kuzmenko

		Ener ke	rgy V	Electrons per 100 disint.
$ec_{17,5\rm\ K}$	(Pa)	557,305	(16)	0,0423 (10)
$\beta_{0,20}^{-}$	max:	$224,\!4$	(14)	0,0434 (9)
$\beta_{0,20}^-$	avg:	60,9	(4)	
$\beta_{0,19}^{-}$	max:	$258,\!3$	(14)	0,205~(2)
$\beta_{0,19}^{-}$	avg:	70,8	(4)	
$\beta_{0,18}^{-}$	max:	$431,\!5$	(14)	0,385~(4)
$\beta_{0,18}^{-1}$	avg:	124,3	(5)	
$\beta_{0.17}^{-}$	max:	$478,\!5$	(14)	1,19(3)
$\beta_{0,17}^{-1}$	avg:	139,5	(5)	
$\beta_{0,16}^{-}$	max:	$573,\!2$	(14)	0,0174~(22)
$\beta_{0,16}^{-1}$	avg:	170,8	(5)	
$\beta_{0.15}^{-}$	max:	$657,\! 6$	(14)	0,15(3)
$\beta_{0,15}^{-10}$	avg:	$199,\! 6$	(5)	
$\beta_{0.14}^{-}$	max:	689,2	(14)	1,23(3)
$\beta_{0,14}^{-1}$	avg:	210,5	(5)	
$\beta_{0.13}^{-}$	max:	788,7	(14)	0,217(13)
$\beta_{0,13}^{-10}$	avg:	$245,\!5$	(5)	
$\beta_{0,12}^{-1}$	max:	795,3	(14)	0,821(14)
$\beta_{0.12}^{}$	avg:	247,8	(5)	
$\beta_{0.11}^{-}$	max:	$985,\!8$	(14)	0,60(3)
$\beta_{0.11}^{$	avg:	317,0	(6)	, , ,
$\beta_{0.8}^{-}$	max:	1041,4	(14)	0,074 (8)
$\beta_{0.8}^{-}$	avg:	$337,\! 6$	(6)	, , , ,
$\beta_{0,7}^{-}$	max:	1073,9	(14)	0,692(12)
$\beta_{0.7}^{-}$	avg:	349,7	(6)	, , , ,
$\beta_{0.5}^{-}$	max:	1148,4	(14)	10,4 (4)
$\beta_{0.5}^{-}$	avg:	$377,\!8$	(6)	
$\beta_{0,1}^{-}$	max:	1236.4	(14)	50 (6)
$\beta_{0,1}^{-1}$	avg:	411,2	(6)	
$\beta_{0,0}^{-}$	max:	1243.1	(14)	34 (6)
$\beta_{0,0}^{-}$	avg:	413,8	(6)	- (-)
. 0,0	U	,	~ /	

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Pa)	11,366 - 21,6	8,2 (9)	

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV	Photons per 100 disint.	
$\begin{array}{c} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	92,288 95,869	$\begin{array}{c} 0,39 (1) \\ 0,615 (13) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	$107,595 \\108,422 \\109,072$	} } 0,235 (6) }	$\mathrm{K}^{'}eta_{1}$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$111,405 \\ 111,87 \\ 112,38$		$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{1,0}(\text{Pa})$	$6,\!65\ (5)$	0,0165~(18)
$\gamma_{4,2}(\mathrm{Pa})$	29,373 (10)	$2,\!17(7)$
$\gamma_{2,0}(\text{Pa})$	57,10(2)	0,0498~(15)
$\gamma_{3,1}({\rm Pa})$	$63,\!92~(6)$	0,0007~(3)
$\gamma_{3,0}(\mathrm{Pa})$	70,49 (10)	0,0007~(4)
$\gamma_{7,5}(\text{Pa})$	74,51 (5)	0,0402~(17)
$\gamma_{4,0}(\mathrm{Pa})$	86,477 (10)	1,843~(22)
$\gamma_{5,1}(\mathrm{Pa})$	87,99~(3)	0,1698~(20)
$\gamma_{5,0}(\mathrm{Pa})$	$94,\!65(5)$	0,775~(9)
$\gamma_{(-1,2)}(\mathrm{Pa})$	105,2~(1)	0,041
$\gamma_{9,6}(\mathrm{Pa})$	108,5(1)	0,0006
$\gamma_{8,4}(\text{Pa})$	115,14(5)	0,003~(7)
$\gamma_{9,5}(\mathrm{Pa})$	$117,\!692$ (20)	0,0029 (3)
$\gamma_{8,3}(\text{Pa})$	$131,101\ (25)$	0,0508~(13)
$\gamma_{10,6}({ m Pa})$	$134,285\ (20)$	0,0018~(5)
$\gamma_{10,5}({ m Pa})$	143,23~(2)	0,0114~(7)
$\gamma_{(-1,3)}(\mathrm{Pa})$	147,5	0,0018~(6)
$\gamma_{10,4}({ m Pa})$	151,409 (20)	0,0067~(3)
$\gamma_{11,6}(\text{Pa})$	153, 49 (18)	0,0407~(7)
$\gamma_{9,2}(Pa)$	155,239 (20)	0,00023 (3)
$\gamma_{11,5}(\text{Pa})$	162,504	0,16
$\gamma_{7,1}(\mathrm{Pa})$	162,504 (12)	$0,1674\ (26)$
$\gamma_{7,0}(\mathrm{Pa})$	169,162 (10)	0,251~(4)
$\gamma_{11,4}(\text{Pa})$	170,60~(6)	0,507~(9)
$\gamma_{17,15}({ m Pa})$	179,05~(8)	0,0278~(7)
$\gamma_{10,2}(\text{Pa})$	180,76 (3)	0,00011 (3)
$\gamma_{11,3}(\text{Pa})$	186,80 (18)	0,0209 (9)
$\gamma_{12,11}(\text{Pa})$	$190,552\ (14)$	$0,0861\ (15)$
$\gamma_{8,1}(Pa)$	194,97~(7)	$0,1073\ (17)$
$\gamma_{8,0}({ m Pa})$	$201,\!62$ (5)	0,0221 (8)
$\gamma_{17,14}(\text{Pa})$	$210,\!67$ (8)	$0,0178\ (11)$

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy	Photons	
	keV	per 100 disint.	
		por roo distitu	
γ (14)(Pa)	211.3(2)	0.0202(9)	
$\gamma(-1,4)(1,a)$	212,34(5)	0,0202 (0) 0,0065 (6)	
$\gamma_{9,0}(10)$	212,51(6) 216,54(8)	0,0000(0) 0,0130(7)	
$\gamma_{19,15}(Pa)$	2261(2)	0.0171(7)	
$\gamma_{10,13}(Pa)$	237.86(6)	0,0019(4)	
$\gamma_{10,0}(10)$	242.3	0.0029(6)	
$\gamma(-1,5)(10)$	246 14 (6)	0.0041(6)	
$\gamma_{12,8}(Pa)$	250.65(16)	0.0047(3)	
$\gamma_{11,1}(\mathbf{Pa})$ $\gamma_{12,8}(\mathbf{Pa})$	252.78(9)	0.0066(3)	
$\gamma_{13,8}(Pa)$	257,30,(15)	0.0524(12)	
$\gamma_{11,0}(1a)$ $\gamma_{12,7}(Pa)$	2787(4)	0.0047(6)	
$\gamma_{12,7}(1 \alpha)$ $\gamma_{12,7}(P_2)$	210,1(4) 285,24(7)	0,0041(0) 0.0154(9)	
$\gamma_{(-1,c)}(\mathbf{P}_{a})$	309.9	0.0032(3)	
$\gamma_{14,10}(P_{a})$	316.1	0.0037(4)	
$\gamma_{15,10}(P_{2})$	$347\ 64\ (6)$	0.0145(8)	
$\gamma_{12,10}(1a)$	35974(4)	0.0869(12)	
$\gamma_{13,3}(Pa)$	$361\ 285\ (22)$	0.0218(6)	
$\gamma_{12,4}(Pa)$	367.92(7)	0,0210(0) 0,0037(7)	
$\gamma_{13,4}(1a)$ $\gamma_{13,2}(Pa)$	$377\ 27\ (11)$	0.0275(9)	
$\gamma_{12,3}(10)$ $\gamma_{(17)}(Pa)$	383.5	0,0210(0) 0,0019(6)	
$\gamma(-1,7)(10)$	398.8(5)	0.0111(7)	
$\gamma_{19,13}(10)$	408.8(5)	0,0111(1) 0,0005(4)	
$\gamma(-1,8)(1.0)$	4125(5)	0.0083(7)	
$\gamma_{10,11}(1a)$	412,0(5) 418.4(5)	0,0000(7) 0,0091(7)	
$\gamma(-1,9)(1,a)$ $\gamma_{10,14}(Pa)$	430.9(4)	0,0001(1) 0,0178(4)	
$\gamma_{19,14}(Pa)$	433.2(4)	0.0117(4)	
$\gamma_{20,13}(Pa)$	440.94(4)	0.1912(23)	
$\gamma_{12,1}(\mathbf{Pa})$	447.762 (20)	0.1043(14)	
$\gamma_{12,0}(10)$ (Pa)	454.2(5)	0.04	
$\gamma(-1,10)(1 \text{ a})$ $\gamma_{14.5}(\text{Pa})$	459.222(7)	0.989(12)	
$\gamma_{(4,3)}(1,0)$	464.8	0.0026(3)	
$\gamma(-1,11)(10)$ $\gamma_{14,4}(Pa)$	467.40 (6)	0.0144(4)	
$\gamma_{(-1,12)}(Pa)$	473.9(5)	0.0033(7)	
$\gamma(-1,12)(-3)$ $\gamma_{15,5}(Pa)$	490.80(6)	0.1078(16)	
$\gamma_{(-1,12)}(Pa)$	497.1(4)	0.0128(4)	
$\gamma_{154}(Pa)$	499,02 (4)	0.1576(21)	
$\gamma_{(-1,14)}(Pa)$	505.5(6)	0.0055(3)	
$\gamma_{(-1,15)}(Pa)$	513.4(4)	0.0133(4)	
$\gamma(-1,15)$ (Pa)	517.0(4)	0.0046(3)	
$\gamma_{17,10}(Pa)$	526.69(6)	0.0463(11)	
$\gamma_{(-1,17)}(Pa)$	531.8(4)	0.0070(7)	
$\gamma_{17} o(Pa)$	552.21(8)	0.0165(5)	
$\gamma_{(-1.18)}(Pa)$	553.7	0,0030(3)	
$\gamma_{(-1,10)}(Pa)$	554.9	0.0031(3)	
$\gamma_{17.8}(Pa)$	562.93(8)	0.0545(7)	
$\gamma_{18,10}(Pa)$	573.7(4)	0.0332(10)	
$\gamma_{(-1.20)}(Pa)$	578.7	0.0017(5)	
, 1,20) ()	,	·	

	Energy	Photons
	keV	per 100 disint.
	iic v	per roo disint.
γ (1.01)(Pa)	583 2	0.0016(5)
$\gamma(-1,21)(1 \alpha)$ $\gamma_{17,7}(Pa)$	595,39 (6)	0,0010(0) 0.1178(16)
$\gamma_{12,7}(\mathbf{Pa})$	599.3(2)	0.0294(5)
$\gamma_{10,9}(Pa)$	610.0(3)	0,0567(12)
$\gamma_{10,0}(Pa)$	642.4(2)	0,0202(5)
$\gamma_{16,7}(Pa)$	663.3(5)	0.0037(5)
$\gamma_{16,0}(Pa)$	669.9(5)	0.0018
$\gamma_{17,5}(Pa)$	669.901(16)	0.504(6)
$\gamma_{17,3}(Pa)$	678.04(10)	0.0647(9)
$\gamma_{(1,22)}(Pa)$	681.2(6)	0.0143(4)
$\gamma(-1,22)(Pa)$	690	0.0021(5)
$\gamma(-1,23)(Pa)$	698.5(6)	0.0106(5)
$\gamma(-1,24)(Pa)$	703.7(6)	0,0091(5)
$\gamma_{18.6}(Pa)$	707.8(3)	0.0091(5)
$\gamma_{18,5}(Pa)$	717.0(2)	0.0421(9)
$\gamma_{18,3}(Pa)$	725.1(2)	0.0633(10)
$\gamma_{(1,0,4)}(Pa)$	727.8	0.0029(2)
$\gamma_{(=1,20)}(=3)$ $\gamma_{18,3}(Pa)$	741.1(2)	0.0236(5)
$\gamma_{(-1.27)}(Pa)$	744.9(5)	0.0053(2)
$\gamma(-1,27)(=2)$	751.6(6)	0.0023(4)
$\gamma_{(-1,28)}(13)$ $\gamma_{17,1}(Pa)$	757.90(7)	0.0324(7)
$\gamma_{17,1}(=a)$ $\gamma_{17,0}(Pa)$	764.55(6)	0.0891(13)
$\gamma_{(-1,20)}(Pa)$	767.5	0.0032(2)
$\gamma(-1,29)(=2)$ $\gamma(-1,20)(Pa)$	774.0(4)	0.0108(5)
$\gamma_{19.8}(Pa)$	783.2(5)	0.0056(3)
$\gamma_{(-1,31)}(Pa)$	784.2(5)	0.0022(2)
$\gamma_{181}(Pa)$	805,0(2)	0,0214(6)
$\gamma_{20.9}(Pa)$	806,4(5)	0,0123(5)
$\gamma_{18.0}(Pa)$	811,6(2)	0,0060(2)
$\gamma_{19.7}(\text{Pa})$	815,9(4)	0,0195(6)
$\gamma_{20.8}(Pa)$	817,0(6)	0,0095(5)
$\gamma_{(-1,32)}(Pa)$	832,0(3)	0,0075
$\gamma_{(-1,33)}(Pa)$	846,8(7)	0,0013
$\gamma_{20.7}(Pa)$	849,5(5)	0,0039(3)
$\gamma_{(-1,34)}(Pa)$	870,7 (7)	0,0031 (2)
$\gamma_{(-1,35)}(Pa)$	874,0 (5)	0,00120 (4)
$\gamma_{19,6}(Pa)$	880,9(5)	0,0097 (4)
$\gamma_{19,5}(Pa)$	890,1 (5)	0,1052 (14)
$\gamma_{19,4}(\text{Pa})$	898,3(5)	0,0022 (4)
$\gamma_{(-1,36)}(\text{Pa})$	918,9(5)	0,006
$\gamma_{(-1,37)}(Pa)$	935,2~(7)	0,0369~(7)
$\gamma_{(-1,38)}(Pa)$	941,9(8)	0,0048 (3)
$\gamma_{(-1,39)}(Pa)$	$942,\!8$	0,0019~(3)
$\gamma_{20,3}(Pa)$	948,3(5)	0,0060 (3)
$\gamma_{(-1,40)}(\text{Pa})$	955~(1)	0,0002 (3)
$\gamma_{(-1,41)}(\text{Pa})$	960, 8 (8)	0,0041~(2)
$\gamma_{(-1,42)}(\text{Pa})$	962,8~(9)	0,0015~(2)

	Energy	Photons
	keV	per 100 disint.
$\mathbf{O}(\mathbf{r}_{1}, \mathbf{r}_{2})$	068.2(0)	0.0083 (3)
$\gamma_{(-1,43)}(Pa)$	908,2(9)	0,0053(3)
$\gamma_{19,1}(\mathrm{Pa})$	978,2 (5)	0,0058 (3)
$\gamma_{19,0}(\mathrm{Pa})$	984,8(5)	0,0102(3)
$\gamma_{(-1,44)}(\text{Pa})$	994(1)	0,0006(1)
$\gamma_{(-1,45)}(Pa)$	1001 (1)	0,0008(2)
$\gamma_{(-1,46)}(Pa)$	1007~(1)	0,0014(2)
$\gamma_{(-1,47)}(Pa)$	1011 (1)	0,0019(2)
$\gamma_{(-1,48)}(Pa)$	$1026,5\ (10)$	0,0075
$\gamma_{(-1,49)}(\mathrm{Pa})$	1092,5~(10)	0,006
$\gamma_{(-1,50)}(Pa)$	1132,1	0,0006(2)
$\gamma_{(-1,51)}(Pa)$	1139,1	0,0004(1)
$\gamma_{(-1,52)}(Pa)$	1144(1)	0,0027
$\gamma_{(-1,53)}(Pa)$	1201 (1)	0,006

6 Main Production Modes

 $\begin{array}{l} {\rm Th}-232(n,\gamma){\rm Th}-233\\ {\rm Possible \ impurities: \ Th}-232, \ {\rm Th}-234 \end{array}$

7 References

- W.C. RUTLEDGE, J.M. CORK, S.B. BURSON. Phys. Rev. 86 (1952) 775 (Half-life)
- E.N. JENKINS. Analyst 80 (1955) 301 (Half-life)
- B.J. DROPESKY, L.M. LANGER. Phys. Rev. 108 (1957) 90 (Half-life, energy of beta0,0 -transition)
- M.S. FREEDMAN, D.W. ENGELKEMEIR, F.T. PORTER, F. WAGNER, JR., AND P.DAY. Priv.Comm., unpublished (1957)
- (Gamma ray emission probabilities, beta-transition energies)
- R. DAMS, F. ADAMS. Radiochim. Acta 10 (1968) 1 (Gamma-ray energies)
- E. BROWNE, F. ASARO. UCRL-17989 (1968) 1 (Gamma-ray energies)
- W. HOEKSTRA. Thesis, Technische Hogeschool, Delft. (1969) (Half-life, KX- - ray emission probabilities, gamma - ray relative probabilities)
- J.M. VARA, R. GAETA. Nucl. Phys. A130 (1969) 586 (Gamma-ray energies)
- C.SEBILLE, G.BASTIN, C.F.LEANG, R.PIEPENBRING, M.F. PERRIN. Compt. Rend A270 (1970) 354 (Gamma-ray energies)
- C.SEBILLE-SCHUCK. Thesis, Paris Univ. (1972); FRNC-TH-255 (1972) (1972) (Gamma - ray relative probabilities, gamma-ray multipolarities, conversion electron characteristics)
- T VON EGIDY, O.W.B. SCHULT, D. RABENSTEIN, J.R. ERSKINE, O.A. WASSON, R.E. CHRIEN, D. BREITIG, R.P. SHARMA, H.A. BAADER, H.R. KOCH. Phys. Rev. C6 (1972) 266 (Gamma-ray energies)
- M. DE BRUIN, P.J.M. KORTHOVEN. J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies)
- M.Skalsey, R.D.Connor. Can.J.Phys. 54 (1976) 1409 (Gamma-ray energies)

- P. JEUCH., Thesis, Tech Univ Munchen. (1976) (Gamma-ray multipolarities, conversion electron characteristics) - L.GONZALEZ, R.GAETA, E.VANO, J.M.LOS ARCOS. Nucl. Phys. A324 (1979) 126 (Gamma-ray energies) - H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE. Nucl.Instrum.Methods 166 (1979) 251 (Gamma-ray energies) - S.A.WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY. Nucl.Instrum.Methods Phys.Res. A264 (1988) 333 (Gamma ray energies, ICC for gamma 4,0) - A.Abzouzi, M.S.Antony, V.B.Ndocko Ndongue. J.Radioanal.Nucl.Chem. 135 (1989) 1 (Half-life) - K.USMAN, T.D.MACMAHON, S.I.KAFALA. Appl.Radiat.Isot. 49 (1998) 1329 (Half-life) - M.M. BÉ, R. HELMER, V. CHISTÉ. J. Nucl. Sci. Technol. suppl.2 (2002) 481 (SAISINUC software) - G.Audi, A.H.WAPSTRA, C.Thibault. Nucl. Phys. A729 (2003) 337 (Q value) - B.Singh, J.K.Tuli. NDS 105 (2005) 109 (Decay data evaluations, multipolarities, decay scheme, Pa233 level energies, multipolarities) - D.J.DEVRIES, H.C.GRIFFIN. Appl.Rad.Isotop. 66 (2008) 1999 (Absolute and relative gamma ray and X-ray emission probabilities) - T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR, JR. Nucl. Instrum. Methods Phys.Res. A589 (2008) 202 (Theoretical ICC) - V.M.GOROZHANKIN, M.-M.BÉ. Appl.Radiat.Isot. 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions) - D.J. DEVRIES, H.C. GRIFFIN. Appl. Rad. Isotop. 66 (2008) 1999 (Uncertainties of LX-ray absolute emission probabilities)

KRI /V.P. Chechev, N.K. Kuzmenko

KRI /V.P. Chechev, N.K. Kuzmenko

γ Emission intensities per 100 disintegrations

KRI /V.P. Chechev, N.K. Kuzmenko

1 Decay Scheme

Pa-233 decays by beta minus emission to levels in U-233. Le protactinium 233 se désintègre par émission bêta moins vers des niveaux excités de l'uranium 233.

2 Nuclear Data

$T_{1/2}(^{233}\text{Pa})$:	$26,\!98$	(2)	d
$T_{1/2}^{(233}\mathrm{U})$:	159,2	(2)	$10^{3} {\rm a}$
$Q^{-}(^{233}\text{Pa})$:	570,1	(20)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$			
$\beta_{0,11}^{-}$	114,1 (20)	0.0011(2)	1st forbidden	10.6			
$\beta_{0,10}^{-10}$	154,3 (20)	25,4(16)	1st forbidden	6,7			
$\beta_{0.9}^{-}$	171,5(20)	15,4 (8)	1st forbidden	7			
$\beta_{0.8}^{}$	189,8(20)	0,020 (3)	1st forbidden unique	9,4			
$\beta_{0,7}^{-}$	229,6 (20)	25,9(32)	1st forbidden	7,2			
$\beta_{0,6}^{-}$	249,4 (20)	0,020~(5)	2nd forbidden	10,4			
$\beta_{0,5}^{-}$	258,2(20)	$26,\! 6\ (32)$	1st forbidden	7,3			
$\beta_{0,4}$	268,1 (20)	0,010(2)	Allowed	$11,\!8$			
$\beta_{0,3}^{-}$	271,3(20)	$0,\!12~(5)$	Allowed	9,8			
$\beta_{0,1}^{-}$	529,8(20)	0,3~(19)	1st forbidden unique	10,2			
$\beta_{0,0}^{-}$	570,1 (20)	6,3~(23)	1st forbidden	$9,\!1$			
	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	α_L	$lpha_M$	α_T
-----------------------------	---------------	----------------------------	---------------	-------------	----------------	--------------	-------------
$\gamma_{10.9}(U)$	17.262(6)	2.07	M1+1.66%E2			374	503
$\gamma_{7.5}(U)$	28.559(10)	22.3(28)	M1+2.44%E2		233(13)	60(4)	313(18)
$\gamma_{1,0}(U)$	40,349 (5)	13.9(19)	M1 + 54% E2		430 (50)	117(12)	580 (60)
$\gamma_{7,3}(U)$	41,663(10)	0,032(7)	[E1]		0,939(19)	0,235(5)	1,253(25)
$\gamma_{2,1}(U)$	51,81 (4)	0,055	[M1 + 28% E2]		79	21	108
$\gamma_{10,7}(U)$	75,269(10)	16,1(16)	M1+2,2%E2		8,6(9)	2,11(24)	11,4(12)
$\gamma_{9,5}(\mathrm{U})$	86,595(5)	16,1(9)	M1+0,31%E2		5,33(11)	1,29(3)	7,08(14)
$\gamma_{2,0}(\mathrm{U})$	92,16(4)	0,0492	[E2]		14,2	3,95	19,5
$\gamma_{10,5}(\mathrm{U})$	103,86(1)	4,44(18)	M1 + (1% E2)		3,17(15)	0,77(5)	4,21 (21)
$\gamma_{6,2}(\mathrm{U})$	228,57(5)	0,0042~(7)					
$\gamma_{7,2}(U)$	248,38(4)	0,082(2)	[E2]	0,1065(21)	0,175~(4)	0,0479(10)	0,346~(7)
$\gamma_{3,1}(\mathrm{U})$	258,45(2)	0,0289~(6)	[E1]	0,0433~(9)	0,00857 (17)	0,00207 (4)	0,0547(11)
$\gamma_{5,1}(\mathrm{U})$	271,555 (10)	0,406~(4)	E2	0,0904~(18)	0,1226 (25)	0,0334~(7)	0,258~(5)
$\gamma_{6,1}(\mathrm{U})$	280,61 (5)	0,011~(2)					
$\gamma_{8,2}(U)$	288,42 (10)	0,016~(3)					
$\gamma_{3,0}(\mathrm{U})$	298,81 (2)	0,12~(5)	[E1]	0,0315~(6)	0,00609(12)	0,00147~(3)	0,0396~(8)
$\gamma_{7,1}(\mathrm{U})$	300,129(5)	12,3~(4)	M1+0,6%E2	0,70(2)	0,133~(4)	0,031~(1)	0,87~(2)
$\gamma_{4,0}(\mathrm{U})$	301,99(10)	0,010(2)					
$\gamma_{5,0}(\mathrm{U})$	311,904(5)	68,9(12)	M1+1%E2	0,64(2)	0,126~(4)	0,031~(1)	0,80(2)
$\gamma_{6,0}(\mathrm{U})$	320,73(10)	0,0051 (4)					
$\gamma_{7,0}(\mathrm{U})$	340,476(5)	7,24(10)	M1+5%E2	0,50(2)	0,103~(3)	0,022(1)	0,62~(2)
$\gamma_{10,1}(\mathrm{U})$	375,404 (5)	0,751~(7)	E2	0,0491 (10)	0,0360~(7)	0,00962~(19)	0,0981 (20)
$\gamma_{8,0}(\mathrm{U})$	380,28 (10)	0,0037~(9)					
$\gamma_{9,0}(\mathrm{U})$	398,492 (5)	$1,526\ (15)$	E2	0,0439 (9)	0,0291~(6)	0,00777 (16)	0,0835~(17)
$\gamma_{10,0}(\mathrm{U})$	415,764 (5)	1,97~(12)	M1 + 83% E2	0,09~(6)	0,032 (9)	0,0081 (21)	0,13~(8)
$\gamma_{11,0}(U)$	455,96 (10)	0,0011(2)					

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 U

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	0,500	(19)
n_{KL}	:	0,794	(5)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X_{K}				
	$K\alpha_2$	94,666		62,47
	$K\alpha_1$	$98,\!44$		100
	$K\beta_3$	110,421	}	
	$K\beta_1$	111,298) }	
	${ m K}eta_5^{\prime\prime}$	$111,\!964$	}	36,08
	${ m K}eta_2$	114,407	}	
	$\mathrm{K}eta_4$	$115,\!012$	}	12,34
	$\mathrm{KO}_{2,3}$	$115,\!377$	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$11,\!619$		
	$L\alpha$	$13,\!438-13,\!615$		
	$\mathrm{L}\eta$	$15,\!399$		
	$\mathrm{L}eta$	15,727 - 18,206		
	$\mathrm{L}\gamma$	$19,\!507-20,\!714$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	$71,78-80,95\ 88,15-98,34\ 104,42-115,40\ 5,9-21,6$	$100 \\ 59,6 \\ 8,88$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(U)	5,9 - 21,6	42,2 (13)
e _{AK}	(U)		0,95~(13)
	KLL	71,78 - $80,95$	}
	KLX	88,15 - $98,34$	}
	KXY	104,42 - $115,40$	}
$ec_{7,5 L}$	(U)	6,80 - 11,39	16,5(21)
ес _{10,9 М}	(U)	11,714 - $13,710$	$1,\!53$
$ec_{1,0 L}$	(U)	$18,\!59$ - $23,\!18$	$10,3\ (15)$
$ec_{7,3}$ L	(U)	19,9 - $24,5$	0,013~(3)
ес _{7,5 М}	(U)	23,01 - $25,01$	4,3~(6)
$ec_{7,5 N}$	(U)	27,118 - 28,180	$1,14\ (15)$
$ec_{2,1 L}$	(U)	$30,\!05$ - $34,\!64$	$0,\!04$
$ec_{1,0 M}$	(U)	34,8 - $36,8$	2,8~(4)
$ec_{1,0 N}$	(U)	38,908 - $39,970$	0,77~(12)
$ec_{2,1}$ M	(U)	46,26 - $48,26$	0,011
$ec_{10,7}$ L	(U)	53,51 - $58,10$	11,2~(12)
$ec_{9,5 L}$	(U)	$64,\!84$ - $69,\!43$	$10,\!6~(6)$
$ec_{10,7}$ M	(U)	69,72 - $71,72$	2,7~(3)
$ec_{2,0 L}$	(U)	70,40 - $74,99$	0,034
$ec_{10,7 N}$	(U)	73,828 - $74,890$	0,74~(9)
ес9,5 м	(U)	81,05 - $83,04$	$2,57\ (14)$
$ec_{10,5 L}$	(U)	82,10 - $86,69$	2,70 (13)
$ec_{9,5 N}$	(U)	85,154 - $86,216$	0,695 (38)
$ec_{10,5}$ M	(U)	98,31 - $100,31$	0,66 (4)
$ec_{10,5 N}$	(U)	102,42 - 103,48	0,18(1)
$ec_{5,1 K}$	(U)	155,95 (1)	0,0292 (6)
$ec_{7,1 \text{ K}}$	(U)	184,527 (5)	4,62 (20)
$ec_{7,1}$ T	(U)	184,527 - 300,120	5,74(23)
$ec_{5,0}$ K	(U)	196,302 (5)	24,5(8)
$ec_{5,0}$ T	(\mathbf{U})	196,302 - 311,895	30,6(9)
ес _{7,0 К}	(\mathbf{U})	224,874 (5)	2,24 (9)
$ec_{7,0}$ T	(\mathbf{U})	224,874 - 340,468	2,77(9)
$ec_{7,2}$ L	(\mathbf{U})	226,62 - 231,21	0,0107 (3)
$ec_{5,1}$ L	(\mathbf{U})	249,80 - 254,39	0,0396(9)
$ec_{10,1}$ K	(U)	259,802 (5)	0,0336(8)
$ec_{5,1}$ M	(U) (II)	200,01 - 208,00	0,0108(3)
$ec_{7,1}$ L	(U) (II)	2(8,3) - 282,90	0.88 (4)
$ec_{9,0}$ K	(U)	202,090 (5) 200.15 204.74	0,0018 (12)
$ec_{5,0 L}$	(U)	290,10 - 294,14 204 59 206 59	4,83(17)
$ec_{7,1}$ M	(U) (II)	294,00 - 290,08 208,688 - 200,750	0,22(1)
$ec_{7,1}$ N	(\mathbf{U})	290,000 - 299,790 200,169 (7)	0,0009 (20)
ec _{10,0} K	(\mathbf{U})	306.36 309.25	0,10(10) 1 10(4)
ec5,0 M	(\mathbf{U})	əbb,əb - əbb,əə	1,19 (4)

KRI /V. P. Chechev and N. K. Kuzmenko

		Energy keV		Electrons per 100 disint.
			· ·	F
ect o N	(\mathbf{U})	310 463 -	- 311 525	0.343(6)
$ec_{7,0}$ N	(U)	318.72 -	- 323.31	0.460(14)
ес _{7.0 М}	(U)	334,93 -	- 336,93	0.098(5)
$ec_{7,0}$ N	(U)	339,035 -	- 340,097	0,024 (8)
$ec_{10,1 L}$	(U)	$353,\!65$ -	- 358,24	0,0246 (5)
$ec_{9,0 L}$	(U)	376,73 -	- 381,32	0,0410 (9)
$ec_{9,0 M}$	(U)	392,94 -	- 394,94	0,01094~(25)
$ec_{10,0\ L}$	(U)	394,01 -	- 398,60	0,056~(16)
$ec_{10,0\ \rm M}$	(U)	410,22 -	- 412,21	0,014 (3)
$\beta_{0.11}^{-}$	max:	114,1	(20)	0,0011 (2)
$\beta_{0.11}^{-1}$	avg:	29,8	(5)	
$\beta_{0,10}^{-10}$	max:	154,3	(20)	25,4(16)
$\beta_{0,10}^{-10}$	avg:	40,9	(5)	
$\beta_{0.9}^{-}$	max:	171,5	(20)	15,4(8)
$\beta_{0.9}^{}$	avg:	45,7	(5)	
$\beta_{0.8}^{-}$	max:	189,8	(20)	0,020(3)
$\beta_{0.8}^{-,\circ}$	avg:	50,9	(6)	
$\beta_{0,7}^{-}$	max:	$229,\!6$	(20)	25,9(32)
$\beta_{0,7}^{0,7}$	avg:	$62,\!4$	(6)	
$\beta_{0,6}^{-}$	max:	249.4	(20)	0.020(5)
$\beta_{0,6}^{-}$	avg:	68,2	(6)	, ()
$\beta_{0.5}^{-}$	max:	258,2	(20)	26,6(32)
$\beta_{0.5}^{-}$	avg:	70,8	(6)	/ 、 /
$\beta_{0,4}^{-}$	max:	268.1	(20)	0.010 (2)
$\beta_{0.4}^{-}$	avg:	73,7	(6)	, , , ,
$\beta_{0,2}^{-}$	max:	271.3	(20)	0.12(5)
$\beta_{0,3}^{-}$	avg:	$74,\!6$	(6)	, (-)
$\beta_{0,1}^{-1}$	max:	529.8	(20)	0.3(19)
$\beta_{0,1}^{-1}$	avg:	156,1	(6)	0,0 (20)
β_{-}^{-}	max	570 1	(20)	6 3 (23)
$\beta_{0,0}^{\sim 0,0}$	avg:	169.6	(20)	0,0 (20)
/~ 0,0		100,0	(~)	

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XL} \\ \mathrm{XK}\alpha_2 \\ \mathrm{XK}\alpha_1 \end{array}$	(U) (U) (U)	$11,\!619 - 20,\!714$ $94,\!666$ $98,\!44$		$\begin{array}{c} 40,6 \ (11) \\ 9,10 \ (26) \\ 14,6 \ (4) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110,421 \\111,298 \\111,964$	} } }	5,25 (18)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	114,407 115,012 115,377	} } }	1,80 (7)	$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{10,9}(U) \\ \gamma_{7,5}(U) \\ \gamma_{1,0}(U) \\ \gamma_{7,3}(U) \\ \gamma_{2,1}(U) \\ \gamma_{10,7}(U) \\ \gamma_{9,5}(U) \\ \gamma_{2,0}(U) \\ \gamma_{10,5}(U) \\ \gamma_{6,2}(U) \\ \gamma_{7,2}(U) \\ \gamma_{5,1}(U) \\ \gamma_{5,1}(U) \\ \gamma_{6,1}(U) \\ \gamma_{8,2}(U) \\ \gamma_{3,0}(U) \\ \gamma_{7,1}(U) \\ \gamma_{4,0}(U) \\ \gamma_{5,0}(U) \\ \gamma_{2,0}(U) \end{array}$	$\begin{array}{c} \mathrm{keV} \\ 17,262 \ (6) \\ 28,559 \ (10) \\ 40,349 \ (5) \\ 41,663 \ (10) \\ 51,81 \ (4) \\ 75,269 \ (10) \\ 86,595 \ (5) \\ 92,16 \ (4) \\ 103,86 \ (1) \\ 228,57 \ (5) \\ 248,38 \ (4) \\ 258,45 \ (2) \\ 271,555 \ (10) \\ 280,61 \ (5) \\ 288,42 \ (10) \\ 298,81 \ (2) \\ 300,129 \ (5) \\ 301,99 \ (10) \\ 311,904 \ (5) \\ 320 \ 73 \ (10) \end{array}$	per 100 disint. 0,0041 0,071 (8) 0,024 (2) 0,014 (3) 0,0005 1,30 (3) 1,99 (10) 0,0024 0,853 (6) 0,0042 (7) 0,0609 (11) 0,0274 (6) 0,323 (3) 0,011 (2) 0,016 (3) 0,12 (5) 6,60 (21) 0,010 (2) 38,3 (5) 0,0051 (4)
$\gamma_{7,0}(U)$ $\gamma_{10,1}(U)$	$\begin{array}{c} 320,10 \\ 340,476 \\ 375,404 \\ (5) \end{array}$	$\begin{array}{c} 4,47 \ (3) \\ 0,684 \ (7) \end{array}$

	Energy keV	Photons per 100 disint.
$\gamma_{8,0}(U)$ $\gamma_{9,0}(U)$ $\gamma_{10,0}(U)$ $\gamma_{11,0}(U)$	$\begin{array}{c} 380,28 \ (10) \\ 398,492 \ (5) \\ 415,764 \ (5) \\ 455,96 \ (10) \end{array}$	$\begin{array}{c} 0,0037 \ (9) \\ 1,408 \ (14) \\ 1,747 \ (7) \\ 0,0011 \ (2) \end{array}$

6 Main Production Modes

 $Th - 232(n,\gamma)Th - 233$ $Th - 233(\beta^{-})Pa - 233$

7 References

- A. V. GROSSE, E. T. BOOTH, J.R. DUNNING. Phys. Rev. 59 (1941) 322 (Half-life.)
- C. I. BROWNE JR.. Thesis, Univ. California (1952) (Gamma-ray energies.)
- W. D. BRODIE. Proc. Phys. Soc. (London) 67A (1954) 397 (Measured energies and probabilities of beta-transitions.)
- ONG PING HOK, P. KRAMER. Physica 21 (1955) 676 (Measured energies and probabilities of beta-transitions.)
- L. D. MC ISAAC, E. C. FREILING. Nucleonics 14 (1956) 65 (Half-life.)
- H. W. WRIGHT, E. T. WYATT, S. A. REYNOLDS, W. S. LYON, T. H. HANDLEY. Nucl. Sci. Eng. 2 (1957) 427 (Half-life.)
- J. P. UNIK. Thesis, Univ. California ,UCRL-9105 (1960) (1960) (Measured energies and probabilities of beta-transitions.)
- R. G. ALBRIDGE, J. M. HOLLANDER, C. J. GALLAGHER, J.H. HAMILTON. Nucl. Phys. 27 (1961) 529 (Gamma-ray energies and multipolarities, E2 admixtures.)
- G. SCHULTZE, J. AHLF. Nucl. Phys. 30 (1962) 163 (Multipolarities, E2 admixtures.)
- S. BJØRNHOLM, M. LEDERER, F. ASARO, I. PERLMAN. Phys. Rev. 130 (1963) 2000 (Energies and probabilities of beta-transitions.)
- K. M. BISGARD, P. DAHL, P. HORNSHOJ, A. B. KNUTSEN. Nucl. Phys. 41 (1963) 21 (Multipolarities, E2 admixtures.)
- M. J. ZENDER. Thesis, Vanderbilt Univ. (1966) (Multipolarities, E2 admixtures.)
- C. BRIANCON, C.- F. LEANG, P. PARIS. Compt. Rend. 264B (1967) 1522 (Gamma-ray energies.)
- S. G. MALMSKOG, M. HOJEBERG. Ark. Fys. 35 (1968) 197 (Gamma-ray energies.)
- Z. T. VON EGIDY, O. W. B. SCHULT, W. KALLINGER, D. BREITIG, R. P. SHARMA, H. R. KOCH, H. A. BAADER. Naturforsch. 26a (1971) 1092 (Gamma-ray energies.)
- M. DE BRUIN, P. J. M. KORTHOVEN. J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies.)
- T. VALKEAPAA, A. SIIVOLA, G. GRAEFFE. Phys. Fenn. 9 (1973) 43 (Gamma-ray energies and emission probabilities.)

- W. P. POENITZ, D. I. SMITH. United States Dept. of Energy, Washington D. C., Rep. ANL/NDM-42 (March 1978) (1978)
- (Gamma-ray emission probabilities.)
- R. J. GEHRKE, R. G. HELMER, C. W. REICH. Nucl. Sci. Eng. 70 (1979) 298 (X- and gamma-ray emission probabilities.)
- R. VANINBROUKX, G. BORTELS, B. DENECKE. Int.J.Appl.Radiat.Isotop. 35 (1984) 905 (X- and gamma-ray emission probabilities.)
- M. J. DE BETTENCOURT. Thesis, Univ. Paris-Sud (Orsay) (1985) (Tentative gamma-rays.)
- K. S. KRANE. Nucl. Phys. A459 (1986) 1 (Multipolarities, E2 admixtures.)
- R. T. JONES, J. S. MERRITT, A. OKAZAKI. Nucl. Sci. Eng. 93 (1986) 171 (Half-life.)
- S. A. WOODS, P. CHRISTMAS, P. CROSS, S. M. JUDGE, W. GELLETLY. Nucl. Instrum. Meth. Phys. Res. A264 (1988) 333
- (Gamma-ray energies.)
- E. BROWNE, B. SUR, E. B. NORMAN. Nucl. Phys. A501 (1989) 477
- (Experimental ICC, gamma multipolarities, beta transition probabilities.)
- Y. A. AKOVALI. Nucl. Data Sheets 59 (1990) 263
- (A=233 NDS evaluation, gamma-ray multipolarities, E2 admixtures.)
 M. C. KOUASSI, C. ARDISSON-MARSOL, G. ARDISSON. J. Phys. (London) G16 (1990) 1881
- (Level scheme, multipolarities, absolute KX-ray emission probability and gamma-ray energies.)
 J. PEARCEY, S. A. WOODS, P. CHRISTMAS. Nucl. Instrum. Meth. Phys. Res. A294 (1990) 516 (E2 gamma-ray admixtures.)
- M. U. RAJPUT, T. D. MAC MAHON. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 298 (Evaluation technique.)
- YU. S. POPOV, G. A. TIMOFEEV. Radiokhimiya (in Russian) 41 (1999) 27 (Half-life.)
- K. USMAN, T. D. MACMAHON. Appl. Radiat. Isot. 52 (2000) 475 (Half-life.)
- S. A. WOODS, D. H. WOODS, P. DE LAVISON, S. M. JEROME, J. L. MAKEPEACE, M. J. WOODS, L. J. HUSBAND,
 S. LINEHAM. Appl. Radiat. Isot. 52 (2000) 475 (Gamma-ray emission probabilities.)
- V. P. CHECHEV, A. G. EGOROV. Appl. Radiat. Isot. 52 (2000) 601 (Evaluation technique.)
- D. SMITH, M. I. WOODS, D. H. WOODS. Preliminary Report, NPL, Teddington, 2000 (2000) (Gamma-ray and X-ray emission probabilities.)
- U. SCHÖTZIG, E. SCHÖNFELD, H.JANSSEN. Appl. Radiat. Isot. 52 (2000) 883 (Gamma-ray and X-ray emission probabilities.)
- A. LUCA, M. ETCHEVERRY, J. MOREL. Appl. Radiat. Isot. 52 (2000) 481 (Gamma-ray emission probabilities.)
- A. LUCA, S. SEPMAN, K. IAKOVLEV, G. SHCHUKIN, M. ETCHEVERRY, J. MOREL. Appl. Radiat. Isot. 56 (2002) 173
- (Gamma-ray and X-ray emission probabilities.)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- G. Shchukin, K. Iakovlev, J. Morel. Appl. Radiat. Isot. 60 (2004) 239 (Gamma-ray emission probabilities.)
- X. HUANG, P. LIU, B. WANG. Appl. Radiat. Isot. 62 (2005) 797 (Evaluation of 233Pa Decay Data.)
- B. SINGH, J. K. TULI. Nucl. Data Sheets 105 (2005) 109
- (A=233 NDS evaluation, 233U level energies, gamma-ray energies and multipolarities.)
- V. P. CHECHEV, N. K. KUZMENKO. Appl. Radiat. Isot. 64 (2006) 1403 (233Pa decay data evaluation.)
- H. HARADA, S. NAKAMURA, M. OHTA, T. FUJII, H. YAMANA. J. Nucl. Sci. Technol. (Tokyo) 43 (2006) 1289 (Gamma-ray emission probabilities.)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, AND C. W. NESTOR JR.. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC.)
- D. J. DEVRIES, H. C. GRIFFIN. Appl. Radiat. Isotop. 66 (2008) 1999 (Uncertainties of LX-ray absolute emission probabilities.)

KRI /V. P. Chechev and N. K. Kuzmenko

1 Decay Scheme

Th-234 decays 100 % by beta minus particle emissions, mainly to Pa-234m, the 1,159 min half-life metastable state of Pa-234.

Le thorium 234 se désintègre 100 % par émissions bêta, principalement vers le niveau métastable du protactinium 234 de 1,159 min de période.

2 Nuclear Data

$T_{1/2}(^{234}\text{Th})$:	$24,\!10$	(3)	d
$T_{1/2}(^{234}\text{Pa})$:	6,70	(5)	h
$Q^{-}(^{234}\text{Th})$:	272	(10)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{c} 85 \ (10) \\ 95 \ (10) \\ 105 \ (10) \\ 106 \ (10) \\ 198 \ (10) \end{array}$	$\begin{array}{c} 1,6 \ (6) \\ 0,016 \ (5) \\ 6,5 \ (7) \\ 14,1 \ (12) \\ 77,8 \ (15) \end{array}$	Allowed 1st Forbidden Allowed 1st Forbidden 1st Forbidden	$7 \\ 9,1 \\ 6,7 \\ 6,3 \\ 6,4$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{7,5}({ m Pa}) \ \gamma_{3,2}({ m Pa}) \ \gamma_{4,3}({ m Pa}) \ \gamma_{5,3}({ m Pa})$	$\begin{array}{c} 20,01 \ (2) \\ 29,50 \ (2) \\ 62,88 \ (2) \\ 63,30 \ (2) \end{array}$	$\begin{array}{c} 1,2 \ (6) \\ 5,4 \ (6) \\ 0,43 \ (11) \\ 5,27 \ (11) \end{array}$	M1+E2 E2 M1+E2 E1		$\begin{array}{c} 70 \ (40) \\ 3210 \ (50) \\ 19 \ (4) \\ 0,305 \ (5) \end{array}$	$\begin{array}{c} 124 \ (21) \\ 880 \ (13) \\ 4,8 \ (9) \\ 0,0749 \ (11) \end{array}$	$\begin{array}{c} 240 \ (70) \\ 4390 \ (70) \\ 25 \ (5) \\ 0,405 \ (6) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{1,0}(Pa)$ $\gamma_{7,3}(Pa)$ $\gamma_{4,2}(Pa)$ $\gamma_{5,2}(Pa)$ $\gamma_{6,2}(Pa)$ $\gamma_{7,3}(Pa)$	$\begin{array}{c} 73,92 (2) \\ 83,31 (5) \\ 92,38 (1) \\ 92,80 (2) \\ 103,35 (10) \\ 112 \ 81 \ (5) \end{array}$	$\begin{array}{c} 0,154 \ (17) \\ 0,073 \ (6) \\ 13,7 \ (12) \\ 2,47 \ (22) \\ 0,0154 \ (48) \\ 0.264 \ (40) \end{array}$	M1+E2 E1 M1 E1 M1 E1	0.21 (13)	7,96 (25) 0,1475 (21) 3,98 (6) 0,1110 (16) 2,88 (5) 0,0666 (10) 0,066 (10) 0,066 ($\begin{array}{c} 1,94 \ (7) \\ 0,0361 \ (5) \\ 0,960 \ (14) \\ 0,0271 \ (4) \\ 0,694 \ (10) \\ 0.01620 \ (23) \end{array}$	$10,6 (4) \\ 0,196 (3) \\ 5,27 (8) \\ 0,1472 (21) \\ 3,81 (6) \\ 0,23 (14)$

3 Atomic Data

3.1 Pa

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	$0,\!488$	(18)
n_{KL}	:	0,795	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_K				
11	$K\alpha_2$	92,288		62,14
	$K\alpha_1$	95,869		100
	$\mathrm{K}eta_3$	$107,\!595$	}	
	$K\beta_1$	108,422	}	
	${ m K}eta_5^{\prime\prime}$	109,072	}	$35,\!84$
	$K\beta_2$	111,405	}	
	$K\beta_4$	111,87)	12,15
	$\mathrm{KO}_{2,3}$	112,38	}	,
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	11,3676		
	$L\alpha$	$13,\!1215 - 13,\!2887$		
	$\mathrm{L}\eta$	14,9488		
	$\mathrm{L}eta$	$15,\!3584 - 17,\!6655$		
	${ m L}\gamma$	$18,\!9396 - 20,\!1126$		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY	70,081 - 78,822 85,989 - 95,858 101,87 - 112,59	$100 \\ 59,2 \\ 8,76$
Auger L	$5,\!9-21,\!6$	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pa)	5,9 - 21,6	7,7 (6)
e _{AK}	(Pa) KLL KLX KXY	70,081 - 78,822 85,989 - 95,858 101,87 - 112,59	0,0014 (9) } } }
$\begin{array}{c} \mathrm{eC}_{3,2} \ \mathrm{L} \\ \mathrm{eC}_{7,5} \ \mathrm{M} \\ \mathrm{eC}_{7,5} \ \mathrm{N} \\ \mathrm{eC}_{3,2} \ \mathrm{M} \\ \mathrm{eC}_{3,2} \ \mathrm{N} \\ \mathrm{eC}_{3,2} \ \mathrm{N} \\ \mathrm{eC}_{4,3} \ \mathrm{L} \\ \mathrm{eC}_{5,3} \ \mathrm{L} \\ \mathrm{eC}_{5,3} \ \mathrm{L} \\ \mathrm{eC}_{5,3} \ \mathrm{M} \\ \mathrm{eC}_{4,2} \ \mathrm{L} \\ \mathrm{eC}_{5,2} \ \mathrm{L} \\ \mathrm{eC}_{4,2} \ \mathrm{N} \\ \mathrm{eC}_{4,2} \ \mathrm{N} \\ \mathrm{eC}_{4,2} \ \mathrm{N} \\ \end{array}$	 (Pa) (Pa)<td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td>$\begin{array}{c} 3,95 \ (45) \\ 0,63 \ (28) \\ 0,17 \ (8) \\ 1,08 \ (12) \\ 0,292 \ (34) \\ 0,31 \ (8) \\ 1,144 \ (31) \\ 0,106 \ (12) \\ 0,281 \ (7) \\ 8,7 \ (8) \\ 0,239 \ (21) \\ 2,09 \ (18) \\ 0,56 \ (5) \\ 1,6 \ (6) \end{array}$</td>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 3,95 \ (45) \\ 0,63 \ (28) \\ 0,17 \ (8) \\ 1,08 \ (12) \\ 0,292 \ (34) \\ 0,31 \ (8) \\ 1,144 \ (31) \\ 0,106 \ (12) \\ 0,281 \ (7) \\ 8,7 \ (8) \\ 0,239 \ (21) \\ 2,09 \ (18) \\ 0,56 \ (5) \\ 1,6 \ (6) \end{array}$
$egin{array}{c} eta_{0,6}^- \ eta_{0,6}^- \ eta_{0,6}^- \end{array}$	max: avg:	$\begin{array}{ccc} 95 & (10) \\ 25 & (3) \end{array}$	0,016~(5)
$ \begin{array}{c} \beta_{0,5}^{-} \\ \beta_{0,5}^{-} \end{array} \\$	max: avg:	$ \begin{array}{ccc} 105 & (10) \\ 27 & (3) \end{array} $	6,5~(7)
$\begin{array}{c}\beta_{\overline{0,4}}\\\beta_{\overline{0,4}}\end{array}$	max: avg:	$\begin{array}{ccc} 106 & (10) \\ 28 & (3) \end{array}$	14,1 (12)

		Energy keV		Electrons per 100 disint.
$egin{array}{c} eta_{0,2}^- \ eta_{0,2}^- \end{array} \ eta_{0,2}^- \end{array}$	max: avg:	198 53	(10) (3)	77,8 (15)

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL XK α_2 XK α_2	(Pa) (Pa) (Pa)	11,3676 - 20,1126 92,288 95,869		7,1 (3) 0,013 (9) 0.021 (13)	} Κα
$\begin{array}{c} XK\beta_3\\ XK\beta_1\\ XK\beta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	$ 107,595 \\ 108,422 \\ 109,072 $	} } }	0,007 (5)	$\mathbf{K}' \boldsymbol{\beta}_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$111,405 \\111,87 \\112,38$	} } }	0,0025~(16)	$K' \beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{7,5}(Pa)$ $\gamma_{3,2}(Pa)$ $\gamma_{4,3}(Pa)$ $\gamma_{5,3}(Pa)$ $\gamma_{1,0}(Pa)$ $\gamma_{7,3}(Pa)$ $\gamma_{4,2}(Pa)$ $\gamma_{5,2}(Pa)$ $\gamma_{6,2}(Pa)$ $\gamma_{7,2}(Pa)$	$\begin{array}{c} 20,01 \ (2) \\ 29,50 \ (2) \\ 62,88 \ (2) \\ 63,30 \ (2) \\ 73,92 \ (2) \\ 83,31 \ (5) \\ 92,38 \ (1) \\ 92,80 \ (2) \\ 103,35 \ (10) \\ 112,81 \ (5) \end{array}$	$\begin{array}{c} 0,0051 \ (21) \\ 0,00123 \ (14) \\ 0,0164 \ (28) \\ 3,75 \ (8) \\ 0,0133 \ (14) \\ 0,061 \ (5) \\ 2,18 \ (19) \\ 2,15 \ (19) \\ 0,0032 \ (10) \\ 0,215 \ (22) \end{array}$
/··,=()	, (-)	, ()

6 Main Production Modes

 $U - 238(\alpha)$ Th - 234

7 References

- G. KIRSCH. Mitt.Ra.Inst.127,Wien.Ber.Iia 129 (1920) 309 (Half-life)
- M. CURIE, A. DEBIERNE, A.S. EVE, H. GEIGER, O. HAHN, S.C. LIND, ST. MEYER, E. RUTHERFORD, E. SCHWEID-LER. Rev. Mod. Phys. 3 (1931) 427-445 (Half-life)
- B.W. SARGENT. Can. J. Research A17 (1939) 103 (Half-life)
- G.B. KNIGHT, R.L. MACKLIN. Phys. Rev. 74 (1948) 1540-1541 (Half-life)
- J.S. GEIGER, R.L. GRAHAM, T.A. EASTWOOD. AECL-1472 PR-P-52 (1961) 26-27 (L ICC (for 29 keV and 63 keV), Gamma ray energies)
- J.-P. BRIAND. Comp. Rend. Acad. Sci. (Paris) 254 (1962) 84-86 (L ICC (for 29 keV))
- S. BJORNHOLM, O.B. NIELSEN. Nucl. Phys. 42 (1963) 642-659 (Conv. Elec. emission energies, Conv. Elec. emission probabilities, Beta emission energies)
- H. ABOU-LEILA. Comp. Rend. Acad. Sci. (Paris) 258 (1964) 5632-5635 (Half-life)
- R. FOUCHER. Bull. Acad. Sci. USSR Phys.Ser. 29 (1966) 99-100 (Multipolarities)
- HARRY W. TAYLOR. Int. J. Appl. Radiat. Isotop. 24 (1973) 593-597 (Gamma ray energies, Gamma-ray relative intensities)
- J. GODART, A. GIZON. Nucl. Phys. A217 (1973) 159-176 (Beta and Conv. Elec. emission energies and probabilities, Gamma ray energies and transitions probabilities, Multipolarities)
- T.E.SAMPSON. Nucl. Instrum. Methods 111 (1973) 209-211 (Gamma ray energies, Gamma-ray relative intensities)
- Y.Y.CHU, G. SCHARFF-GOLDHABER. Phys. Rev. C 17 (1978) 1507-1509 (Gamma-ray relative intensities)
- MICHAEL H. MOMENI. Nucl. Instrum. Methods 193 (1982) 185-190 (Gamma ray energies, Gamma-ray emission probabilities)
- H.L. SCOTT, K.W. MARLOW. Nucl. Instrum. Methods A 286 (1990) 549-555 (Gamma-ray emission probabilities)
- N. COURSOL, F. LAGOUTINE, B. DUCHEMIN. Nucl. Instrum. Methods A 286 (1990) 589-594
- (Half-life, Beta emission probabilities, Gamma-ray emission probabilities, X-ray emission probabilities)
- G.A. SUTTON, S.T. NAPIER, M. JOHN, A. TAYLOR. The Science of the Total Environment 130/131 (1993) 393-401 (Gamma-ray emission probabilities)
- I. ADSLEY, J.S. BACKHOUSE, A.L. NICHOLS, J. TOOLE. Appl. Rad. Isotopes 49 (1998) 1337-1344 (Gamma-ray emission probabilities)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 337-676 (Q)
- S. ABOUSAHL, P. VAN BELLE, B. LYNCH, H. OTTMAR. Nucl. Instrum. Methods A 517 (2004) 211-218 (Gamma-ray emission probabilities)
- F.S. AL-SALEH, AL-J.H. AL-MUKREN, M.A. FAROUK. Nucl. Instrum. Methods A 568 (2006) 734-738 (Gamma-ray emission probabilities)
- E. BROWNE, J.K. TULI. Nucl. Data Sheets 108 (2007) 681-772 (Multipolarities, Mixing ratio, Spin and Parity, Gamma-ray emission probabilities, Gamma ray energies, Beta emission energies)

0

1 Decay Scheme

U-235 disintegrates by alpha emission to levels in Th-231. The spontaneous fission branching ratio is 7,0 (2) E-9 %.

L'uranium 235 se désintègre par émission alpha vers des niveaux du thorium 231. Le pourcentage de fission spontanée est de 7,0 (2) E-9 %.

2 Nuclear Data

$T_{1/2}(^{235}\mathrm{U})$:	704	(1)	$10^{6} {\rm a}$
$T_{1/2}(^{231}\text{Th})$:	$25,\!52$	(1)	h
$Q^{\dot{lpha}}(^{235}{ m U})$:	$4678,\!3$	(7)	keV

2.1 α Transitions

	$\frac{\rm Energy}{\rm keV}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	\mathbf{F}
$\alpha_{0,22}$	4045 (5)	$\approx 0,0011$	79
$lpha_{0,21} \ lpha_{0,20}$	4082,7(8) 4148,1(7)	0,0396 (10) 0,016 (12)	4,86 46
$lpha_{0,19}$ $lpha_{0,18}$	4224 (5) 4287,7 (19) 4202.6 (7)	0,294 (13) 5,95 (12) 0.01732 (12)	11,0 2 714
$\alpha_{0,17}$ $\alpha_{0,16}$ $\alpha_{0,15}$	$\begin{array}{c} 4292,0(7)\\ 4300,8(7)\\ 4322(5)\end{array}$	$\begin{array}{c} 0,01732 (12) \\ 0,122 (6) \\ 0.069 (10) \end{array}$	119 343
$lpha_{0,14} \ lpha_{0,13}$	$ \begin{array}{c} 4340 (5) \\ 4353,4 (7) \end{array} $	$\begin{array}{c} 0,22 \ (3) \\ 0,0329 \ (5) \end{array}$	$150 \\ 1185$
$lpha_{0,12} lpha_{0,11}$	$\begin{array}{c} 4361,1 \ (7) \\ 4376,6 \ (7) \end{array}$	$0,065 (13) \\ 0,00959 (13)$	$\begin{array}{c} 690 \\ 6260 \end{array}$
$lpha_{0,10} lpha_{0,9}$	$\begin{array}{c} 4397 \ (4) \\ 4402,8 \ (7) \\ 4402,4 \ (7) \end{array}$	$3,33 (6) \\ 0,405 (13) \\ 0,202 (21)$	28,1 241
$lpha_{0,8} \ lpha_{0,7}$	$\begin{array}{c} 4437,4\ (7)\\ 4441,7\ (20)\end{array}$	$\begin{array}{c} 0,206 \ (21) \\ 18,80 \ (13) \end{array}$	$890 \\ 10,47$

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	Probability × 100	F
$lpha_{0,6} \ lpha_{0,5} \ lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4457,0\ (7)\\ 4474,0\ (13)\\ 4491,3\ (5)\\ 4514,7\ (40)\\ 4580,4\ (7)\\ 4635,0\ (4)\\ 4676,0\ (13) \end{array}$	$\begin{array}{c} 0,106 \ (16) \\ 57,19 \ (20) \\ 3,01 \ (16) \\ 0,236 \ (25) \\ 1,28 \ (5) \\ 3,79 \ (6) \\ 4,74 \ (6) \end{array}$	$2460 \\ 6,08 \\ 164 \\ 3170 \\ 1856 \\ 1586 \\ 2571$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	α_T
$\gamma_{5.4}(Th)$	19.56(5)	60(1)	[M1,E2]		6000 (90)	3000 (45)	10000 (150)
$\gamma_{7.5}(\mathrm{Th})$	31,61(5)	11,4(40)	M1+E2		491	131,7	667
$\gamma_{10.7}(Th)$	41.4 (3)	1.5(6)	[M1]		37.7(10)	9.08(24)	49.9(13)
$\gamma_{1,0}(\mathrm{Th})$	42,01(6)	24,7(43)	M1+E2		325(22)	88 (6)	440 (30)
$\gamma_{7,4}(Th)$	51,21(4)	9,4(19)	[E2]		201 (3)	54,9 (8)	274(4)
$\gamma_{9,6}(\mathrm{Th})$	54,1(1)	0,24	[E2]		154(3)	42,1(7)	210(4)
$\gamma_{2,1}(\mathrm{Th})$	54,25(5)	2,1	[M1+E2]		52,7(20)	14,0(6)	71(3)
$\gamma_{19,18}(\mathrm{Th})$	64,45(5)	0,26	[M1]		10,28 (15)	2,47(4)	13,6(2)
$\gamma_{10,5}({ m Th})$	72,7(2)	1,86	M1+E2		11,4(19)	2,9(6)	15(3)
$\gamma_{7,3}(\mathrm{Th})$	74,94(3)	0,064~(8)	[E1]		0,190 (3)	0,0464~(7)	0,252~(4)
$\gamma_{12,6}({ m Th})$	95,7						
$\gamma_{2,0}(\mathrm{Th})$	96,13(2)	$1,33\ (16)$	[E2]		9,93~(14)	2,73 (4)	$13,58\ (19)$
$\gamma_{14,7}({ m Th})$	97(4)	0,22~(7)	[E2]		9,5(21)	2,6(6)	13(3)
$\gamma_{5,2}(\mathrm{Th})$	109,19(7)	1,81(14)	[E1]		0,0704~(10)	0,01708~(24)	0,0932~(14)
$\gamma_{10,3}({ m Th})$	$115,\!48$ (6)	0,040~(13)	[E1]	0,267~(4)	0,0609 (9)	0,01475~(21)	0,348~(5)
$\gamma_{3,1}(\mathrm{Th})$	120,35(5)	0,31	[M1]	8,73~(13)	$1,678\ (24)$	0,404~(6)	10,95~(16)
$\gamma_{16,8}({ m Th})$	136,62 (5)	0,103	[M1]	6,11 (9)	$1,168\ (17)$	0,281 (4)	$7,66\ (11)$
$\gamma_{7,2}(\mathrm{Th})$	140,77(2)	0,244~(12)	[E1]	0,1696~(24)	0,0364~(5)	0,00879 (13)	0,218 (3)
$\gamma_{20,18}(\mathrm{Th})$	142,40(5)	0,018	[E2]	0,253~(4)	1,627 (23)	0,446~(7)	2,48(4)
$\gamma_{4,1}(\mathrm{Th})$	143,768(3)	13,20 (8)	${ m E1}$	0,1615~(23)	0,0344~(5)	0,00833 (12)	0,207~(3)
$\gamma_{18,8}({ m Th})$	147						
$\gamma_{18,7}(\mathrm{Th})$	150,936 (15)	0,61 (20)	[M1]	4,60(7)	0,877 (13)	0,211 (3)	5,76(8)
$\gamma_{5,1}(\mathrm{Th})$	163,358 (3)	5,855(36)	(E1)	0,1197(17)	0,0248(4)	0,00599 (9)	0,1526 (22)
$\gamma_{16,5}(\mathrm{Th})$	173(1)	0,007~(6)	[E1]	0,1047~(21)	0,0215 (5)	0,00518 (11)	0,133~(3)
$\gamma_{10,2}(\mathrm{Th})$	181,87						
$\gamma_{18,5}(Th)$	182,63(5)	1,70(22)	[M1]	2,69(4)	0,510(8)	0,1226 (18)	3,36(5)
$\gamma_{4,0}(Th)$	185,722 (4)	63,52 (35)	E1	0,0887(13)	0,0179(3)	0,00433(6)	0,1124(16)
$\gamma_{7,1}(Th)$	194,947 (8)	0,693(11)	[E1]	0,0792(11)	0,01589 (23)	0,00383 (6)	0,1002(14)
$\gamma_{8,1}(Th)$	198,902(15)	0,131(7)	M1	2,11(3)	0,401(6)	0,0963(14)	2,64(4)
$\gamma_{18,4}(Th)$	202,12(1)	3,81 (8)	[M1]	2,02(3)	0,383(6)	0,0920 (13)	2,53(4)
$\gamma_{5,0}(Th)$	205,316(4)	5,465(33)	(E1)	0,0703(10)	0,01397(20)	0,00336(5)	0,0887(13)
$\gamma_{19,7}(Th)$	215,28(4)	0,090(9)	[M1]	1,693(24)	0,321(5)	0,0770(11)	2,12(3)
$\gamma_{6,0}(Th)$	221,386(14)	0,349(15)	M1	1,566(22)	0,296(5)	0,0712(10)	1,96(3)
$\gamma_{13,2}(Th)$	228,76(5)	0,021	M1	1,429(20)	0,270(4)	0,0649(9)	1,79(3)
$\gamma_{9,1}(Th)$	233,504(20)	0,102(11)	M1	1,350(19)	0,255(4)	0,0613(9)	1,687(24)
$\gamma_{8,0}(Th)$	240,88(4)	0,181(19)	$M1(\pm E2)$	1,14(21)	0,228(13)	0,0553(21)	1,45(22)
$\gamma_{19,5}(Th)$	246,865(20)	0,134(7)	[M1]	1,157(17)	0,218(3)	0,0525(8)	1,445(21)
$\gamma_{15,2}(Th)$	255,395(20)	0,017	M1	1,052 (15)	0,199(3)	0,0477(7)	1,315(19)
$\gamma_{19,4}(Th)$	266,47 (4)	0,0097(7)	[E2]	0,0921 (13)	0,1121(16)	0,0303(5)	0,245(4)
$\gamma_{12,1}(Th)$	275,35(15)	0,094 (11)	M1+E2	0,65(5)	0,144(5)	0,0355(10)	0,84(6)
$\gamma_{9,0}(Th)$	275,49 (6)	0,065	M1(+E2)	0,81 (11)	0,157 (9)	0,0379 (18)	1,02(12)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{16,2}(\mathrm{Th})$	281,42 (5)	0,013	M1	0,804 (12)	0,1515(22)	0,0364(5)	1,005 (14)
$\gamma_{13,1}(Th)$	282,94(5)	0,013	[M1]	0,792(12)	0,1493(21)	0,0359(5)	0,990(14)
$\gamma_{17,2}({\rm Th})$	289,56(4)	0,0142	[M1]	0,743(11)	0,140(2)	0,0336(5)	0,929(13)
$\gamma_{19,3}(\mathrm{Th})$	291,2						
$\gamma_{18,2}(Th)$	291,71(3)	0,042~(6)	[E1]	0,0317(5)	0,00598 (9)	0,001433 (20)	0,0396~(6)
$\gamma_{11,0}(Th)$	301,7(1)	0,01	M1	0,664(10)	0,1249(18)	0,0300(5)	0,829(12)
$\gamma_{15,1}(\mathrm{Th})$	310,69(6)	0,011	(E2)	0,068(1)	0,0616 (9)	0,01650(24)	0,1517(22)
$\gamma_{12,0}(\mathrm{Th})$	317,15(8)	0,0019	M1	0,579 (9)	0,1088 (16)	0,0261 (4)	0,723(11)
$\gamma_{17,1}(\mathrm{Th})$	343,6(2)	0,0032					
$\gamma_{18,1}(\mathrm{Th})$	345,93(3)	0,041~(6)	[E1]	0,0219 (3)	0,00403~(6)	0,000964 (14)	0,0272 (4)
$\gamma_{15,0}(\mathrm{Th})$	350(5)	0,009	M1	0,442 (19)	0,083(4)	0,0199 (9)	0,552~(24)
$\gamma_{19,2}(\mathrm{Th})$	$356,\!05(5)$	0,0054	[E1]	0,0206 (3)	0,00377~(6)	0,000903 (13)	0,0255~(4)
$\gamma_{18,0}(\mathrm{Th})$	387,84(3)	0,041~(6)	[E1]	0,01717 (24)	0,00312 (5)	$0,000745\ (11)$	0,0213 (3)
$\gamma_{21,5}(\mathrm{Th})$	390,27(20)	0,040(1)					
$\gamma_{19,1}(\mathrm{Th})$	410,29 (4)	0,0033	[E1]	0,01527 (22)	0,00275 (4)	0,000657 (10)	0,0189(3)
$\gamma_{22,4}(\mathrm{Th})$	448,40(6)	0,0011					

3 Atomic Data

3.1 Th

ω_K	:	0,969	(4)
$\bar{\omega}_L$:	$0,\!476$	(18)
n_{KL}	:	0,797	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X _K				
	$K\alpha_2$	89,954		61,82
	$K\alpha_1$	$93,\!351$		100
	${ m K}eta_3$	104,819	}	
	$K\beta_1$	$105,\!604$	}	
	$\mathrm{K}eta_5''$	$106,\!239$	}	$35,\!58$
	$K\beta_2$	108,509	}	
	$K\beta_4$	108,955	}	11,99
	$\mathrm{KO}_{2,3}$	109,442	}	,
$\mathbf{X}_{\mathbf{L}}$				
1	$\mathrm{L}\ell$	11,1177		
	$L\alpha$	$12,\!8085 - 12,\!967$		
	$\mathrm{L}\eta$	14,509		
	$\mathrm{L}eta$	$14,\!972 - 17,\!1383$		
	$\mathrm{L}\gamma$	18,3633 - 19,5043		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	68,406 - 76,745 83,857 - 93,345 99,29 - 109,64	$100 \\ 58,8 \\ 8,64$
Auger L	$5,\!8-20,\!3$	

4 α Emissions

	Energy keV	Probability × 100
$\alpha_{0,22}$	3976~(5)	$\approx 0,0011$
$\alpha_{0,21}$	4013,2 (8)	0,0396~(10)
$\alpha_{0,20}$	4077,5(7)	0,016~(12)
$\alpha_{0,19}$	4152(5)	0,294~(13)
$\alpha_{0,18}$	4214,7(19)	5,95~(12)
$\alpha_{0,17}$	4219,5(7)	0,01732 (12)
$\alpha_{0,16}$	4227,6(7)	0,122~(6)
$\alpha_{0,15}$	4248(5)	0,069(10)
$\alpha_{0,14}$	4266(5)	0,22~(3)
$\alpha_{0,13}$	4279,3(7)	0,0329~(5)
$\alpha_{0,12}$	4286,9(7)	0,065~(13)
$\alpha_{0,11}$	4302,1 (7)	0,00959 (13)
$\alpha_{0,10}$	4322~(4)	$3,\!33~(6)$
$\alpha_{0,9}$	4327,9(7)	0,405~(13)
$\alpha_{0,8}$	4361,9(7)	0,206~(21)
$\alpha_{0,7}$	4366,1 (20)	18,80(13)
$\alpha_{0,6}$	4381,1(7)	0,106 (16)
$\alpha_{0,5}$	4397,8(13)	57,19(20)
$\alpha_{0,4}$	4414,9(5)	3,01~(16)
$\alpha_{0,3}$	4437,9 (40)	0,236~(25)
$\alpha_{0,2}$	4502,4 (7)	1,28(5)
$\alpha_{0,1}$	4556,0 (4)	3,79(6)
$\alpha_{0,0}$	4596,4 (13)	4,74(6)

5 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Th)	5,8 - 20,3	24 (3)
e_{AK}	(Th)		0,381 (9)
	KLĹ	68,406 - $76,745$	}
	KLX	83,857 - 93,345	}
	KXY	99,29 - 109,64	}
$ec_{7,5 L}$	(Th)	11,117 - 15,300	8,3 (29)
$ec_{10,7 L}$	(Th)	20,6 - $24,8$	1,09~(42)
$ec_{1,0 L}$	(Th)	$21,\!484$ - $25,\!700$	18,2 (32)
$ec_{7,5}$ M	(Th)	26,407 - $28,257$	2,2~(8)
$ec_{7,5 N}$	(Th)	30,260 - $31,254$	$0,\!60~(23)$
$ec_{7,4 L}$	(Th)	30,709 - $34,900$	6,8(14)
$ec_{9,6 L}$	(Th)	33,602 - 37,800	0,1771 (34)
$ec_{10,7 M}$	(Th)	35,9 - $37,8$	0,26~(10)
$ec_{1,0 M}$	(Th)	36,774 - $38,624$	4,9(9)
ec _{10,7 N}	(Th)	39,8 - 40,8	0,070~(27)
$ec_{1,0 N}$	(Th)	$40,\!630$ - $41,\!621$	1,32~(23)
$ec_{19,18}$ L	(Th)	$43,\!87$ - $48,\!00$	$0,\!1850\ (27)$
$ec_{7,4}$ M	(Th)	45,999 - $47,849$	$1,\!87\ (39)$
$ec_{7,4 N}$	(Th)	49,850 - 50,846	0,5~(1)
$ec_{2,0 L}$	(Th)	75,66 - 79,80	0,90~(11)
ес _{4,0 К}	(Th)	76,072 (4)	$5,\!06\ (8)$
$ec_{2,0 M}$	(Th)	90,95 - $92,80$	$0,\!248$ (30)
$ec_{2,0 N}$	(Th)	94,8 - $95,8$	0,067~(8)
$ec_{4,0}$ L	(Th)	$165,\!25$ - $169,\!40$	1,020 (18)
$ec_{4,0 M}$	(Th)	180,54 - $182,39$	0,2468 (37)
$ec_{4,0 N}$	(Th)	184,390 - 185,387	0,0651 (10)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	$11,\!1177 - 19,\!5043$		22 (3)	
$\begin{array}{c} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89,954 \\93,351$		$3,56\ (9)\ 5,76\ (14)$	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Th}) \\ (\mathrm{Th}) \\ (\mathrm{Th}) \end{array}$	$104,\!819\\105,\!604\\106,\!239$	} } }	2,06 (5)	$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	108,509 108,955 109,442	} } }	0,685 (18)	$\mathrm{K}'eta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{7,5}(\mathrm{Th})$	$31,\!60$ (5)	0,017~(6)
$\gamma_{10,7}(\mathrm{Th})$	41,4(3)	0,029~(11)
$\gamma_{1,0}(\mathrm{Th})$	42,01~(6)	0,056~(9)
$\gamma_{7,4}(\mathrm{Th})$	51,21 (4)	0,034~(7)
$\gamma_{9,6}(Th)$	54,1(1)	0,00115
$\gamma_{2,1}(Th)$	$54,\!25~(5)$	0,0285
$\gamma_{19,18}(\mathrm{Th})$	$64,\!45~(5)$	0,018
$\gamma_{10,5}(Th)$	72,7(2)	$0,\!116$
$\gamma_{7,3}(\mathrm{Th})$	74,94(3)	0,051~(6)
$\gamma_{2,0}(Th)$	96,09~(2)	0,091~(11)
$\gamma_{14,7}(Th)$	97(4)	0,016~(4)
$\gamma_{5,2}(Th)$	109, 19 (7)	$1,\!66\ (13)$
$\gamma_{10,3}(Th)$	$115,\!45$ (5)	0,03~(1)
$\gamma_{3,1}(\mathrm{Th})$	$120,\!35$ (5)	0,026
$\gamma_{16,8}(\mathrm{Th})$	$136{,}55\ (5)$	0,012
$\gamma_{7,2}(\mathrm{Th})$	140,76(2)	0,20(1)
$\gamma_{20,18}(Th)$	142,40 (5)	0,0051
$\gamma_{4,1}(\mathrm{Th})$	143,767 (3)	10,94~(6)
$\gamma_{18,7}(\mathrm{Th})$	$150,936\ (15)$	$0,\!09~(3)$
$\gamma_{5,1}(\mathrm{Th})$	163,356 (3)	$5{,}08~(3)$
$\gamma_{16,5}(\mathrm{Th})$	173(1)	0,006~(5)
$\gamma_{18,5}(\mathrm{Th})$	$182,\!62$ (5)	0,39~(5)
$\gamma_{4,0}(\mathrm{Th})$	185,720 (4)	57,1~(3)
$\gamma_{7,1}(\mathrm{Th})$	194,940 (6)	0,63~(1)

	Energy	Photons
	keV	per 100 disint.
$\gamma_{8,1}(\mathrm{Th})$	198,894 (14)	0,036~(2)
$\gamma_{18,4}(\mathrm{Th})$	202,12 (1)	1,08~(2)
$\gamma_{5,0}(\mathrm{Th})$	205,316 (4)	5,02~(3)
$\gamma_{19,7}(\mathrm{Th})$	215,28 (4)	0,029 (3)
$\gamma_{6,0}(\mathrm{Th})$	221,386(14)	$0,\!118\ (5)$
$\gamma_{13,2}(\mathrm{Th})$	228,76 (5)	0,0074
$\gamma_{9,1}(\mathrm{Th})$	233,50(2)	0,038~(4)
$\gamma_{8,0}(\mathrm{Th})$	240,88 (4)	0,074~(4)
$\gamma_{19,5}(\mathrm{Th})$	246,83(2)	0,055~(3)
$\gamma_{15,2}(\mathrm{Th})$	255,365 (10)	0,0074
$\gamma_{19,4}(\mathrm{Th})$	266,47 (4)	0,0078~(6)
$\gamma_{12,1}(\mathrm{Th})$	275,35(15)	0,051~(6)
$\gamma_{9,0}(\mathrm{Th})$	275,49 (6)	0,032
$\gamma_{16,2}(\mathrm{Th})$	281,42(5)	0,0063
$\gamma_{13,1}(\mathrm{Th})$	282,94(5)	0,0063
$\gamma_{17,2}(Th)$	289,56 (4)	0,0074
$\gamma_{18,2}(\mathrm{Th})$	$291,\!65$ (3)	0,040~(6)
$\gamma_{11,0}(\mathrm{Th})$	301,7(1)	0,0053
$\gamma_{15,1}(\mathrm{Th})$	$310,\!69~(6)$	0,0094
$\gamma_{12,0}(\mathrm{Th})$	317,10(8)	0,0011
$\gamma_{17,1}(\mathrm{Th})$	343,5(2)	0,0032
$\gamma_{18,1}(\mathrm{Th})$	345,92 (3)	0,040~(6)
$\gamma_{15,0}(\mathrm{Th})$	350(5)	0,006
$\gamma_{19,2}(\mathrm{Th})$	356,03 (5)	0,0053
$\gamma_{18,0}(\mathrm{Th})$	$387,\!84\ (3)$	0,040~(6)
$\gamma_{21,5}(Th)$	390,27 (20)	0,040(1)
$\gamma_{19,1}(\mathrm{Th})$	410,29 (4)	0,0032
$\gamma_{22,4}(\mathrm{Th})$	448,40 (6)	0,0011

7 Main Production Modes

Natural source

8 References

- A.O. NIER. Phys. Rev. 55 (1939) 150 (Half-life)
- G.B. KNIGHT. Report ORNL K-663 (1950) (Half-life)
- G.J. SAYAG. Comp. Rend. Acad. Sci. (Paris) 232 (1951) 2091 (Half-life)
- E.H. Fleming Jr., A. Ghiorso, B.B. Cunningham. Phys. Rev. 88 (1952) 642 (Half-life)
- E. SEGRE. Phys. Rev. 86 (1952) 21 (Half-life)
- F.L. CLARK, H.J. SPENCER-PALMER, R.N. WOODWARD. J. S. African Chem. Inst. 10 (1957) 62 (Half-life)

- E. WURGER, K.P. MEYER, P. HUBER. Helv. Phys. Acta 30 (1957) 157 (Half-life)
- S.A. BARANOV, A.G. ZELENKOV, V.M. KULAKOV. Izvest. Akad. Nauk SSSR, Ser.Fiz. 24 (1960) 1035 (Alpha energies and intensities)
- R.C. PILGER, F.S. STEPHENS, F. ASARO, I. PERLMAN. Priv. Comm., quoted by unpublished (1962) (Alpha energies and intensities)
- A.J. DERUYTTER, I.G. SCHRODER, J.A. MOORE. Nucl. Sci. Eng. 21 (1965) 325 (Half-life)
- P.H. WHITE, G.J. WALL, F.R. PONTET. J. Nucl. Energy A/B19 (1965) 33 (Half-life)
- B.M. Aleksandrov, A.S. Krivokhatskii, L.Z. Malkin, K.A. Petrzhak. At. Energ. 20 (1966) 315 (Half-life)
- R. GAETA, M.A. VIGON. Nucl. Phys. 76 (1966) 353 (Alpha energies and intensities, gamma-ray energie)
- J.E. CLINE. IN-1448 Rev. (1971) (Gamma-ray energies and intensities)
- A.H. JAFFEY, K.F. FLYNN, L.E. GLENDENIN, W.C. BENTLEY, A.M. ESSLING. Phys. Rev. C4 (1971) 1889 (Half-life)
- L.A. KROGER, C.W. REICH, J.E. CLINE. ANCR-1016 (1971) p.75 (Gamma-ray energies and intensities)
- A.J. DERUYTTER, G. WEGENER-PENNING. Phys. Rev. C10 (1974) 383 (Half-life)
- A. GRUTTER, H.R. VON GUNTEN, V. HERRNBERGER, B. HAHN, U. MOSER, H.W. REIST, G. SLETTEN. Int. At. En. Agency, Vienna (1974) p.305 (Half-life)
- W. TEOH, R.D. CONNOR, R.H. BETTS. Nucl. Phys. A228 (1974) 432 (Gamma-ray energies and intensities)
- E. VANO, R. GAETA, L. GONZALEZ, C.F. LIANG. Nucl. Phys. A251 (1975) 225 (Gamma-ray energies and intensities)
- S.A. BARANOV, V.M. SHATINSKII, A.G. ZELENKOV, V.A. PCHELIN. Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma-ray energies and intensities)
- H.R. VON GUNTEN, A. GRUTTER, H.W. REIST, M. BAGGENSTOS. Phys. Rev. C23 (1981) 1110 (Half-life)
- R. VANINBROUKX, B. DENECKE. Nucl. Instrum. Methods 193 (1982) 191 (Gamma-ray energies and emission probabilities)
- C. Baktash, E. Der Mateosian, O.C. Kistner, A.W. Sunyar, D. Horn, C.J. Lister. Bull. Am. Phys. Soc. 28, No.1 (1983) 41
- (Gamma-ray emission probabilities)
- D.G. OLSON. Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission probabilities)
- R.G. HELMER, C.W. REICH. Int. J. Appl. Radiat. Isotop. 35 (1984) 783 (Gamma-ray energies and emission probabilities)
- A. LORENZ. IAEA Tech. Rept. Ser. No.261 (1986) (Evaluated gamma-ray energies and emission probabilities)
- A. RYTZ. At. Data Nucl. Data Tables 47 (1991) 205 (Evaluated alpha intensities)
- W.-J. LIN, G. HARBOTTLE. J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities)
- C.C. BUENO, M.D.S. SANTOS. Appl. Rad. Isotopes 44 (1993) 567 (Half-life)
- H. RUELLAN, M.C. LÉPY, M. ETCHEVERRY, J. PLAGNARD, J. MOREL. Nucl. Instrum. Methods Phys. Res. A369 (1996) 651
- (Gamma-ray and X-ray intensities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)
- H. CHATANI. Nucl. Instrum. Methods Phys. Res. A425 (1999) 277 (Gamma-ray emission probability)
- N.E. HOLDEN, D.C. HOFFMAN. Pure Applied Chim. 72 (2000) 1525 (Evaluated Half-life)

- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR, JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (calculated ICC)
- G. Audi, A.H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 129 (Q)
- E. BROWNE. Nucl. Data Sheets 98 (2003) 665 (Spin, parity, multipolarity, moxing ratios.)
- F. DAYRAS, N. CHAUVIN. Nucl. Instrum. Meth. Phys. Res. A530 (2004) 391 (Alpha energies and intensities)
- R. SCHÖN, G. WINKLER, W. KUTSCHERA. Appl. Rad. Isotopes 60 (2004) 263 (Evaluated half-life)
- E. GARCIA-TORANO, M.T. CRESPO, M. ROTETA, G. SIBBENS, S. POMMÉ, A.M. SANCHEZ, M.P.R. MONTERO, S. WOODS, A. PEARCE. Nucl. Instrum. Methods Phys. Res. A550 (2005) 581 (Alpha energies and intensities)
- F.S. AL-SALEH, AL-J.H. AL-MUKREN, M.A. FAROUK. Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray emission probabilities)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR., Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC)

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

CNDC /Huang Xiaolong, Wang Baosong

1 Decay Scheme

U-237 decays by beta minus emission to levels in Np-237. L'uranium 237 se désintègre par émission beta moins vers les niveaux du neptunium 237.

2 Nuclear Data

$T_{1/2}(^{237}\mathrm{U})$:	6,749	(16)	d
$T_{1/2}^{(237}$ Np)	:	2,144	(7)	$10^{6} {\rm a}$
$Q^{-}(^{237}{ m U})$:	$518,\! 6$	(6)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,9}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{c} 147,7 \ (6) \\ 186,2 \ (6) \\ 237,2 \ (6) \\ 251,1 \ (6) \\ 459,1 \ (6) \end{array}$	1,3 (9)2,9 (9)48,2 (25)40,9 (31)7 (4)	allowed super-allowed 1st forbidden 1st forbidden 1st forbidden unique	$7,32 \\7,28 \\6,39 \\6,54 \\8,1$

2.2 Gamma Transitions and Internal Conversion Coefficients

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{9,8}({ m Np}) \ \gamma_{6,5}({ m Np}) \ \gamma_{2,1}({ m Np}) \ \gamma_{4,3}({ m Np})$	$2,3 \\13,81 (2) \\26,34463 (24) \\27,020 (7)$	$\begin{array}{c} 0,232 \ (5) \\ 48,8 \ (25) \\ 22 \ (5) \\ 0,7 \ (4) \end{array}$	M1+0,1%E2 E1		6 (2)	$\begin{array}{c} 364 \ (13) \\ 1,6 \ (2) \end{array}$	$492 (16) \\ 8 (2)$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{1,0}(Np)$	33 19629 (22)	23(3)	M1+1 66%E2		131 (17)	33(5)	175(24)
$\gamma_{1,0}(\mathbf{Np})$	38.54(3)	0.9(9)	M1+15%E2		210(160)	60(50)	280(210)
$\gamma_{3,1}(Np)$	42.704(5)	0.65	M1 + 1.66% E2		56(7)	13.9(19)	75(9)
$\gamma_{4,2}(Np)$	43,420(3)	4,3(7)	M1+16,8%E2		132(17)	35(5)	180 (23)
$\gamma_{7,6}(Np)$	51,01(3)	0,596(25)	$\mathbf{E1}$		0,565(12)	0,140(3)	0,753(15)
$\gamma_{2,0}(Np)$	59,54092(10)	73,7 (31)	${ m E1}$		0,84(6)	0,226(7)	1,16 (7)
$\gamma_{7,5}(Np)$	64,83 (2)	1,800(26)	E1		0,301(6)	0,0744 (15)	0,400(8)
$\gamma_{4,1}(Np)$	69,76 (3)	0,0013(3)	(E1)		0,248(5)	0,0612 (12)	0,330(7)
$\gamma_{3,0}(\mathrm{Np})$	75,899 (5)	0,05	(E2)		38,9(8)	10,8(2)	53,4(11)
$\gamma_{4,0}(\mathrm{Np})$	102,959 (3)	0,0072 (10)	$\mathbf{E1}$		0,0894 (18)	0,0219 (4)	0,119(3)
$\gamma_{(-1,1)}(Np)$	114,09(5)						
$\gamma_{5,4}(\mathrm{Np})$	164, 61(2)	5,02(11)	E2	0,195~(4)	1,095~(20)	0,304~(6)	1,70(4)
$\gamma_{5,2}(\mathrm{Np})$	208,00(1)	84,8(19)	M1+2,4%E2	2,35(5)	0,473~(10)	0,115~(3)	2,98(7)
$\gamma_{6,2}(\mathrm{Np})$	221,80(4)	$0,0316\ (13)$	E2	0,130(3)	0,304~(6)	0,0839 (17)	0,547(11)
$\gamma_{5,1}(\mathrm{Np})$	234,40 (4)	0,189(8)	M2	5,560(12)	1,95~(4)	0,511 (10)	8,24 (16)
$\gamma_{5,0}(\mathrm{Np})$	267,556(12)	1,5(4)	E1+19,4%M2	0,74(4)	0,238~(12)	0,062 (3)	1,06~(6)
$\gamma_{8,3}(\mathrm{Np})$	292,77~(6)	0,0030 (9)	(E2)	$0,0796\ (16)$	0,0991 (19)	0,0270 (6)	0,215~(4)
$\gamma_{8,2}(\mathrm{Np})$	309,1(3)	0,00028	(E1)	0,0300~(6)	0,00585 (12)	0,00143 (3)	0,0377~(8)
$\gamma_{7,0}(\mathrm{Np})$	332,376(16)	1,374(19)	E2	0,0631 (12)	0,0611 (12)	0,0164~(4)	0,146(3)
$\gamma_{8,1}(Np)$	335,38(4)	0,162~(9)	M1+17,5%E2	0,54(7)	0,113~(8)	0,0278 (17)	$0,\!69~(8)$
$\gamma_{9,1}(\mathrm{Np})$	337,7~(2)	0,0101~(6)	(E2)	0,0612~(12)	0,0575~(12)	0,0157~(3)	0,139(3)
$\gamma_{(-1,2)}(Np)$	$340,\!45$	0,0016 (3)					
$\gamma_{8,0}(\mathrm{Np})$	368,602 (20)	0,0675~(28)	M1(+E2)	0,494~(10)	0,0963~(20)	0,0233 (5)	0,622~(13)
$\gamma_{9,0}(\mathrm{Np})$	370,928 (23)	0,167~(8)	M1+15,6%E2	0,42~(6)	0,086~(8)	0,0211 (17)	0,53~(7)

3 Atomic Data

3.1 Np

ω_K	:	0,971	(4)
$\bar{\omega}_L$:	0,511	(20)
n_{KL}	:	0,791	(5)

3.1.1 X Radiations

		Energy keV		Relative probability
X _K	$\begin{array}{c} \mathrm{K}\alpha_2\\ \mathrm{K}\alpha_1 \end{array}$	$97,069 \\101,059$		$62,82 \\ 100$
	$\begin{array}{c} \mathrm{K}\beta_{3} \\ \mathrm{K}\beta_{1} \\ \mathrm{K}\beta_{5}^{\prime\prime} \end{array}$	$113,303 \\114,234 \\114,912$	} } }	36,45
	$\begin{array}{c} \mathrm{K}\beta_2\\ \mathrm{K}\beta_4\\ \mathrm{KO}_{2,3} \end{array}$	117,476 117,876 118,429	} } }	$12,\!54$

237	ΤT	
92	U	145

		Energy keV	Relative probability
X_{L}			
	$\mathrm{L}\ell$	$11,\!89$	
	$L\alpha$	$13,\!76-13,\!94$	
	$\mathrm{L}\eta$	$15,\!88$	
	$\mathrm{L}eta$	$16,\!13-17,\!99$	
	$\mathrm{L}\gamma$	$20,\!12-22,\!2$	

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	73,50-83,13 90,36-97,28 107,10-114,58	$100 \\ 60,2 \\ 9,06$
Auger L	$5,\!04-13,\!52$	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Np)	5,04 - 13,52	58,5(21)
e _{AK}	(Np) KLL KLX KXY	73,50 - $83,1390,36 - 97,28107,10 - 114,58$	1,49 (21) } } }
$\begin{array}{c} ec_{2,1} \ L \\ ec_{6,5} \ M \\ ec_{1,0} \ L \\ ec_{6,5} \ N \\ ec_{9,7} \ L \\ ec_{3,1} \ L \\ ec_{2,1} \ M \\ ec_{4,2} \ L \\ ec_{1,0} \ M \\ ec_{7,6} \ L \\ ec_{1,0} \ N \end{array}$	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 14,6 \ (50) \\ 36,0 \ (19) \\ 17,0 \ (23) \\ 9,79 \ (43) \\ 0,7 \ (7) \\ 0,47 \\ 3,9 \ (5) \\ 3,2 \ (5) \\ 4,3 \ (7) \\ 0,19 \ (8) \\ 1,16 \ (17) \end{array}$

KRI /N. K. Kuzmenko and V. P. Chechev

		Energy keV	Electrons per 100 disint.
$ec_{9,7 M}$	(Np)	$32,\!80$ - $34,\!88$	0,2~(2)
$ec_{3,1 M}$	(Np)	36,965 - $39,040$	$0,\!12$
ec _{9,7 N}	(Np)	37,04 - $38,14$	$0,\!05\ (5)$
$ec_{2,0 L}$	(Np)	37,114 - $41,931$	28,6~(22)
$ec_{4,2}$ M	(Np)	$37,\!684$ - $39,\!759$	$0,\!84~(14)$
$ec_{4,2 N}$	(Np)	41,92 - $43,02$	$0,\!233~(37)$
$ec_{7,5 L}$	(Np)	42,40 - $47,22$	$0,\!387~(9)$
$ec_{5,4 K}$	(Np)	45,94 (2)	0,363~(9)
$ec_{2,0 M}$	(Np)	53,802 - $55,877$	$7,\!7~(3)$
$ec_{2,0 N}$	(Np)	58,040 - $59,138$	0,846~(24)
$ec_{7,5}$ M	(Np)	59,09 - 61,17	0,096(2)
$ec_{5,2 K}$	(Np)	89,331 (10)	50,1(13)
$ec_{5,1 K}$	(Np)	115,73 (4)	0,114(5)
$ec_{5,4 L}$	(Np)	142,18 - 147,00	2,04(5)
$ec_{5,0 K}$	(Np)	148,87 (4)	0,53(3)
$ec_{5,4}$ M	(Np)	158,87 - 160,95	0,565(14)
$ec_{5,4 N}$	(Np)	163,11 - 164,21	0,1546(33)
$ec_{5,2}$ L	(Np)	185,573 - 190,390	10,1(3)
$ec_{5,2}$ M	(Np)	202,261 - 204,336	2,45(7)
$ec_{5,2 N}$	(Np)	206,499 - 207,597	0,662(14)
$ec_{7,0 K}$	(Np)	213,69 (4)	0,0757 (18)
$ec_{8,1 \text{ K}}$	(Np)	216,71 (4)	0,052(7)
$ec_{5,0 L}$	(Np)	245,11 - 249,93	0,172(9)
$ec_{7,0}$ L	(Np)	309,93 - 314,75	0,0733 (17)
$\beta_{0,9}^-$	max:	147,7 (6)	1,3~(9)
$\beta_{0,9}^{-}$	avg:	39,0 (2)	
$\beta_{0.7}^{-}$	max:	186,2 (6)	2,9(9)
$\beta_{0.7}^{0.7}$	avg:	49,8 (2)	
$\beta_{0.6}^{-}$	max:	237,2 (6)	48,2 (25)
$\beta_{0,6}^{-}$	avg:	64,5 (2)	
$\beta_{0,5}^-$	max:	251,1 (6)	40,9(31)
$\beta_{0,5}^-$	avg:	68,6 (2)	
$\beta_{0.2}^{-}$	max:	459,1 (6)	7(4)
$\beta_{0,2}^{-,-}$	avg:	137,6 (2)	. ,

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	$11,\!89 - 22,\!2$		59,0 (21)	
$\begin{array}{c} \operatorname{XK} \alpha_2 \\ \operatorname{XK} \alpha_1 \end{array}$	(Np) (Np)	$97,069 \\ 101,059$		$\begin{array}{c} 14,8 \ (4) \\ 23,5 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Np) (Np) (Np)	$113,303 \\ 114,234 \\ 114,912$	} } }	8,57 (27)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	$117,476 \\ 117,876 \\ 118,429$	} } }	2,95 (10)	$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{6,5}(Np)$	13,81(2)	0,099(4)
$\gamma_{2,1}(Np)$	26,34463 (24)	$2,\!43~(6)$
$\gamma_{1,0}(Np)$	33,19629 (22)	$0,\!130~(5)$
$\gamma_{9,7}(Np)$	$38,\!54\ (3)$	0,0033~(20)
$\gamma_{3,1}(Np)$	42,704(5)	0,0085
$\gamma_{4,2}(Np)$	43,420 (3)	0,024~(2)
$\gamma_{7,6}(Np)$	51,01(3)	$0,340\ (14)$
$\gamma_{2,0}(Np)$	59,54091 (10)	34,1 (9)
$\gamma_{7,5}(Np)$	64,83~(2)	$1,\!286\ (17)$
$\gamma_{4,1}(Np)$	69,76~(3)	0,00095~(19)
$\gamma_{3,0}(Np)$	$75,\!899$ (5)	0,00091
$\gamma_{4,0}(Np)$	102,959 (3)	0,0064 (9)
$\gamma_{5,4}(Np)$	164, 61 (2)	$1,\!86~(3)$
$\gamma_{5,2}(Np)$	208,00(1)	21,3~(3)
$\gamma_{6,2}(Np)$	221,80(4)	0,0204 (8)
$\gamma_{5,1}(Np)$	234,40 (4)	0,0205~(8)
$\gamma_{5,0}(Np)$	267,556(12)	$0,721\ (10)$
$\gamma_{8,3}(Np)$	292,77~(6)	0,0025~(7)
$\gamma_{8,2}(Np)$	309,1 (3)	0,00027
$\gamma_{7,0}(Np)$	332,376(16)	1,199(16)
$\gamma_{8,1}(Np)$	335,38(4)	0,0958~(22)
$\gamma_{9,1}(Np)$	337,7(2)	0,0089~(5)
$\gamma_{(-1,2)}(Np)$	$340,\!45$	0,0016~(3)
$\gamma_{8,0}(Np)$	368,602 (20)	0,0416 (17)
$\gamma_{9,0}(Np)$	370,928 (23)	0,109(2)

KRI /N. K. Kuzmenko and V. P. Chechev

6 Main Production Modes

 $\begin{array}{l} \mathrm{U}-236(\mathrm{n},\gamma)\mathrm{U}-237\\ \mathrm{Possible \ impurities:} \ \mathrm{U}-236,\mathrm{U}-238 \end{array}$

7 References

- L. MELANDER, H.SLATIS. Arkiv Mat. Astron. Fysik 36A (1948) No 15 (Half-life , energies and probabilities of beta-transitions.)
- F.WAGNER JR., M. S. FREEDMAN, D. W. ENGELKEMEIR, J. R. HUIZENGA. Phys. Rev. 89 (1953) 502 (Half-life , energies and probabilities of beta-transitions.)
- J. O. RASMUSSEN, F. L. CANAVAN, J. M. HOLLANDER. Phys. Rev. 107 (1957) 141 (Energies and probabilities of beta-transitions.)
- M. J. CABELL, T. A. EASTWOOD, P. J. CAMPION. J. Nucl. Energy 7 (1958) 81 (Half-life.)
- P. S. SAMOILOV. Izvest. Akad. Nauk SSSR, Ser. Fiz. 23 (1959) 1416 (Gamma-ray transition multipolarities.)
- F. ASARO,, F. S. STEPHENS, J. M. HOLLANDER, I. PERLMAN. Phys. Rev. 117 (1960) 492 (ICC for the anomalously converted gamma-ray transitions.)
- E. AKATSU, T.KUROYANAGI, T.ISHIMORI. Radiochim. Acta 2 (1963) 1 (Gamma-ray energies.)
- J. L. WOLFSON, J. J. H. PARK. Can. J. Phys. 42 (1964) 1387 (E2/M1 admixters.)
- T. YAMAZAKI, J. M. HOLLANDER. Nucl. Phys. 84 (1966) 505 (Gamma-ray and X-ray energies and multipolarities, E2 admixtures, relative probability of conversion electrons.)
- C .M. LEDERER, J. K. POGGENBURG, F. ASARO, J. O. RASMUSSEN, I. PERLMAN. Nucl. Phys. 84 (1966) 481 (Conversion electron data.)
- H.-C. PAULI, K. ALDER. Z. Physik 202 (1967) 255 (Anomalously converted E1 gamma-ray transitions.)
- L. N. KONDRATEV, E. E. TRETYAKOV. Bull. Acad. Sci. USSR, Phys. Ser. 30 (1967) 393 (E2/M1 admixters.)
- R. DAMS, F. ADAMS. Radiochim. Acta 10 (1968) 1 (Gamma-ray energies.)
- J. E. CLINE. IN-1448 Rev. (1971)
- (Gamma-ray energies and emission probabilities.)
- V. N. GRIGOREV, A. P. FERESIN. Sov. J. Nucl. Phys. 12 (1971) 361 (Anomalously converted E1 gamma-ray transitions.)
- R. GUNNINK, J. E. EVANS, A. L. PRINDLE. UCRL-52139 (1976)
- (Gamma-ray energies and emission probabilities.)
- A. V. BUSHUEV, O. V. MATVEEV, V. N. OZERKOV, V. V. CHACHIN. INDC(CCP)-193/G (1982) 30 (Gamma-ray emission probabilities.)
- M. F. BANHAM. Priv. Comm. quoted by 1986LoZT (1984) (Gamma-ray emission probabilities.)
- R. G. HELMER, C. W. REICH. Int. J. Appl. Radiat. Isotop. 36 (1985) 117 (Gamma-ray emission probabilities.)
- H. WILLMES, T. ANDO, R. J. GEHRKE. Int. J .Appl. Radiat. Isotop. 36 (1985) 123 (X-ray and gamma-ray emission probabilities.)
- A. LORENTZ. Techn. Rep. Ser. 261 (1986) (Gamma-ray probabilities.)
- P. N. JOHNSTON. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 107 (ICC for the anomalously converted gamma-ray transitions.)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data.)
- R.YANEZ, W. LOVELAND, D. J. MORRISSEY, K. ALEKLETT, J. O. LILJENZIN, E. HAGEBO, D. JERRESTAM, L. WESTERBERG,. Phys. Lett. B376 (1996) 29 (Gamma-ray energies.)

- A. KOVALIK, E. A. YAKUSHEV, V. M. GOROZHANKIN, A. F. NOVGORODOV, M. RYSAVY. J. Phys. (London) G24 (1998) 2247
 (Gamma transition multipolarities.)
- R. G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Meth. Phys. Res. A450 (2000) 35 (Gamma-ray energies.)
- G. Audi,, A. H. Wapstra, and C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- M.S. BASUNIA. Nucl. Data Sheets 107 (2006) 3323
- (Decay data evaluation, gamma-ray energies and multipolarities, decay scheme.)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, AND C. W. NESTOR JR.. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC.)

KRI /N. K. Kuzmenko and V. P. Chechev

1 Decay Scheme

Pu-238 decays 100% by alpha transitions to U-234. Most of the alpha decay populates the U-234 ground state (71.04 %) and the U-234 first excited level with energy of 43.50 keV (28.85 %). Branching of Pu-238 decay by spontaneous fission is 1.85 (5)E-7 %.

Le plutonium 238 se désintègre par émission alpha vers les niveaux fondamental (71,04 %) et excité de 43,5 keV (28,85 %). Le nombre de désintegrations par fission spontanée est de 1,85 (5)E-7 %

2 Nuclear Data

$T_{1/2}(^{238}\text{Pu})$:	87,74	(3)	a
$T_{1/2}^{'}(^{234}\mathrm{U})$:	$2,\!455$	(6)	$10^{5} {\rm a}$
$Q^{\dot{lpha}}(^{238}{ m Pu})$:	$5593,\!20$	(19)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	F				
00.14	4507 94 (20)	~ 0.000012	3 5				
$\alpha_{0,14}$ $\alpha_{0,13}$	4501,54(20) 4548.66(20)	0.00000117(7)	7.5				
$\alpha_{0,12}$	4569,43 (20)	$\sim 0,0000002$	64				
$\alpha_{0,11}$	4603,77 (20)	0,000000150 (16)	155				
$\alpha_{0,10}$	4645,56 (20)	0,0000023	21				
$lpha_{0,9}$	4666, 48 (20)	0,00000130 (5)	53				
$\alpha_{0,8}$	4741,46 (20)	0,0000081	$_{30,5}$				
$\alpha_{0,7}$	4743,93 (20)	0,00000075 (22)	3400				
$lpha_{0,6}$	4783,29(20)	0,0001	5				
$lpha_{0,5}$	4806,91 (20)	0,00000821 (16)	89				
$\alpha_{0,4}$	5096, 16(20)	0,00000680 (23)	10000				
$\alpha_{0,3}$	5297, 13(19)	0,00292 (4)	440				
$\alpha_{0,2}$	5449,85(19)	0,104(3)	102				
$\alpha_{0,1}$	5549,70(19)	28,85(6)	$1,\!39$				
$lpha_{0,0}$	5593,20 (19)	71,04 (6)	1				
	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
-----------------------------	--------------------------	------------------------------------	------------------	--------------------------	------------------------	--------------------------	------------------------
\mathbf{a}	41.89 (11)	0.000026.(14)	[ലവ]		620 (12)	174(4)	962 (19)
$\gamma_{8,6}(U)$	41,02(11)	0,0000020 (14)	[E2]		520(13)	1/4 (4) 1/3 5 (20)	713(15)
$\gamma_{1,0}(U)$	43,498(1) 62 70(1)	20,3(0)	E2 F1		0.320(11)	143,3(29) 0.0701(16)	0.426(0)
$\gamma_{11,9}(U)$	02,70(1) 00.852(3)	0,00000010(4) 0.1060(23)	E1 F2		0,320(7)	2.71(6)	0,420(9) 13 42(27)
$\gamma_{2,1}(U)$	$\frac{99,052}{140}$ (3)	0,1000(23)	M1 + 62% F2	26 (8)	9,77(20) 1.70(5)	2,71(0) 0.48(14)	51,42(27)
$\gamma_{11,7}(U)$	140,10(2) 152,710(2)	0,00000021(7)	F2	2,0(8)	1,79(0) 1,404(28)	0,40(14) 0.388(8)	214(4)
$\gamma_{3,2}(U)$	102,719(2) 102.01(7)	0,00292 (4)	E2 [E2]	0,217 (4) 0.1625 (22)	1,404(20) 0.505(10)	0,300(0)	2,14(4)
$\gamma_{13,8}(U)$	192,91(7) 200.07(3)	0,000000012 (4) 0,00000680 (23)	[E2]	0,1035(33) 0.1534(31)	0,303(10) 0.424(0)	0,1391(28) 0.1166(28)	0,830(17) 0.734(15)
$\gamma_{4,3}(U)$	200,97(3) 203(12)(3)	0,00000000 (23)	$M1 \pm 66\% E2$	0,1334(31) 0.00(17)	0,424(9) 0.423(0)	0,1100(23) 0.1113(23)	0,734(13) 15(3)
$\gamma_{11,5}(U)$	203,12(3)	0,00000021(5)	(F0 + F2)	0,30 (17)	0,420(9)	0,1110(20)	1,0 (0)
$\gamma_{14,8}(U)$	233,0(2) 234.6(2)	0.00000041	(E0 + E2) E0				
$\gamma_{13,6}(U)$	234,0(2) 235.9(3)	0,0000001 0,00000010 (5)	[E1]	0.0532(11)	0.01067(21)	0.00258(5)	0.0673(14)
$\gamma_{12,5}(U)$	258,227 (3)	0,000000010(0)	(E1)	0.0434(9)	0.00859(17)	0.00200(0) 0.00207(4)	0.0548(11)
$\gamma_{14,5}(U)$	299.1(2)	0,000000011(12) 0,000000046(3)	(E1) [E1]	0.0314(6)	0.00608(12)	0.001466(29)	0.0395(8)
$\gamma_{7,3}(U)$	705.9(1)	0.000000050 (13)	[E1]	0.00568(12)	0.000987(20)	0.000235(5)	0.00698(14)
$\gamma_{2}(U)$	708.3(2)	0.00000050 (3)	[E2]	0.01537(31)	0.00489(10)	0.001246 (25)	0.0219(5)
$\gamma_{12,3}(U)$	727.8(2)	0.0000000028 (3)	(E2)	0.01464(29)	0.00454(9)	0.001156(23)	0.0207(4)
$\gamma_{5,1}(U)$	742.813(5)	0.00000513(13)	E1	0.00518(10)	0.000895(18)	0.000213(4)	0.00636(13)
$\gamma_{6,1}(U)$	766.38(2)	0.0000223(5)	E2	0.01336(27)	0.00396 (8)	0.001003(20)	0.0187(4)
$\gamma_{9,2}(U)$	783.4(1)	0.000000022 (3)	[E2]	0.01285(26)	0.00374(8)	0,000946 (19)	0.0179(4)
$\gamma_{5,0}(U)$	786.27(3)	0.00000322 (9)	E1	0.00467(9)	0.000804(16)	0.000191(4)	0.00573(12)
$\gamma_{10,2}(U)$	804.4(3)	0.00000017	E0 + E2	/ (/	, , ,	, ()	0.57
$\gamma_{7,1}(U)$	805, 80(5)	0,000000056 (15)	[E1]	0,00447 (9)	0,000768(16)	0,000183(4)	0,00549(11)
$\gamma_{8.1}(U)$	808,2(1)	0,0000041	E0 + 17% E2	3,31	0,94		4,3
$\gamma_{6,0}(\mathrm{U})$	810,0(5)	$\geq 0,000077$	${ m E0}$	≥ 60			
$\gamma_{8,0}(\mathrm{U})$	851,7(1)	0,00000129 (4)	[E2]	0,01109(22)	0,00302~(6)	0,000759(16)	0,01513 (30)
$\gamma_{12,2}(\mathrm{U})$	880,5(1)	$\geq 0,00000015$	(E0 + E2)				
$\gamma_{9,1}(\mathrm{U})$	883,24 (4)	0,00000073 (4)	E2	0,01040 (21)	0,00276~(6)	0,000692 (14)	0,01409 (28)
$\gamma_{10,1}(\mathrm{U})$	904,37(15)	0,00000062 (11)	[E2]	0,00998~(20)	0,00260 (5)	0,000652 (13)	$0,01346\ (27)$
$\gamma_{9,0}(\mathrm{U})$	926,72(1)	0,000000565 (25)	(E2)	0,00956~(20)	0,00245 (5)	0,000613 (12)	0,01284 (26)
$\gamma_{14,2}(\mathrm{U})$	941,94(10)	0,000000472 (23)	[E2]	0,00929 (20)	0,00236 (5)	0,000589(12)	0,01244~(25)
$\gamma_{11,1}(\mathrm{U})$	946,00(3)	0,00000092 (13)	(E1)	0,00337~(7)	0,000571 (12)	$0,0001355\ (27)$	0,00412 (8)
$\gamma_{12,1}(U)$	980,3(1)	0,00000042	(E2)	0,00866 (18)	0,00214 (4)	0,000534 (11)	0,01152 (23)
$\gamma_{13,1}(\mathrm{U})$	1001,03 (3)	0,00000099 (4)	E2	$0,00835\ (17)$	0,00204 (4)	0,000507(11)	0,01107~(22)
$\gamma_{14,1}(\mathrm{U})$	1041,7(2)	$\geq 0,0000002$	(E0 + E2)				
$\gamma_{14,0}(\mathrm{U})$	1085,4(2)	0,00000078 (9)	(E2)	$0,00725\ (15)$	0,00169 (3)	0,000418 (8)	0,00950 (19)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	0,500	(19)
n_{KL}	:	0,794	(5)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X _K				
	$K\alpha_2$	94,666		62,47
	$K\alpha_1$	98,440		100
	${ m K}eta_3$	110,421	}	
	$K\beta_1$	111,298	}	
	$\mathrm{K}eta_5''$	$111,\!964$	}	$36,\!08$
	$\mathrm{K}\beta_2$	114,407	}	
	$\mathrm{K}eta_4$	$115,\!012$	}	12,34
	$\mathrm{KO}_{2,3}$	$115,\!377$	}	
X_{L}				
	$\mathrm{L}\ell$	$11,\!619$		
	$L\alpha$	$13,\!438-13,\!615$		
	$\mathrm{L}\eta$	$15,\!399$		
	$\mathrm{L}eta$	15,727 - 18,206		
	$\mathrm{L}\gamma$	$19,\!507-20,\!714$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	71,78-80,95 88,15-98,43 104,51-115,59	$100 \\ 59,6 \\ 8,88$
Auger L	$5,\!9-21,\!6$	

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,14} \ lpha_{0,13} \ lpha_{0,12}$	$\begin{array}{c} 4432,1 \ (2) \\ 4472,1 \ (2) \\ 4492,5 \ (2) \end{array}$	$\sim 0,0000012$ 0,00000117 (7) $\sim 0,0000002$

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,11} \\ \alpha_{0,10} \\ \alpha_{0,9} \\ \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 4526,3 \ (2) \\ 4567,4 \ (2) \\ 4587,9 \ (2) \\ 4661,7 \ (2) \\ 4664,1 \ (2) \\ 4702,8 \ (2) \\ 4726,0 \ (2) \\ 5010,4 \ (2) \\ 5208,0 \ (2) \\ 5358,1 \ (2) \\ 5456,3 \ (2) \\ 5499,03 \ (20) \end{array}$	$\begin{array}{c} 0,000000150\ (16)\\ 0,0000023\\ 0,00000130\ (5)\\ 0,0000081\\ 0,00000075\ (22)\\ 0,0001\\ 0,00000821\ (16)\\ 0,00000680\ (23)\\ 0,00292\ (4)\\ 0,104\ (3)\\ 28,85\ (6)\\ 71,04\ (6) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5,9 - 21,6	10,6~(4)
e _{AK}	(U) KLL KLX KXY	71,78 - 80,95 88,15 - 98,43 104,51 - 115,59	0,0000110 (15) } } }
$ec_{1,0} L ec_{1,0} M ec_{1,0} M ec_{1,0} N ec_{2,1} L$	(U) (U) (U) (U)	21,74 - 26,33 37,95 - 39,95 42,057 - 43,119 78,095 - 82,685	$\begin{array}{c} 20,6 \ (6) \\ 5,7 \ (12) \\ 1,544 \ (39) \\ 0,0718 \ (17) \end{array}$

6 Photon Emissions

6.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.	
XL	(U)	11,619 - 20,714	10,63 (8)	

		${ m Energy}\ { m keV}$	Photons per 100 disint.
$\begin{array}{c} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94,\!666$ $98,\!440$	$\begin{array}{ccc} 0,000106 \ (3) & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110,421 \\ 111,298 \\ 111,964$	
$\begin{array}{c} \mathrm{XK}eta_2 \\ \mathrm{XK}eta_4 \\ \mathrm{XKO}_{2.3} \end{array}$	(U) (U) (U)	$114,407 \\115,012 \\115,377$	$ \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
- 2,0		- ,	J

6.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{8.6}(U)$	41,82 (11)	0,000000030 (16)
$\gamma_{1,0}(U)$	43,498 (1)	0,0397(8)
$\gamma_{11.9}(U)$	62,70(1)	0,00000011 (3)
$\gamma_{2,1}(U)$	99,852 (3)	0,00735 (8)
$\gamma_{11,7}(U)$	140,15(2)	0,000000035 (7)
$\gamma_{3,2}(U)$	152,719(2)	0,000930 (7)
$\gamma_{13,8}(\mathrm{U})$	192,91~(7)	0,0000000066 (20)
$\gamma_{4,3}(U)$	200,97~(3)	0,00000392 (13)
$\gamma_{11,5}(U)$	203,12 (3)	0,000000085 (15)
$\gamma_{14,7}(U)$	235,9~(3)	0,00000009 (5)
$\gamma_{13,5}(\mathrm{U})$	258,227 (3)	0,00000070 (11)
$\gamma_{14,5}(\mathrm{U})$	299,1~(2)	0,00000044 (3)
$\gamma_{7,2}(U)$	705,9(1)	0,00000050 (13)
$\gamma_{8,2}(U)$	708,3(2)	0,00000049 (3)
$\gamma_{12,3}(U)$	727,8(2)	0,000000027 (3)
$\gamma_{5,1}(U)$	742,813 (5)	0,00000510 (13)
$\gamma_{6,1}(U)$	766, 38 (2)	0,0000219 (5)
$\gamma_{9,2}(U)$	783,4 (1)	0,00000022 (3)
$\gamma_{5,0}(U)$	786,27 (3)	0,00000320 (9)
$\gamma_{10,2}(U)$	804,4 (3)	0,00000011 (5)
$\gamma_{7,1}(U)$	$805,\!80$ (5)	0,00000056 (15)
$\gamma_{8,1}(U)$	808,2~(1)	0,000000767~(25)
$\gamma_{8,0}(U)$	851,7(1)	0,00000127 (4)
$\gamma_{12,2}(U)$	880,5(1)	0,0000015 (4)
$\gamma_{9,1}(U)$	883,24 (4)	0,00000072 (4)
$\gamma_{10,1}(U)$	904,37 (15)	0,00000061 (11)
$\gamma_{9,0}(U)$	926,72(1)	0,000000558 (25)
$\gamma_{14,2}(U)$	941, 94 (10)	0,000000466 (23)
$\gamma_{11,1}(U)$	946,00(3)	0,00000092 (13)

	Energy keV	Photons per 100 disint.
$\gamma_{12,1}(U) \\ \gamma_{13,1}(U) \\ \gamma_{14,1}(U) \\ \gamma_{14,0}(U)$	$\begin{array}{c} 980,3 \ (1) \\ 1001,03 \ (3) \\ 1041,7 \ (2) \\ 1085,4 \ (2) \end{array}$	0,000000042 0,00000098 (4) 0,000000197 (16) 0,000000077 (9)

7 Main Production Modes

 $Np - 237(n,\gamma)Np - 238$

 $Np - 238(\beta^{-})Pu - 238$

 $Cm - 242(\alpha)Pu - 238$

8 References

- A. H. JAFFEY, A. HIRSCH. Report ANL-4286 (1949) (Spontaneous fission half-life)
- A. H. JAFFEY, J. LERNER. Report ANL-4411 (1950) (Half-life)
- A. H. JAFFEY, L. B. MAGNUSSON. Paper No. 14.2. National Nuclear Energy Plutonium Project Record Div. IV. 14B (1951)
- (Half-life)
- A. H. JAFFEY. Ibid. Paper No. 2.2. (1951) (Half-life)
- G. T. SEABORG, R. A. JAMES AND A. GIORSO. The Transuranium Elements Paper No. 14.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. 14B.Part II (1951) p.978 (Half-life)
- E. SEGRE. Phys. Rev. 86 (1952) 21 (Spontaneous fission half-life)
- K. W. Jones, R.A. Douglas, M.T. McEllistrem and H.T. Richards. Phys. Rev. 94 (1954) 947 (Half-life)
- F. ASARO, I. PERLMAN. Phys. Rev. 94 (1954) 381 (Alpha-particle energies and emission probabilities)
- E. L. CHURCH, A. W. SUNYAR. Phys. Rev. 98 (1955) 1186A (Gamma-ray energies)
- J. O. NEWTON, B. ROSE AND J. MILSTED. Phil. Mag. 1 (1956) 981 (Gamma-ray energies)
- D. C. HOFFMAN, G. P. FORD AND F. O. LAWRENCE. J. Inorg. Nucl. Chem. 5 (1957) 6 (Half-life)
- L. N. KONDRATEV, G. I. NOVIKOVA, V. B. DEDOV AND L. L. GOLDIN. Izv. Akad. Nauk SSSR, Ser Fiz 21 (1957) 907.
- (Alpha-particle energies and emission probabilities)
- V. A. DRUIN, V. P. PERELYGIN AND G. I. KHLEBNIKOV. Soviet Phys. JETP 13 (1961) 913 (Spontaneous fission half-life)
- C. F. LEANG. Compt. Rend. 255 (1962) 3155 (Alpha-particle energies and emission probabilities)

- S. BJORNHOLM, C. M. LEDERER, F. ASARO AND I. PERLMAN. Phys. Rev. 130 (1963) 2000 (Alpha transition probabilities)
- C. M. LEDERER. Priv Comm, quoted by 1967Le24 (1964) (E0+E2 transition probabilities)
- J. W. HALLEY, D. ENGELKEMEIR. Phys. Rev. 134 (1964) A24 (LX-ray emission probabilities)
- F. Les. Acta. Phys. Polon. 26 (1964) 951 (E0+E2 transition probabilities)
- J. F. EICHELBERGER, G. R. GROVE AND L. V. JONES. MLM-1238 (1965) (1965) (Half-life)
- K. C. JORDAN. Report No. MLM-1443, July September 1967 (1967) (Half-life)
- J. Byrne, W. Gelletly, M. A. S. Ross and F. Shaikh. Phys. Rev. 170 (1968) 80 (LX-ray emission probabilities)
- L. SALGUEIRO ET AL., C.R. Acad. Sci. 267B (1968) 1293 (LX-ray emission probabilities)
- K. L. SWINTH. Nucleonics in Aerospace, Ed. P. Polishuk, N.Y. Plenum PressEd. P. Polishuk, N.Y. Plenum Press (1968) p.279 (LX-ray emission probabilities)
- S. A. BARANOV, V. M. KULAKOV AND V. M. SHATINSKII. Nucl. Phys. 7 (1968) 442 (Alpha-particle energies and emission probabilities)
- S. R. AMTEY, J. H. HAMILTON, A. V. RAMAYYA. Nucl. Phys. A126 (1969) 201 (Conversion electron relative intensities)
- D. BENSON. Priv. Comm. (1969). (1969) (Half-life)
- C. M. LEDERER, F. ASARO AND I. PERLMAN. UCRL-18667 p.3 (1969) (Gamma-ray energies and emission probabilities)
- S. A. BARANOV, V. M. KULAKOV, V. M. SHATINSKII AND Z. S. GLADKIKH. Yad. Fiz. 12 (1970) 1105 (Alpha-particle energies and emission probabilities)
- J. E. CLINE. IN-1448 Rev. (1971) (Gamma-ray energies and emission probabilities)
- K. L. SWINTH. IEEE Transactions Nuclear Science, part 1 18 (1971) 125 (LX-ray emission probabilities)
- J. C. SOARES, J. P. RIBEIRO, A. GONCALVES, F. B. GIL AND J. C. FERREIRA. Compt. Rend. 273B (1971) 985 (Alpha-particle energies and emission probabilities)
- A. I. MAKARENKO, L. A. OSTRETSOV AND N. V. FORAFONTOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 2335 (Gamma-ray energies and emission probabilities)
- B. GRENNBERG, A. RYTZ. Metrologia. 7 (1971) 65 (Alpha-particle energies)
- R. GUNNINK, R. J. MORROW. UCRL-51087 (1971) (Gamma-ray energies and emission probabilities)
- J. D. HASTINGS, W. W. STROHM. J. Inorg. Nucl. Chem. 34 (1972) 25 (Spontaneous fission half-life)
- M. Schmorak, C. E. Bemis Jr., M J. Zender, N. B. Gove and P. F. Dittner. Nucl. Phys. A178 (1972) 410 (Gamma-ray energies)
- W. W. STROHM, K. C. JORDAN. Nucl. Soc. 18 (1974) 185 (Half-life)
- R. R. GAY, R. SHER. Bull. Am. Phys. Soc. 20(2) (1975) 160, GB13 (Spontaneous fission half-life)
- H. UMEZAWA, T. SUZUKI AND S. ICHIKAWA. J. Nucl. Sci. Technol. 13 (1976) 327 (Gamma-ray and emission probabilities)
- R. GUNNINK, J. E. EVANS AND A. L. PRINDLE. UCRL-52139 (1976) (Gamma-ray energies and emission probabilities)
- D. G. VASILIK, R. W. MARTIN. Nucl. Instrum. Methods 135 (1976) 405 (LX-ray emission probabilities)
- V. G. POLYUKHOV, G. A. TIMOFEEV, P. A. PRIVALOVA, V. Y. GABESKIRIYA AND A. P. CHETVERIKOV. At. Energ. 40 (1976) 61 (Half-life)
- C. E. BEMIS JR., L. TUBBS. Report ORNL-5297 (1977) (1977) 93 (LX-ray emission probabilities)

- H. DIAMOND, W. C. BENTLEY, A. H. JAFFEY AND K. F. FLYNN. Phys. Rev. C15 (1977) 1034 (Half-life)
- F. P. LARKINS. Atomic Data and Nuclear Data Tables. 20 (1977) 313 (Auger electron energies)
- F. ROSEL, H. M. FRIESS, K. ALDER AND H. C. PAULI. At. Data Nucl. Data Tables. 21 (1978) 92 (Theoretical ICC)
- R. VANINBROUKX, G GROSSE AND W. ZEHNER. Report CBNM/RN/45/79 (1979). (1979) (Gamma-ray emission probabilities)
- A. CESANA, G. SANDRELLI, V. SANGIUST AND M. TERRANI. Energia Nucl. (Milan) 26 (1979) 526 (Gamma-ray energies and emission probabilities)
- V. D. SEVASTYANOV, V. P. JARINA. Voprosi Atomnoi Nauki i Tekhniki, seriya Jadernie Konstanti. 5(44) (1981) 21

(Half-life)

- S. K. AGGARWAL, A. V. JADHAV, S. A. CHITAMBAR, K. RAGHURAMAN, S. N. ACHARYA, A. R. PARAB, C. K. SIVARAMAKRISHNAN AND H. C. JAIN. Radiochem. Radioanal. Lett. Radiochem. Radioanal. Lett. 46 (1981) 69 (Half-life)
- G. BARREAU, H. G. BORNER, T. VON EGIDY, R. W. HOFF. Z. Phys. A308 (1982) 209 (KX-ray energies)
- I. Ahmad, J. Hines, J. E. Gindler. Phys. Rev. C27 (1983) 2239 (KX-ray energies)
- P. DRYAK, YU. S. EGOROV, V. G. NEDOVESOV, I. PLKH, G. E. SHUKIN. Program and Theses, Proc. 34th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Alma-Ata, (1984) (1984) p 540 (LX-ray emission probabilities)
- V. V. OVECHKIN, V. M. CHESALIN AND I. A. SHKABURA. Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1029 (Gamma-ray energies and emission probabilities)
- R. G. HELMER, C. W. REICH. Int. J. Appl. Radiat. Isotop. 35 (1984) 1067 (Gamma-ray energies and emission probabilities)
- G. BORTELS, B. DENECKE, R. VALNINBROUKX. Nucl. Instrum. Meth. 223 (1984) 329 (Alpha-particle, gamma-ray and LX-ray energies and emission probabilities)
- L. M. BAK, P. DRYAK, V. G. NEDOVESOV, S. A. SIDORENKO, G. E. SHUKIN, K. P. YAKOVLEV. Program and Theses, Proc. 34th Ann. Conf. Nucl. Spectrosc. At. Nuclei, Alma-Ata (1984) p541 (LX-ray emission probabilities)
- I. AHMAD. Nucl. Instrum. Meth. 223 (1984) 319 (Alpha-particle energies and emission probabilities)
- P. A. BURNS, P. N. JOHNSTON AND J.R. MORONEY. Priv. Comm. (1984). (1984)
- (Alpha-particle energies and emission probabilities)G. BORTELS, P. COLLAERS. Appl. Radiat. Isot. 38 (1987) 831
- (Alpha-particle energies and emission probabilities)
- YU. A. SELITSKY, V. B. FUNSHTEIN, V. A. YAKOVLEV. Program and Theses, Proc.38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) p. 131 (Spontaneous fission half-life)
- YU. S. POPOV, I. B. MAKAROV, D. KH. SRUROV, E. A. ERIN. Sov. Radiochem. 32 (1990) 425 (MX-ray emission probability)
- P. N. JOHNSTON, J. R. MORONEY AND P. A. BURNS. Appl. Radiat. Isot. 42 (1991) 245 (Alpha-particle energies)
- A. Rytz. At. Data Nucl. Data Tables. 47 (1991) 205 (Alpha-particle energies)
- M. C. LEPY, B. DUCHEMIN, J. MOREL. Nucl.Instrum.Methods Phys.Res. A353 (1994) 10 (LX ray energies and emission probabilities)
- D. T. BARAN. Appl. Radiat. Isot. 45 (1994) 1177 (Gamma-ray emission probabilities)
- P. N. JOHNSTON, P. A. BURNS. Nucl. Instrum. Meth. Phys. Res. A361 (1995) 229 (LX-ray energies and emission probabilities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- J. YANG, J. NI. Nucl. Instrum. Meth. Phys. Res. A413 (1998) 239 (Alpha-particle energies and emission probabilities)
- E. SCHÖNFELD, G. RODLOFF. PTB-6.11-1999-1999-1 (1999) (KX-ray energies and relative emission probabilities)

- R. G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Meth. Phys. Res. A450 (2000) 35 (Gamma-ray energies)
- N. E. HOLDEN, D. C. HOFFMAN. Pure Appl. Chem. 72 (2000) 1525 (Spontaneous fission half-life)
- Y. NIR-EL. Radiochim. Acta 88 (2000) 83 (Gamma-ray energies)
- E. SCHÖNFELD, H. JANSSEN. Appl. Rad. Isot. 52 (2000) 595 (LX-ray and Auger electron emission probabilities)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value)
- E. BROWNE, J. K. TULI. Nuclear Data Sheets 108 (2007) 681 (Level energies and data from 234Pa and 234Np decays)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR. Nucl.Instrum.Methods Phys.Res. A589 (2008) 202 (Theoretical ICC)

1 Decay Scheme

Pu-240 decays 100% by alpha transitions to U-236 and by spontaneous fission with branching fraction of 5.7 (2) 10^{-6} %. Most of the alpha decay populates the U-236 ground state (72.7%) and the U-236 first excited level with energy of 45.24 keV (27.2%).

Le plutonium 240 décroit à 100% par émission alpha vers l'uranium 236, et pour une faible proportion par fission spontanée (5,7 (2) 10^{-6} %). Les branchements alpha principaux se font vers le niveau fondamental (72,7 %) et le niveau excité de 45,24 keV (27,2 %).

2 Nuclear Data

$T_{1/2}(^{240}\text{Pu})$:	6561	(7)	a
$T_{1/2}^{'}(^{236}\mathrm{U})$:	$23,\!43$	(6)	$10^{6} {\rm a}$
$Q^{lpha}(^{240}\mathrm{Pu})$:	5255,75	(15)	keV

2.1 α Transitions

$lpha_{0,10} \ lpha_{0,9} \ lpha_{0,8} \ lpha_{0,7} \ lpha_{0,6} \ lpha_{0,5} \ lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0} \ \lpha_{0,0} \$	$\begin{array}{c} 4289,13 \ (18) \\ 4295,5 \ (4) \\ 4297,85 \ (23) \\ 4336,61 \ (23) \\ 4511,57 \ (17) \\ 4568,16 \ (16) \\ 4733,50 \ (16) \\ 4945,97 \ (15) \\ 5106,27 \ (15) \\ 5210,54 \ (15) \\ 5255,75 \ (15) \end{array}$	< 0,0000001 < 0,00000013 < 0,00000017 0,00000065 (8) 0,00000013 (7) 0,0000193 (4) 0,000047 (5) 0,001082 (18) 0,0863 (18) 27,16 (19) 72,74 (18)	27 35000 65,9 471 646 94,6 1,4 1

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ × 100	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\alpha_{\rm III}$	45 244 (2)	27.3(8)	F9		420 (0)	118.6.(94)	580 (12)
$\gamma_{1,0}(0)$	56.6(5)	21,5 (6)	(E2)		429(9) 145(7)	110,0(24) 40.1(19)	109(12)
$\gamma_{6,5}(U)$	104.233(5)	0.0856(14)	(E2) E2		8.00(16)	2.92(4)	10.99(10) 10.99(22)
$\gamma_{2,1}(U)$	164,200(0) 160,308(3)	0,0000(14) 0.001116(17)	E2	0.208(4)	1 132 (23)	0.313(6)	10,35(22) 1.76(4)
$\gamma_{3,2}(U)$	212.46(5)	0,001110(11)	E2	0,200(4) 0.140(3)	0.335(7)	0.020(0)	0.500(12)
$\gamma_{4,3}(0)$	212,10(0) 222.44	0,0000101 (10)	112	0,110 (0)	0,000 (1)	0,0520 (10)	0,000 (12)
$\gamma_{10,6}(U)$	222,44 279.0 (1)		(M1 + E2)	0.5(5)	0.15(4)	0.038(8)	0.7(5)
$\gamma_{10,5}(U)$	5381(1)	0.00000168(14)	E3	0.0623(12)	0.0587(12)	0.0160(3)	0.143(3)
$\gamma_{5,2}(U)$	5945(3)	0,00000100 (11)	LU	0,0020 (12)	0,0001 (12)	0,0100 (0)	0,110 (0)
$\gamma_{6,2}(U)$	64234(5)	0,00001449,(43)	E1 + (M2 + E3)	0.112(10)	0.031(3)		0.15(2)
$\gamma_{5,1}(U)$	687.56(10)	0,00001115(10) 0,00000466(14)	E1 + (E1)	0.219(14)	0.069(9)		0,10(2) 0.31(2)
$\gamma_{5,0}(U)$	698 94	< 0.00000025		0,210 (11)	0,000 (0)		0,01 (2)
$\gamma_{0,1}(U)$	810.8	< 0.000000023					
$\gamma_{9,2}(0)$ $\gamma_{7,1}(U)$	874.0(2)	0.00000059(6)	(E2)	0.01060(15)	0.00283 (6)	0.000711(14)	0.0144(3)
$\gamma_{e,1}(U)$	912.4(3)	< 0.00000007	(M1)	0.0400(8)	0.00753(11)	0.00181(4)	0.050(1)
$\gamma_{0,1}(U)$	915.1(3)	< 0.00000063	(M1+E0)	0,0100 (0)	0,00100 (11)	0,00101 (1)	0,000 (1)
$\gamma_{7,1}(U)$	918.9(3)	≈0.00000006	(E0)				
$\gamma_{10,1}(U)$	921.2(2)	< 0.00000022	E1	0.00353(7)	0.000599(12)	0.000142(3)	0.00432(9)
$\gamma_{8,0}(U)$	958.0(2)	< 0.0000001	<u> </u>	0,00000 (1)	0,000000 (12)	0,000112 (0)	0,00102 (0)
$\gamma_{0,0}(U)$	960.3	< 0.00000005					
$\gamma_{10,0}(U)$	966.9(2)	< 0.00000005	E1	0.00324(6)	0.000549(11)	0.000130(3)	0.00397(8)
,10,0(0)	·····	,		0,0001(0)	0,000010 (11)	0,000-000 (0)	0,00001 (0)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 U

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	0,500	(19)
n_{KL}	:	0,794	(5)

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}	$f K lpha_2 \ K lpha_1$	$94,666 \\98,44$		62,47 100
	$\begin{array}{c} \mathrm{K}\beta_{3} \\ \mathrm{K}\beta_{1} \\ \mathrm{K}\beta_{5}^{\prime\prime} \end{array}$	$110,421 \\ 111,298 \\ 111,964$	} } }	36,06
	$egin{array}{c} { m K}eta_2 \ { m K}eta_4 \ { m KO}_{2,3} \end{array}$	114,407 115,012 115,377	} } }	12,33

		Energy keV	Relative probability
X_{L}			
	$\mathrm{L}\ell$	$11,\!619$	
	$L\alpha$	$13,\!438-13,\!615$	
	$\mathrm{L}\eta$	$15,\!399$	
	$\mathrm{L}eta$	15,727 - 18,206	
	$\mathrm{L}\gamma$	$19,\!507 - 20,\!714$	

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K	71 78 - 80 05	100
KLL KLX KXY	71,78 = 80,93 88,15 = 98,43 10451 = 11559	59,6 8 88
Auger L	5,01-21,60	0,00

4 α Emissions

$\begin{array}{cccc} \alpha_{0,10} & 4217,6 \ (2) & < \\ \alpha_{0,9} & 4223,8 \ (4) & < 0 \\ \alpha_{0,8} & 4226,1 \ (3) & < 0 \\ \end{array}$	0,0000001 ,00000013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 00000017\\ 00000005 (8)\\ 000000013 (7)\\ 0,0000193 (4)\\ 0,000047 (5)\\ 0,001082 (18)\\ 0,0863 (18)\\ 27,16 (19)\\ 72.74 (18) \end{array}$

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5,01 - 21,60	10,3(8)
e _{AK}	(U) KLL KLX KXY	71,78 - 80,95 88,15 - 98,43 104,51 - 115,59	0,0000027 (4) } }
$ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,1}$ L	(U) (U) (U) (U)	23,486 - 28,076 39,696 - 41,690 43,803 - 44,865 82,475 - 87,067	$\begin{array}{c} 19,8 \ (6) \\ 5,48 \ (15) \\ 1,483 \ (40) \\ 0,0571 \ (10) \end{array}$

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} {\rm XL} \\ {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U) (U)	$\begin{array}{r} 11,\!619-\!$		10,34 (15) 0,0000260 (6) 0,0000416 (9)	} Κα }
$\begin{array}{c} \mathrm{XK}\beta_3\\ \mathrm{XK}\beta_1\\ \mathrm{XK}\beta_5''\\ \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U) (U) (U) (U)	$110,421 \\111,298 \\111,964 \\114,407 \\115,012 \\115,377$	<pre>} } }</pre>	0,0000150 (4) 0,00000513 (16)	$\mathbf{K}'eta_1$ $\mathbf{K}'eta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(U) \\ \gamma_{2,1}(U) \\ \gamma_{3,2}(U)$	$\begin{array}{c} 45,244 \ (2) \\ 104,233 \ (5) \\ 160,308 \ (3) \end{array}$	0,0462 (9) 0,00714 (7) 0,0004045 (22)

	Energy keV	Photons per 100 disint.
$\begin{array}{l} \gamma_{4,3}(\mathrm{U}) \\ \gamma_{5,2}(\mathrm{U}) \\ \gamma_{5,1}(\mathrm{U}) \\ \gamma_{5,0}(\mathrm{U}) \\ \gamma_{6,1}(\mathrm{U}) \\ \gamma_{9,2}(\mathrm{U}) \\ \gamma_{7,1}(\mathrm{U}) \\ \gamma_{7,1}(\mathrm{U}) \\ \gamma_{8,1}(\mathrm{U}) \\ \gamma_{9,1}(\mathrm{U}) \\ \gamma_{10,1}(\mathrm{U}) \\ \gamma_{8,0}(\mathrm{U}) \\ \gamma_{9,0}(\mathrm{U}) \\ \gamma_{10,0}(\mathrm{U}) \end{array}$	$\begin{array}{c} 212,46\ (5)\\ 538,1\ (1)\\ 642,34\ (5)\\ 687,56\ (10)\\ 698,94\\ 810,8\\ 874,0\ (2)\\ 912,4\ (3)\\ 915,1\ (3)\\ 921,2\ (2)\\ 958,0\ (2)\\ 960,3\\ 966,9\ (2)\\ \end{array}$	$\begin{array}{c} 0,000029 \ (3)\\ 0,000000147 \ (12)\\ 0,0000126 \ (3)\\ 0,00000356 \ (9)\\ < 0,000000025\\ < 0,000000043\\ 0,000000043\\ 0,000000058 \ (6)\\ < 0,00000007\\ < 0,000000063\\ < 0,000000063\\ < 0,000000022\\ < 0,00000005\\ < 0,00000005\\ < 0,00000005\\ < 0,00000005\\ \end{array}$

7 Main Production Modes

 $\begin{array}{l} U-238(n,\gamma)Np-240\\ U-238(\alpha,2n)Pu-240\\ U-238(\alpha,pn)Np-240\\ Np-240(\beta^-)Pu-240 \end{array}$

8 References

- M G. INGHRAM, D. C. HESS, P. R. FIELDS, G. L. PYLE. Phys. Rev. 83 (1951) 1250 (Half-life.)
- E. F. WESTRUM. Phys. Rev. 83 (1951) 1249 (Half-life.)
- F. ASARO, I. PERLMAN. Phys. Rev. 88 (1952) 828 (Alpha emission energies and probabilities.)
- E. M. KINDERMAN. Hanford Lab. Report HW 27660 (1953) (SF Half-life.)
- F. R. BARCLAY, W. GALBRAITH, K. M. GLOVER, G. R. HALL, W. J. WHITEHOUSE. Proc. Phys. Soc. (London) 67A (1954) 646 (SF Half-life.)
- O. CHAMBERLAIN, G. W. FARWELL, E. SEGRE. Phys. Rev. 94 (1954) 156 (SF Half-life.)
- G. FARWELL, J. E. ROBERTS, A. C. WAHL. Phys. Rev. 94 (1954) 363 (Half-life.)
- J. P. Butler, T. A. EASTWOOD, T. L. COLLINS, M. E. JONES, F. M. ROURKE, R. P. SCHUMAN. Phys. Rev. 103 (1956) 634 (Half-life.)
- L. L. GOLDIN, G. I. NOVIKOVA, E. F. TRETYAKOV. Phys. Rev. 103 (1956) 1004 (Alpha emission energies and probabilities.)
- L. M. KONDRATEV, G. I. NOVIKOVA, Y. P. SOBOLEV, L. L. GOLDIN. Zh. Eksp. Teor. Fiz. 31(1956)771; Sov. Phys. JETP 4 (1956) 645 (Alpha emission energies and probabilities.)
- F. ASARO, S. G. THOMPSON, F. S. STEPHENS JR, I. PERLMAN. Priv. Comm. 1957, cited in1964Hy02 (1957) (Alpha emission energies and probabilities.)

- P. S. SAMOILOV. Atomnaya Energ. 4(1958)81; Sov. J. At. Energy 4 (1958) 102 (Gamma-ray energies.)
- YA. P. DOKUCHAEV. Atomnaya Energ. 6 (1959) 74 (Half-life.)
- E. F. TRETYAKOV, L. N. KONDRATEV, G. I. KHLEBNIKOV, L. L. GOLDIN. Zh. Eksp. Teor. Fiz.36(1959)362; Sov. Phys. JETP 9 (1959) 250 (Gamma-ray energies.)
- V. L. MIKHEEV, N. K. SKOBELEV, V. A. DRUIN, G. N. FLEROV. Zhur. Eksptl. i Teoret. Fiz. 37(1959)859; Sov. Phys. JETP 10 (1960) 612 (Half-life.)
- D. E. WATT, F. J. BANNISTER, J. B. LAIDLER, F. BROWN. Phys. Rev. 126 (1962) 264 (SF Half-life.)
- C. F. LEANG. Compt. Rend. 255 (1962) 3155 (Alpha emission energies.)
- L. Z. MALKIN, I. D. ALKHAZOV, A. S. KRIVOKHATSKY, K. A. PETRZHAK. At. Energ. USSR 15(1963)158; Sov. J. At. Energy 15(1964)851 15 (1963) 158 (SF Half-life.)
- E. K. HYDE, I. PERLMAN, G. T. SEABORG. The Nuclear Properties of the Heavy Elements, Vol II. Prentice-Hall, Inc, Englewood Cliffs, N J (1964)
- (Alpha emission energies and probabilities.)J. A. BEARDEN. Rev. Mod. Phys. 39 (1967) 78 (X-ray energies.)
- P. FIELDHOUSE, D. S. MATHER, E. R. CULLIFORD. J. Nucl. Energy 21 (1967) 749 (SF Half-life.)
- P. H. WHITE. Priv. Comm., cited in 2000Ho27 (1967) (SF Half-life.)
- F. L. OETTING. Proc. Symp. Thermodyn. Nucl. Mater. With Emphasis on Solution Syst., Vienna, Austria (1967), IAEA, Vienna (1968) 55 (Half-life.)
- C. M. LEDERER, J. M. JAKLEVIC, S. G. PRUSSIN. Nucl. Phys. A135 (1969) 36 (Alpha emission energies and probabilities.)
- K. L. SWINTH. IEEE Nuclear Science Symp. 4 (1970) 125 (LX-ray emission probabilities.)
- R. GUNNINK, R. J. MORROW. UCRL 51087 (1971) (Gamma-ray energies and probabilities.)
- M. SCHMORAK, C. E. BEMIS JR., M. J. ZENDER, N. B. GOVE, P. F. DITTNER. Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and probabilities.)
- J. E. CLINE, R. J. GEHRKE, L. D. MCISAAC. ANCR 1069 (1972) (Gamma-ray energies.)
- D. J. GORMAN, A. RYTZ, H. V. MICHEL. Compt. Rend. B275 (1972) 291 (Alpha emission energies.)
- R. L. HEATH. Gamma-Ray Spectrum Catalogue; ANCR 1000 2 (1974) (Gamma-ray energies.)
- T. DRAGNEV, K. SCHARF. Intern. J. Appl. Radiat. Isotop. 26 (1975) 125 (Gamma-ray emission probabilities.)
- H. OTTMAR, P. MATUSSEK, I. PIPER. Proc. Int. Symp. Neutron Capt., G- Ray Spectr. and Related Topics, 2nd, Petten, Netherlands, K. Abrahams et al., Eds., Reactor Centrum (1975) 658 (Gamma-ray energies and emission probabilities.)
- R. GUNNINK, J. E. EVANS, A. L. PRINDLE. UCRL-52139 (1976) (Gamma-ray energies and emission probabilities.)
- H. UMEZAWA, T. SUZUKI, S. ICHIKAWA. J. Nucl. Sci. Technol 13 (1976) 327 (Gamma-ray emission probabilities.)
- S.A. BARANOV, V. M. SHATINSKII. Yad. Fiz. 26(1977)461; Sov. J. Nucl. Phys. 26 (1977) 244 (Alpha emission energies and probabilities.)
- A. H. JAFFEY, H. DIAMOND, W. C. BENTLEY, D. G. GRACZYK, K. P. FLYNN. Phys. Rev. C18 (1978) 969 (Half-life.)
- C. BUDTZ-JORGENSEN, H. -H. KNITTER. NEANDC(E) 202U Vol III (1979) 9 (SF Half-life.)
- R. G. HELMER, C. W. REICH. Int. J. Appl. Radiat. Isotop. 32 (1981) 829 (Gamma-ray energies and emission probabilities.)

- J. MOREL. LMRI, Saclay, private communication, 1981 Cited in IAEA, Vienna, Tec. Rep. 261, 1986 (1981) (Gamma-ray emission probabilities.)
- G. BARREAU, H. G. BORNER, T. VON EGIDY, R. W. HOFF. Z. Phys. A308 (1982) 209 (K X-ray energies.)
- I. AHMAD, J. HINES, J. E. GINDLER. Phys. Rev. C27 (1983) 2239 (K X-ray energies.)
- A. A. ANDROSENKO, P. A. ANDROSENKO, YU. V. IVANOV, A. E. KONYAEV, V. F. KOSITSYN, E. M. TSENTER, V. T. SHCHEBOLEV. At. Energ. 57(1984)357; Sov. At. Energ. 57 (1984) 788 (SF Half-life.)
- F. J. STEINKRUGER, G. M. MATLACK, R. J. BECKMAN. Int. J. Appl. Radiat. Isotop. 35 (1984) 171 (Half-life.)
- C. R. RUDY, K. C. JORDAN, R. TSUGAWA. Int. J. Appl. Radiat. Isotop. 35 (1984) 177 (Half-life.)
- L. L. LUCAS, J. R. NOYCE. Int. J. Appl. Radiat. Isotop. 35 (1984) 173 (Half-life.)
- R. J. BECKMAN, S. F. MARSH, R. M. ABERNATHEY, J. E. REIN. Int. J. Appl. Radiat. Isotop. 35 (1984) 163 (Half-life.)
- I. AHMAD. Nucl. Instrum. Methods 223 (1984) 319
- (Alpha emission probabilities.)
- G. BORTELS, B. DENECKE, R. VANINBROUKX. Nucl. Instrum. Methods 223 (1984) 329 (L X-ray energies.)
- A. LORENZ. Decay Data of the Transactinium Nuclides, IAEA, Vienna, Tec. Rep. Ser. 261, 1986. (1986) (Gamma-ray emission probabilities.)
- YU. A. SELITSKY, V. B. FUNSHTEIN, V. A. YAKOVLEV. Program and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku, (1988) 131 (1988) (SF Half-life.)
- N. Dytlewski, M. G. Hines, J. W. Boldeman. Nucl. Sci. Eng. 102 (1989) 423 (SF Half-life.)
- A. RYTZ. At. Data Nucl. Data Tables. 47 (1991) 205 (Alpha-particle energies.)
- YU. V. IVANOV, A. E. KONYAEV, V. F. KOSITSYN, E. A. KHOLNOVA, V. T. SHCHEBOLEV, M. F. YUDIN. At. Energ. 70(1991)396; Sov. At. Energ. 70 (1991) 491 (SF Half-life.)
- S. V. ANICHENKOV, YU. S. POPOV. Radiokhimiya 32(1990)109; Sov. Radiochem. 32 (1991) 401 (Alpha emission probabilities.)
- G. BARCI-FUNEL, J. DALMASSO, G. ARDISSON. Appl. Rad. Isotop. 43 (1992) 37 (X-ray energies.)
- C. J. BLAND, J.TRUFFY. Appl. Radiat. Isot. 43 (1992) 1241 (Alpha emission probabilities.)
- M. C. LÉPY, K. DEBERTIN. Nucl. Instrum. Meth. Phys. Res. A339 (1994) 218 (L X-ray energies and emission probabilities.)
- D.T. BARAN. Appl. Radiat. Isotop. 45 (1994) 1177 (Alpha emission probabilities.)
- W. RAAB, J. L. PARUS. Nucl. Instrum. Meth. Phys. Res. A339 (1994) 116 (Alpha emission probabilities.)
- A. M. SANCHEZ, F. V. TOME, J. D. BEJARANO. Nucl. Instrum. Meth. Phys. Res. A340 (1994) 509 (Alpha emission probabilities.)
- M. C. LÉPY, B. DUCHEMIN, J. MOREL. Nucl. Instrum. Meth. Phys. Res. A353 (1994) 10 (L X-ray energies and emission probabilities.)
- P. N. JOHNSTON, P. A. BURNS. Nucl. Instrum. Meth. Phys. Res. A361 (1995) 229 (L X-ray energies and emission probabilities.)
- L. L. VINTRO, P. I. MITCHELL, O. M. CONDREN, M. MORAN, J. VIVES I BATLLE, J. A. SANCHEZ-CABEZA. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 597 (Alpha emission probabilities.)
- E. SCHÖNFELD, G. RODLOFF. PTB-6.11-1999-1999-1, Braunschweig, February 1999 (1999) (K X-ray energies and relative emission probabilities.)
- E. SCHÖNFELD, H. JANSSEN. Appl. Rad. Isotop. 72 (2000) 595 (SF half-life.)
- N. E. HOLDEN, D. C. HOFFMAN. Pure Appl. Chem. 72 (2000) 1525 (SF half-life.)

- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- M. M. BÉ, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHONFELD, AND R. DERSCH. Table of Radionuclides (Vol.2 A = 151 to 242), Monographie BIPM-5, Vol. 2, Bureau International des Poids et Mesures (2004) (2004) 247-255 (240Pu Decay Data Evaluation.)
- G. SIBBENS, S. POMMÉ. Appl. Rad. Isotop. 60 (2004) 155 (Alpha emission energies and probabilities.)
- V. P. CHECHEV. Proc. Intern. Conf. Nuclear Data for Science and Technology, Santa Fé, New Mexico, 26 September-1 October, 2004, AIP Conf. Proc. 769 (2005) Vol. 1 (2005) 91 (240Pu Decay Data Evaluation.)
- E. BROWNE, J. K. TULI. Nuclear Data Sheets 107 (2006) 2649 (Decay scheme, 236U level energies, gamma ray multipolarities, data from 236Pa and 236Np decays.)
- I. AHMAD, F. G. KONDEV, J. P. GREENE, M. A. KELLETT, A. L. NICHOLS. Nucl. Instrum. Meth. Phys. Res. A579 (2007) 458
 - (Half-life.)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC.)

1 Decay Scheme

Am-241 decays 100% by alpha transitions to Np-237. Most of the decay (84.6 %) populate the excited level of Np-237 with energy of 59.54 keV. Branching of Am-241 decay by spontaneous fission is 3,6 (9) E-10 %.

L'américium 241 se désintègre à 100 % par émission alpha vers le neptunium 237. Le branchement principal (84,6 %) se fait vers le niveau excité de 59 keV. Un faible branchement (3,6 (9) E-10 %) par fission spontanée a été observé.

2 Nuclear Data

$T_{1/2}(^{241}\text{Am})$:	$432,\! 6$	(6)	a
$T_{1/2}^{(237} \text{Np})$:	2,144	(7)	10^6 a
$Q^{\dot{\alpha}}(^{241}\text{Am})$:	$5637,\!82$	(12)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	F
_	4999 00 (19)	0.00004(2)	47
$lpha_{0,36}$	4838,00 (13)	0,00004(3)	47
$\alpha_{0,34}$	4882,14 (13)	0,000086	44
$lpha_{0,33}$	$4915,\!86\ (13)$	0,0007	9,5
$\alpha_{0,32}$	$4971,\!62$ (15)		
$lpha_{0,30}$	$5039,83\ (15)$		
$\alpha_{0,29}$	5045, 49(14)		
$\alpha_{0,28}$	5047,73(13)		
$\alpha_{0,27}$	5091,70(14)	0,0001	1000
$\alpha_{0,25}$	5140,81 (13)		
$\alpha_{0,24}$	5151,60(15)	0,00011	2300
$\alpha_{0,23}$	5178, 13(13)	$\sim 0,0004$	~ 1000
$\alpha_{0,22}$	5185,27 (13)	$\sim 0,0004$	~ 1000
$\alpha_{0,21}$	5193,04 (16)		
$\alpha_{0,20}$	5203,70(13)	0,0004	1400

KRI /V. P. Chechev, N. K. Kuzmenko

	Energy	Probability	\mathbf{F}
	keV	\times 100	
$\alpha_{0,19}$	$5219,\! 6\ (2)$		
$\alpha_{0,18}$	5242,25 (13)	0,0007	1400
$\alpha_{0,17}$	5266, 89(13)	0,0003	4600
$\alpha_{0,16}$	5269,21(13)	0,0009	1600
$\alpha_{0,15}$	5277,90(23)	0,0006	2700
$\alpha_{0,14}$	5305,44(13)		
$\alpha_{0.13}$	5313,40(13)	0,0013	2100
$\alpha_{0.12}$	5321,0(3)		
$\alpha_{0.11}$	5332,77(13)	0,0022 (3)	1600
$\alpha_{0.9}$	5370,25(13)	0,0005	12000
$\alpha_{0.8}$	5411,82 (13)	0,014(3)	770
$\alpha_{0,6}$	5479,32(13)	1,66(3)	16,4
$\alpha_{0,5}$	5507,83(13)	~ 0.01	≈ 4000
$\alpha_{0.4}$	5534,86(12)	13,23(10)	$4,\!3$
$\alpha_{0,3}$	5561,92 (12)	< 0,04	> 2000
$\alpha_{0,2}$	5578,28 (12)	84,45(10)	1,3
$\alpha_{0,1}$	5604,62 (12)	0,23(1)	600
$\alpha_{0,0}$	5637,82 (12)	0,38(1)	610
-) -			

2.2 Gamma Transitions and Internal Conversion Coefficients

keV × 100	
$\gamma_{10.0}(Np)$ 13.81 (2) M1 + 0.10 % E2 365 (7)	494 (10)
$\gamma_{10,9}(10,9)$ 10,01 (2) $11 + 0,10 + 0.12$ $000 (7)$	8 (2)
$\gamma_{2,1}(1,p)$ 20,01100 (21) 21 (0) 111 anomalous 0 (2) 1,0 (2) $\gamma_{4,3}(Np)$ 27.06 (1)	0 (2)
$\gamma_{27,26}(Np) = 21,000 (1)$ $\gamma_{27,26}(Np) = 31.92 (8)$	
$\gamma_{(-1,1)}(Np) = 32.183 = 0.0174 (4)$	
$\gamma_{1,0}$ (Np) 33,1963 (3) 21,3 (30) M1 + 1,66 % E2 131 (17) 33 (5)	175 (24)
$\gamma_{17,14}$ (Np) 38,54 (3) M1 + > 30 % E2 > 94 > 345 >	472
$\gamma_{3,1}(Np)$ 42,704 (5) ≈ 0.42 (9) (M1 + ≈ 1.7 % E2) ≈ 56 (5) ≈ 13.9 (14)	÷ 75 (7)
$\gamma_{4,2}(Np)$ 43,420 (3) 12,1 (16) M1 + 16,6 % E2 132 (17) 35 (5)	180 (23)
$\gamma_{14,10}(Np)$ 51,01 (3) 0,000046 (21) E1 0,564 (11) 0,141 (3) 0	753 (11)
$\gamma_{5,3}(Np)$ 54,09 (3)	
$\gamma_{6,4}(Np)$ 55,56 (2) 1,19 (16) M1 + 17,5 % E2 48 (4) 12,6 (11)	65~(6)
$\gamma_{13,9}(Np)$ 56,86 (3)	
$\gamma_{(-1,2)}(Np)$ 57,85 (5)	
$\gamma_{2,0}(Np)$ 59,5409 (1) 77,6 (25) E1 anomalous 0,84 (6) 0,226 (7)	1,16(7)
$\gamma_{7,5}(Np)$ 61,56 (7)	
$\gamma_{14,9}(Np)$ 64,83 (2) 0,000196 (28) E1 0,301 (6) 0,0744 (15) 0	400(8)
$\gamma_{8,6}(Np) \qquad 67,50 (2) \qquad 0,013 (4) \qquad (M1 + 17 \% E2) \qquad 22 (5) \qquad 5,7 (13)$	29(6)
$\gamma_{4,1}(Np)$ 69,76 (3) 0,0039 (5) (E1) 0,248 (5) 0,0612 (12) 0	330(7)
$\gamma_{3,0}(Np)$ 75,90 (1) 0,032 (E2) 38,6 (8) 10,76 (22)	53,1(11)
$\gamma_{36,33}(Np)$ 77,86 (4)	
$\gamma_{11,8}(Np)$ 79,05 (3)	
$\gamma_{15,9}(Np)$ 92,35 (20)	
$\gamma_{5,1}(Np)$ 96,79 (3) 0,00047 (16)	
$\gamma_{6,2}(Np)$ 98,97 (2) 0,329 (10) E2 11,07 (22) 3,08 (6)	15,2(3)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{4,0}(Np)$	102,98 (2) 106,42 (5)	0,0218 (5)	E1		0,0895 (18)	0,0219 (4)	0,1189 (24)
$\gamma_{(-1,3)}(Np)$ $\gamma_{20,13}(Np)$	100,42 (3) 109,70 (7)	0.000051	[E2]		6.86(14)	1.91(4)	9.44(19)
$\gamma_{7,3}(Np)$	115,65(6)	-)	LJ)- ()	-) (-)
$\gamma_{21,13}(\mathrm{Np})$	120, 36 (8)						
$\gamma_{8,4}(Np)$	123,05(1)	0,00675(30)	E2	0,184(4)	4,05 (8)	1,127(23)	5,75(12)
$\gamma_{6,1}(Np)$	125,30(2)	0,00533 (26)	(E1)	0,228 (5)	0,0538(11)	0,0132 (3)	0,299 (6)
$\gamma_{(-1,4)}(Np)$	128,05 120.07(6)						
$\gamma_{20,11}(Np)$ $\gamma_{23,13}(Np)$	125,07(0) 135,27(4)						
$\gamma_{(-1,5)}(Np)$	136,7						
$\gamma_{30,23}(Np)$	138,30 (9)						
$\gamma_{29,22}(Np)$	139,44 (8)	0,000023 (5)	[E2]	0,211 (4)	2,29(5)	$0,\!638~(13)$	$3,\!37~(7)$
$\gamma_{11,6}(Np)$	146,55(3)	0,00172(5)	E2	0,210(4)	1,83(4)	0,51(1)	2,73(6)
$\gamma_{8,3}(Np)$	150,04(3)	0,000087(6)	[E1]	0,152(3)	0,0339(7)	0,00827(17)	0,197(4)
$\gamma_{26,15}(\text{Np})$	154,27 (20) 156.4 (3)	0,000004		5,59(11)	1,108 (22)	0,269 (6)	7,06 (14)
$\gamma_{(-1,6)}(Np)$	159.26(20)	0.0000016 (6)	[E1]	0.132(3)	0.0292(6)	0.00711(14)	0.171(4)
$\gamma_{24,13}(Np)$	161,54(10)	0.000011	[M1]	4.91(10)	0.971(19)	0,236(5)	6.20(12)
$\gamma_{9,4}(Np)$	164,61(2)	0,000178 (9)	E2	0,195(4)	1,095(22)	0,304(6)	1,70 (4)
$\gamma_{13,6}(\mathrm{Np})$	165,81 (6)	0,00011 (5)	[M1 + E2]	2,4 (22)	0,98 (8)	0,26 (4)	3,7(22)
$\gamma_{18,8}(Np)$	169,56 (3)	0,000427 (26)	E2	0,189(4)	0,961 (19)	0,267~(6)	1,51(3)
$\gamma_{11,5}(Np)$	175,07(4)	0,000021 (3)	[E1]	0,1066~(21)	0,0230(5)	0,00560 (11)	0,137(3)
$\gamma_{(-1,7)}(Np)$	190,4 101.06 (4)	0 0000415 (20)	[F9]	0.162(3)	0.561(11)	0.155(3)	0.032 (10)
$\gamma_{25,11}(Np)$	191,90(4) 196 76 (8)	0,0000413(20) 0,0000054	[E2]	0,102(3) 0.0816(16)	0.0172(4)	0,135(3) 0,00418(9)	0,932(19) 0 1045 (21)
$\gamma_{(-1.8)}(Np)$	201.70(0)	0.0000008		0,0010 (10)	0,0112 (1)	0,00110 (0)	0,1010 (21)
$\gamma_{18,7}(Np)$	204,06 (6)	0,00000226 (7)	[E1]	0,0752 (15)	0,0157 (3)	0,00382 (8)	0,0960 (19)
$\gamma_{9,2}(Np)$	208,005 (23)	0,00313 (6)	M1 + 2,38 % E2	2,35(5)	0,473 (9)	0,1149(23)	2,98 (6)
$\gamma_{13,4}(\mathrm{Np})$	221,46 (3)	0,00011 (5)	[M1 + E2]	1,1 (10)	0,35~(5)	0,090~(7)	1,5~(10)
$\gamma_{26,10}(Np)$	232,81(5)	0,0000155(4)	[M1]	1,76(4)	0,345(7)	0,0837(17)	2,22(5)
$\gamma_{9,1}(Np)$	234,40(4)	0,0000080(8)	M2	5,60(11)	1,95(4)	0,511 (10)	8,24(17)
$\gamma_{26,9}(Np)$	240,75(10) 248.52(3)	0,00000705(22) 0.00000155(3)	[1VI1] [E1]	1,49(3) 0.0482(10)	0,294(0) 0.00975(20)	0,0711(14) 0,00236(5)	1,00(4) 0.0612(12)
$\gamma_{248}(Np)$	240,32(9) 260.22(9)	0,00000100 (0)		0,0402 (10)	0,00010 (20)	0,00230 (0)	0,0012 (12)
$\gamma_{22,7}(Np)$	261,00(7)	0,00000169(8)	[E2]	0,0979 (20)	0,156(3)	0,0428 (9)	0,312~(6)
$\gamma_{27,10}(Np)$	264,76(7)						
$\gamma_{13,2}(\mathrm{Np})$	264,88 (3)	0,000018 (7)	[M1 + E2]	0,7~(6)	0,19(5)	0,049 (9)	0,9~(7)
$\gamma_{9,0}(Np)$	267,54(4)	0,000055 (2)	E1 + 19,4 % M2	0,74(4)	0,238 (12)	0,062 (2)	1,06~(6)
$\gamma_{(-1,9)}(Np)$	270,63(15) 271.54						
$\gamma_{(-1,10)}(\mathbf{N}\mathbf{p})$	271,54 275.77 (8)	0.000011(4)	[M1 + E2]	0.6(5)	0.17(5)	0.043(9)	0.8(6)
$\gamma_{20,8}(Np)$ $\gamma_{27,9}(Np)$	278,04(15)	0.00000270(8)	[M1]	1.072(21)	0.210(4)	0.0509(10)	1.35(3)
$\gamma_{13,1}(Np)$	291,3(2)	0,00000318 (8)	[E1]	0,0341(7)	0,00671(14)	0,00162 (3)	0,0430 (9)
$\gamma_{16,3}(\mathrm{Np})$	292,77 (6)	0,0000173 (4)	[E2]	0,0796 (16)	0,0991 (20)	0,0270 (6)	0,215 (4)
$\gamma_{15,2}(Np)$	300,13(6)		(- .)				(-)
$\gamma_{20,5}(Np)$	304,21(20)	0,000000966(21)	[E1]	0,0310(6)	0,00607(12)	0,00147(3)	0,0391(8)
$\gamma_{16,2}(Np)$	309,1(3)	0,00000210 (31)	[E1]	0,0300 (6)	0,00585(12)	0,00142(3)	0,0377 (8)
$\gamma_{12,0}(Np)$	310,8(2) 322,52(4)						
$\gamma_{22,9}(Np)$ $\gamma_{22,5}(Np)$	322,56 (3)	0.000257(7)	(M1 + 26.5 % E2)	0.541(8)	0.1204(17)	0.0297(5)	0.702(12)
$\gamma_{(-1,11)}(Np)$	324,69	0,0000018 (3)		,- (~)	, - ()	, (~)	,
$\gamma_{(-1,12)}(Np)$	$329,\!69$	0,0000011 (2)					
$\gamma_{14,0}(\mathrm{Np})$	332,35(3)	0,000172 (5)	E2	0,0631 (13)	0,0611 (12)	0,0165~(4)	0,147~(3)
$\gamma_{16,1}(Np)$	335,37(3)	0,00084(4)	M1 + 17,3 % E2	0,54(7)	0,113(8)	0,0278(10)	0,69(8)
$\gamma_{17,1}(Np)$	337,7 (2) 350 71	0,00000556 (10) 0,00000130 (5)	(E2)	0,0612 (12)	0,0575 (11)	0,0156 (3)	0,140(3)
$\gamma_{20,2}(Np)$	358.25(20)	0.0000133(5)	[E1]	0.0220(4)	0.00419(8)	0.00101(2)	0.0275(6)
$\gamma_{16,0}(Np)$	368,62(3)	0,000347(9)	(M1)	0,494 (10)	0,0963 (19)	0,0233 (5)	0,622 (12)
· · · · · · · · · · · · · · · · · · ·	· · · · ·		× ,	, ()	, ()	· \ /	

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{17,0}(Np)$	370,94(3) 374.83	0,000080 (4) 0,0000313 (5)	M1 + 16 % E2	0,42 (6)	0,086 (8)	0,0211 (10)	0,53~(7)
$\gamma_{22.3}(Np)$	376,65(3)	0,000225(9)	(M1)	0,466 (9)	0,0908(18)	0,0220(5)	0,586(12)
$\gamma_{23,3}(Np)$	383,81(3)	0,000037(7)	[M1 + E2]	0,25(20)	0,06 (3)	0,015(6)	0,33 (23)
$\gamma_{(-1,15)}(Np)$	389,0 (3)	0,0000005					
$\gamma_{(-1,16)}(Np)$	390,61(5)	0,00000573 (8)					
$\gamma_{32,9}(Np)$	398,64(15)			0.00 (10)	0.054 (00)	0.010 (0)	0.00 (01)
$\gamma_{29,7}(Np)$	400,78(10)	0,0000018(5)	[M1 + E2]	0,22 (18)	0,054 (23)	0,013(6)	0,29(21)
$\gamma_{30,7}(\text{Np})$	400,35(13) 411.97	0,00000175(28) 0,00000018(4)	[M1 + E2]	0,21(17)	0,052 (22)	0,015(5)	0,28 (20)
$\gamma_{22,1}(Np)$	419.33(4)	0.000036(5)	[M1 + E2]	0.19(16)	0.047(21)	0.012(5)	0.26(18)
$\gamma_{23,1}(Np)$	426,47(4)	0,000039 (9)	[M1 + E2]	0,19(15)	0,045(20)	0,011(5)	0,25 (18)
$\gamma_{(-1,18)}(Np)$	429,9(1)	0,00000109 (5)					
$\gamma_{(-1,19)}(Np)$	440,63	0,0000056 (3)					
$\gamma_{(-1,20)}(Np)$	442,81(7)	0,00000331(7)					
$\gamma_{35,13}(Np)$	446,15(6)	0,00000011(2)	[[[]]]	0.0257.(7)	0.0205 (4)	0.00542(11)	0.0625(12)
$\gamma_{22,0}(Np)$	452,0(2) 454.66(8)	0,00000251(7)	[E2] [M1]	0,0357(7) 0.279(6)	0,0205(4) 0.0542(11)	0,00543(11) 0.0131(3)	0,0035(13) 0.351(7)
$\gamma_{26,2}(Np)$	459.68(10)	0,0000129(2) 0,0000043(5)	[M1] [M1 + E2]	0,279(0) 0.15(12)	0,0342(11) 0.036(17)	0,0131(3) 0,009(4)	0,331(7) 0.20(14)
$\gamma_{29.5}(Np)$	462,34 (8)	0,0000012	[M1 + E2]	0,15(12) 0,15(12)	0,035(17)	0,000(1) 0,009(4)	0,20(11) 0,20(14)
$\gamma_{30,5}(Np)$	468,12 (15)	0,0000032 (4)	[M1 + E2]	0,15(12)	0,034(16)	0,008(4)	0,19(14)
$\gamma_{(-1,21)}(Np)$	486,05	0,00000105 (6)					
$\gamma_{28,4}(Np)$	487,13 (4)	0,0000080 (6)	[M1]	0,232~(6)	0,0449 (9)	0,0109~(2)	0,291~(6)
$\gamma_{(-1,22)}(Np)$	494,39	0,0000010(2)					
$\gamma_{(-1,23)}(Np)$	501,39	0,0000014(2)	[171]	0.0107(9)	0.00105(4)	0.00047 (1)	0.0199 (9)
$\gamma_{27,1}(Np)$	512,5(3) 514.0(5)	0,00000210 (41) 0.0000039 (2)	[E1]	0,0107(2) 0.0106(2)	0,00195(4) 0.00194(4)	0,00047(1) 0.00047(1)	0,0133(3) 0.0132
$\gamma_{26,0}(Np)$ $\gamma_{30,3}(Np)$	514,0(3) 522.06(15)	0.00000113(11)	[M1 + E2]	0.0100(2)	0.025(13)	0.0047(1) 0.006(3)	0.14(10)
$\gamma_{(-1,24)}(Np)$	525,14	0,0000016 (3)		0,11 (0)	0,020 (10)	0,000 (0)	0,11 (10)
$\gamma_{38,13}(Np)$	529,17(20)	0,00000072 (5)	[E2]	0,0269 (5)	0,0124 (2)	0,00324 (6)	0,0437 (9)
$\gamma_{(-1,25)}(Np)$	$532,\!44$	0,0000008 (2)					
$\gamma_{27,0}(Np)$	546,12(6)	0,0000025(3)	[E1]	0,00947 (19)	0,00171 (3)	0,00041 (1)	0,0117~(2)
$\gamma_{(-1,26)}(Np)$	548,15	0,00000005(2)					
$\gamma_{(-1,27)}(Np)$	563.46 (2)	0,00000009(2) 0.000000460(21)	[F9]	0.0241.(5)	0.0102(2)	0.00266 (5)	0.0378 (8)
$\gamma_{33,6}(Np)$	573,40(2) 573,94(20)	0,000000400(21) 0,00000142(12)	[M1 + E2]	0,0241(3) 0.09(7)	0,0102(2) 0.019(10)	0,00200(3) 0.0027(16)	0,0378(8) 0.11(8)
$\gamma_{(-1,28)}(Np)$	582,89	0,00000112 (12) 0,00000101 (6)		0,00 (1)	0,010 (10)	0,0021 (10)	0,11 (0)
$\gamma_{31,2}(Np)$	586,59(20)	0,00000128(5)	[E2]	0,0224 (4)	0,00903 (18)	0,00235(5)	0,0346~(7)
$\gamma_{28,0}(\mathrm{Np})$	590,09(4)	0,00000283 (6)	[E1]	0,00818 (16)	0,00147(3)	0,000351 (7)	0,0101 (2)
$\gamma_{34,6}(\mathrm{Np})$	597, 19(2)	0,0000080 (5)	[M1 + E2]	0,08~(6)	0,017~(9)	0,0042 (20)	0,10~(7)
$\gamma_{(-1,29)}(Np)$	600,26	0,0000022(3)			0.016 (0)	0.0007 (10)	
$\gamma_{33,4}(Np)$	619,01(2)	0,000065(5)	[M1 + E2] [M1 + E2]	0,07(5)	0,016(8)	0,0037(10)	0,09(7)
$\gamma_{38,8}(Np)$	632.93(15)	0,000000000 (4) 0,00000124 (5)	[M1 + E2]	0,07(3)	0,015 (8)	0,0057(10)	0,09 (0)
$\gamma_{(-1,20)}(Np)$	636.9	0.00000124(3)					
$\gamma_{36.6}(Np)$	641,32(4)	0,0000076(5)	[M1 + E2]	0,06(5)	0,014(8)	0,0035(10)	0.08(6)
$\gamma_{34,4}(Np)$	652,73 (2)	0,0000410 (25)	[M1 + E2]	0,06(5)	0,013 (7)	0,0033 (10)	0,08 (6)
$\gamma_{33,2}(Np)$	662,40(2)	0,00045 (10)	(E0+M1+E2)	0,18~(4)	0,045~(15)		0,23~(5)
$\gamma_{32,0}(Np)$	666,2(2)	0,0000095(7)	[mag]			(.)	(-)
$\gamma_{36,5}(Np)$	669,83(2)	0,00000051(7)	[E1]	0,00647(13)	0,00114(2)	0,00073(1)	0,0080(2)
$\gamma_{37,5}(Np)$	670,70,(13)	0,0000091(7)	[E2,M1]	0,00(4)	0,012(7)	0,0030(15)	0,07(5)
$\gamma_{34,3}(Np)$	679,79(2) 688,72(4)	0,00000334(8)	[E1]	0,00030(13) 0.00615(12)	0,00111(2) 0.00108(2)	0,000203(5)	0,00770(10) 0.00758(16)
$\gamma_{(-1,21)}(Np)$	693.46	0.0000354(7)		0,00010 (12)	0,00100 (2)	0,000200 (0)	0,00100 (10)
$\gamma_{34,2}(Np)$	696, 14(2)	0,0000055(3)	[M1 + E2]	0,05~(4)	0,011 (6)	0,0028 (10)	0,07~(5)
$\gamma_{(-1,32)}(Np)$	709,42(5)	0,00000641 (18)		· · · · ·			/
$\gamma_{(-1,33)}(Np)$	712,5	0,00000020 (3)					
$\gamma_{33,0}(Np)$	721,96(2)	0,000197 (5)	[E1]	0,0056(1)	0,00099(2)	0,00024 (1)	0,0070(2)
$\gamma_{37,3}(\mathrm{Np})$	729,72(15)	0,00000151 (6)	[M1]	0,079(2)	0,0151 (4)	0,0036(1)	0,099(2)

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes \ 100$	Multipolarity	α_K	$lpha_L$	$lpha_M$	α_T
$\gamma_{(-1,34)}(Np)$	731,44	0,00000046 (4)					
$\gamma_{(-1,35)}(Np)$	736,68	0,00000128(5)					
$\gamma_{35,1}(Np)$	737,34(5)	0,00000794 (8)					
$\gamma_{(-1,36)}(Np)$	$740,\!51$	0,0000019 (3)					
$\gamma_{(-1,37)}(\mathrm{Np})$	742,9(3)	0,0000035					
$\gamma_{(-1,38)}(Np)$	745,02	0,0000009(2)					
$\gamma_{(-1,39)}(Np)$	750,39	0,0000006(2)	[17,4]	0.0050(1)	0.00001 (1)	0.000017 (4)	0.0004(1)
$\gamma_{34,0}(\text{Np})$	755,68(2)	0,00000789(11)	[E1]	0,0052(1)	0,00091(1)	0,000217 (4)	0,0064(1)
$\gamma_{(-1,40)}(\text{Np})$	763.31	0,00000181(5) 0,00000023(2)					
$\gamma(-1,41)(\mathbf{N}\mathbf{p})$	766, 62, (4)	0,00000023(2) 0,00000504(6)	[E1]	0.00507(10)	0.00088(2)	0.000211.(4)	0.00623.(12)
$\gamma_{35,1}(\mathbf{Np})$	770.57(10)	0.00000481(5)		0,00501 (10)	0,00000 (2)	0,000211 (4)	0,00025 (12)
$\gamma_{33,0}(1,p)$ $\gamma_{37,1}(Np)$	772.57(12)	0,00000303(5)	[M1]	0.0675(14)	0.0129(3)	0.00312(6)	0.0847(17)
$\gamma_{(-1,42)}(Np)$	774,67	0,00000011(2)		, , ,	, , ,	, , ,	, , ,
$\gamma_{(-1,43)}(Np)$	777,39	0,00000015(2)					
$\gamma_{(-1,44)}(Np)$	$780,\!53$	0,0000031 (2)					
$\gamma_{(-1,45)}(Np)$	782,2 (5)	0,0000015					
$\gamma_{39,3}(\mathrm{Np})$	786,00 (15)	0,0000062(0)					
$\gamma_{(-1,46)}(Np)$	789,0(3)	0,0000042 (6)					
$\gamma_{(-1,47)}(Np)$	792,6	0,0000003(1)					
$\gamma_{(-1,48)}(Np)$	(94,92)(20)	0,00000094 0,00000192 (7)					
$\gamma_{39,2}(\text{INP})$	801,94 (20) 803 19	0,00000125(7) 0,0000016(3)					
$\gamma_{(-1,49)}(\mathbf{N}\mathbf{p})$	805,77 (12)	0.00000010(3)	[M1.E2]	0.037(24)	0.008(4)	0.0019(10)	0.05(3)
$\gamma_{(-1.50)}(Np)$	811.9(3)	0.00000063 (6)	[[[]]]	0,001 (21)	0,000 (1)	0,0010 (10)	0,00 (0)
$\gamma_{(-1,51)}(Np)$	819,33	0,00000043 (6)					
$\gamma_{(-1,52)}(Np)$	822,21	0,00000024 (6)					
$\gamma_{39,1}(\mathrm{Np})$	828,60 (12)	0,00000021 (4)					
$\gamma_{(-1,53)}(Np)$	$835,\!21$	0,0000003 (1)					
$\gamma_{(-1,54)}(Np)$	838,88	0,0000004 (1)					
$\gamma_{(-1,55)}(Np)$	841,14	0,0000010(3)					
$\gamma_{(-1,56)}(Np)$	843,7	0,00000097 (8)					
$\gamma_{(-1,57)}(Np)$	840,80 847.4.(5)	0,0000010(3)					
$\gamma_{(-1,58)}(Np)$	851.6(10)	0,0000003					
$\gamma(-1,59)(Np)$	854.95	0.00000023(4)					
$\gamma_{(-1,61)}(Np)$	856,26	0,00000010(3)					
$\gamma_{40,2}(Np)$	861,34 (20)	0,00000008					
$\gamma_{39,0}(\mathrm{Np})$	861,80 (12)	0,00000061 (6)					
$\gamma_{(-1,62)}(Np)$	$870,\!63$	0,00000150 (3)					
$\gamma_{(-1,63)}(Np)$	882	0,0000004(1)					
$\gamma_{(-1,64)}(Np)$	886,53	0,0000015(3)					
$\gamma_{40,1}(Np)$	887,68 (20)	0,00000033(6)					
$\gamma_{(-1,65)}(Np)$	890,38	0,00000032(5) 0,0000003(1)					
$\gamma_{(-1,66)}(Np)$	894,47	0,00000003(1)					
$\gamma_{(-1,67)}(\mathbf{Np})$	902.61	0.00000033(3)					
$\gamma_{(-1,69)}(Np)$	909.95	0.00000005(1)					
$\gamma_{(-1,70)}(Np)$	912,4	0,00000028 (3)					
$\gamma_{40,0}(\mathrm{Np})$	920,88 (20)	0,00000019 (3)					
$\gamma_{(-1,71)}(\mathrm{Np})$	928,95	0,00000009 (2)					
$\gamma_{(-1,72)}(Np)$	939,2	0,00000005 (1)					
$\gamma_{41,0}(Np)$	946,06	0,00000010 (3)					
$\gamma_{(-1,73)}(Np)$	952,72	0,0000003(1)					
$\gamma_{(-1,74)}(Np)$	955,91	0,000000000(5)					
$\gamma_{42,0}(\text{Np})$	962,19	0,0000004(1)					
$\gamma(-1,75)$ (Np) $\gamma(-1,75)$ (Np)	909,09 980 84	0,00000000000000000000000000000000000					
$\gamma_{43.0}(Np)$	1014.33	0,0000010(2)					
, 10,0 (17)	,	, (-)					

3 Atomic Data

3.1 Np

ω_K	:	$0,\!971$	(4)
$\bar{\omega}_L$:	0,511	(20)
n_{KL}	:	0,791	(5)

3.1.1 X Radiations

		$egin{array}{c} { m Energy} \\ { m keV} \end{array}$		Relative probability
X_{K}				
	$K\alpha_2$	97,069		62,82
	$K\alpha_1$	101,059		100
	$\mathrm{K}eta_3$	113,303	}	
	$\mathrm{K}eta_1$	114,234	}	
	$\mathrm{K}eta_5''$	114,912	}	$36,\!21$
	$K\beta_2$	117.463	}	
	$K\beta_4$	117,876	}	12,47
	$\mathrm{KO}_{2,3}$	118,429	}	,
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$11,\!89$		
	$L\alpha$	$13,\!76-13,\!944$		
	$\mathrm{L}\eta$	$15,\!876$		
	$L\beta$	$16,\!13-17,\!79$		
	$\mathrm{L}\gamma$	$20,\!12-22,\!2$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY 1	73,50 - 83,13 90,36 - 97,28 107,10 - 114,58	$100 \\ 60,2 \\ 9,06$

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,36}$	4757,58(13)	0,00004 (3)
$\alpha_{0,34}$	4800,99 (13)	0,000086
$lpha_{0,33}$	4834,15(13)	0,0007
$\alpha_{0,32}$	4888,98(15)	
$lpha_{0,30}$	4956,06(15)	
$\alpha_{0,29}$	4961, 63(14)	
$\alpha_{0,28}$	4963,83(13)	
$\alpha_{0,27}$	5007,07(14)	0,0001
$\alpha_{0,25}$	5055, 36(13)	
$\alpha_{0,24}$	5065,97(15)	0,00011
$\alpha_{0,23}$	5092,06(13)	$\sim 0,0004$
$\alpha_{0,22}$	5099,08(13)	$\sim 0,0004$
$\alpha_{0,21}$	5106,72(16)	
$\alpha_{0,20}$	5117,21 (13)	0,0004
$\alpha_{0,19}$	5132,8(2)	
$\alpha_{0,18}$	5155, 12 (13)	0,0007
$\alpha_{0,17}$	$5179,35\ (13)$	0,0003
$\alpha_{0,16}$	$5181,\!63\ (13)$	0,0009
$\alpha_{0,15}$	5190, 17 (23)	0,0006
$\alpha_{0,14}$	5217, 26 (13)	
$\alpha_{0,13}$	5225,08 (13)	0,0013
$\alpha_{0,12}$	$5232,\! 6\ (3)$	
$\alpha_{0,11}$	5244, 13 (13)	0,0022 (3)
$lpha_{0,9}$	5280,99 (13)	0,0005
$lpha_{0,8}$	$5321,\!87$ (13)	0,014~(3)
$lpha_{0,6}$	5388,25 (13)	1,66(3)
$lpha_{0,5}$	5416,28 (13)	$\sim 0,01$
$\alpha_{0,4}$	5442,86(12)	$13,\!23\ (10)$
$lpha_{0,3}$	5469,47 (12)	< 0.04
$\alpha_{0,2}$	5485, 56(12)	84,45(10)
$\alpha_{0,1}$	5511,46 (12)	$0,\!23~(1)$
$lpha_{0,0}$	5544,11 (12)	0,38(1)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Np)	6,04 - 13,52	33,4 (17)
e _{AK}	(Np) KLL KLX KXY	73,50 - 83,13 90,36 - 97,28 107,10 - 114,58	0,000114 (16) } } }
$\begin{array}{c} ec_{2,1} \ L\\ ec_{1,0} \ L\\ ec_{3,1} \ L\\ ec_{2,1} \ M\\ ec_{4,2} \ L\\ ec_{1,0} \ M\\ ec_{1,0} \ N\\ ec_{6,4} \ L\\ ec_{3,1} \ M\\ ec_{2,0} \ L\\ ec_{4,2} \ M\\ ec_{4,2} \ N\\ ec_{6,4} \ M\\ ec_{2,0} \ M\\ ec_{6,4} \ N\\ ec_{6,4} \ L\\ ec_{6,4} \ N\\ ec_{6,4} \ N\\ ec_{6,4} \ L\\ ec_{6,4} \ N\\ ec_{6,4} \ L\\ ec_{6,4} \ N\\ ec_{6,4} \ L\\ ec_{6,4} \ L\\ ec_{6,4} \ N\\ ec_{6,4} \ L\\ ec_{6,6} $	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	3,92 - 8,73 10,769 - 15,590 20,28 - 25,09 20,606 - 22,681 20,99 - 25,81 27,46 - 29,53 31,70 - 32,79 33,13 - 37,95 36,97 - 39,04 37,114 - 41,930 37,68 - 39,76 41,92 - 43,02 49,82 - 51,90 53,802 - 55,877 54,06 - 55,16 76,54 - 81,36	$\begin{array}{c} 14 \ (5) \\ 15,9 \ (21) \\ 0,31 \ (7) \\ 3,7 \ (5) \\ 8,8 \ (12) \\ 4,0 \ (6) \\ 1,08 \ (16) \\ 0,87 \ (11) \\ 0,076 \ (17) \\ 30,2 \ (22) \\ 2,3 \ (4) \\ 0,65 \ (9) \\ 0,228 \ (30) \\ 8,12 \ (25) \\ 0,062 \ (8) \\ 0,225 \ (5) \end{array}$
$ec_{6,2}$ M	(Np)	93,23 - 95,31	0,0625 (0) 0,0625 (16)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	$11,\!89 - 22,\!2$		36,7(21)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	${f (Np)}{f (Np)}$	97,069 101,059		$0,00113 (3) \\ 0,00181 (5)$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	$egin{array}{c} (\mathrm{Np}) \ (\mathrm{Np}) \ (\mathrm{Np}) \end{array}$	$113,303 \\114,234 \\114,912$	} } }	0,000658 (21)	$\mathrm{K}'eta_1$
$\begin{array}{l} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \end{array}$	(Np) (Np)	117,463 117,876	} }	0,000226 (8)	$\mathrm{K}'eta_2$

		Energy keV		Photons per 100 disint.	
$\rm XKO_{2,3}$	(Np)	118,429	}		

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
		1
$\begin{array}{c} \gamma_{2,1}(\mathrm{Np}) \\ \gamma_{(-1,1)}(\mathrm{Np}) \\ \gamma_{1,0}(\mathrm{Np}) \\ \gamma_{3,1}(\mathrm{Np}) \\ \gamma_{4,2}(\mathrm{Np}) \\ \gamma_{14,10}(\mathrm{Np}) \\ \gamma_{6,4}(\mathrm{Np}) \\ \gamma_{(-1,2)}(\mathrm{Np}) \\ \gamma_{2,0}(\mathrm{Np}) \\ \gamma_{14,9}(\mathrm{Np}) \\ \gamma_{8,6}(\mathrm{Np}) \\ \gamma_{4,1}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 26,3446 \ (2) \\ 32,183 \\ 33,1963 \ (3) \\ 42,704 \ (5) \\ 43,420 \ (3) \\ 51,01 \ (3) \\ 55,56 \ (2) \\ 57,85 \ (5) \\ 59,5409 \ (1) \\ 64,83 \ (2) \\ 67,50 \ (2) \\ 69,76 \ (3) \end{array}$	$\begin{array}{c} 2,31 \ (8) \\ 0,0174 \ (4) \\ 0,1215 \ (28) \\ 0,0055 \ (11) \\ 0,0669 \ (29) \\ 0,000026 \ (12) \\ 0,0181 \ (18) \\ 0,0052 \ (15) \\ 35,92 \ (17) \\ 0,00014 \ (2) \\ 0,00042 \ (10) \\ 0,0029 \ (4) \end{array}$
$\gamma_{3,0}(Np)$ $\gamma_{5,1}(Np)$ $\gamma_{6,2}(Np)$ $\gamma_{4,0}(Np)$ $\gamma_{4,0}(Np)$	75,90 (1) 96,79 (3) 98,97 (2) 102,98 (2) 106 42 (5)	$\begin{array}{c} 0,0006\\ 0,000047\ (16)\\ 0,0203\ (4)\\ 0,0195\ (4)\\ 0\ 000015\end{array}$
$\gamma_{(-1,3)}(Np)$ $\gamma_{20,13}(Np)$ $\gamma_{21,13}(Np)$ $\gamma_{8,4}(Np)$ $\gamma_{6,1}(Np)$	$100,12 (0) \\109,70 (7) \\120,36 (8) \\123,05 (1) \\125,30 (2)$	$\begin{array}{c} 0,000013\\ 0,0000049\\ 0,0000045\\ 0,00100\ (4)\\ 0.0041\ (2)\end{array}$
$\begin{array}{l} \gamma_{0,1}(1,\mathbf{p}) \\ \gamma_{29,22}(\mathrm{Np}) \\ \gamma_{11,6}(\mathrm{Np}) \\ \gamma_{8,3}(\mathrm{Np}) \\ \gamma_{26,15}(\mathrm{Np}) \end{array}$	$139,44 (8) \\146,55 (3) \\150,04 (3) \\154,27 (20)$	$\begin{array}{c} 0,0011 \\ 0,0000053 \\ (11) \\ 0,00046 \\ (1) \\ 0,000073 \\ (5) \\ 0,0000005 \end{array}$
$ \begin{array}{l} \gamma_{29,20}({\rm Np}) \\ \gamma_{24,13}({\rm Np}) \\ \gamma_{9,4}({\rm Np}) \\ \gamma_{13,6}({\rm Np}) \end{array} $	$\begin{array}{c} 159,26 & (20) \\ 161,54 & (10) \\ 164,61 & (2) \\ 165,81 & (6) \\ 160,552 & (2) \end{array}$	$\begin{array}{c} 0,0000014 \ (5) \\ 0,0000015 \\ 0,000066 \ (3) \\ 0,000023 \ (1) \\ 0,00017 \ (1) \end{array}$
$ \begin{array}{l} \gamma_{18,8}(\mathrm{Np}) \\ \gamma_{11,5}(\mathrm{Np}) \\ \gamma_{(-1,7)}(\mathrm{Np}) \\ \gamma_{25,11}(\mathrm{Np}) \\ \gamma_{29,18}(\mathrm{Np}) \\ \gamma_{(-1,8)}(\mathrm{Np}) \end{array} $	169,56 (3) 175,07 (4) 190,4 191,96 (4) 196,76 (8) 201,70 (14)	$\begin{array}{c} 0,00017 \ (1) \\ 0,000018 \ (3) \\ 0,0000022 \ (5) \\ 0,0000215 \ (10) \\ 0,00000049 \\ 0,0000008 \end{array}$
$\gamma_{18,7}^{(-1,8)}(Np)$	204,06 (6)	0,00000206 (6)

	Energy	Photons
	keV	per 100 disint.
$\gamma_{9,2}(Np)$	208,005(23)	0,000786 (9)
$\gamma_{13,4}(Np)$	221,46(3)	0,0000434 (8)
$\gamma_{26,10}(Np)$	232,81 (5)	0,00000482 (9)
$\gamma_{9,1}(Np)$	234,40(4)	0,0000087 (8)
$\gamma_{26,9}(Np)$	246,73(10)	0,00000244 (7)
$\gamma_{13,3}(Np)$	248,52 (3)	0,00000146 (3)
$\gamma_{22,7}(Np)$	261,00(7)	0,00000129 (6)
$\gamma_{13,2}(Np)$	264,88(3)	0,00000943 (12)
$\gamma_{9,0}(\mathrm{Np})$	267,54 (4)	0,0000268 (6)
$\gamma_{(-1,9)}(Np)$	$270,\!63\ (15)$	0,0000005 (2)
$\gamma_{(-1,10)}(Np)$	$271,\!54$	0,00000144 (5)
$\gamma_{20,6}(Np)$	275,77(8)	0,00000632 (10)
$\gamma_{27,9}(Np)$	278,04 (15)	0,00000115 (3)
$\gamma_{13,1}(Np)$	291,3(2)	0,00000305 (8)
$\gamma_{16,3}(Np)$	292,77 (6)	0,0000142 (3)
$\gamma_{20,5}(Np)$	304,21 (20)	0,00000093 (2)
$\gamma_{16,2}(\rm Np)$	309,1(3)	0,0000020 (3)
$\gamma_{22,5}(Np)$	322,56 (3)	0,000151 (4)
$\gamma_{(-1,11)}(Np)$	$324,\!69$	0,000018 (3)
$\gamma_{(-1,12)}(Np)$	$329,\!69$	0,0000011 (2)
$\gamma_{14,0}(Np)$	$332,\!35~(3)$	0,000150 (4)
$\gamma_{16,1}(Np)$	$335,\!37$ (3)	0,000496 (7)
$\gamma_{17,1}(Np)$	337,7~(2)	0,00000488 (9)
$\gamma_{(-1,13)}(Np)$	350,71	0,00000139(5)
$\gamma_{20,3}(Np)$	$358,\!25\ (20)$	0,00000129(5)
$\gamma_{16,0}(\mathrm{Np})$	$368,\!62$ (3)	0,000214 (5)
$\gamma_{17,0}(\mathrm{Np})$	370,94~(3)	0,0000520 (8)
$\gamma_{(-1,14)}(Np)$	$374,\!83$	0,00000313 (6)
$\gamma_{22,3}(Np)$	$376,\!65\ (3)$	0,000137 (3)
$\gamma_{23,3}(Np)$	$383,\!81\ (3)$	0,0000281 (6)
$\gamma_{(-1,15)}(Np)$	389,0~(3)	0,00000049
$\gamma_{(-1,16)}(Np)$	$390,\!61\ (5)$	0,00000573 (10)
$\gamma_{29,7}(Np)$	400,78(10)	0,00000014 (3)
$\gamma_{30,7}(\rm Np)$	$406,\!35\ (15)$	0,00000137~(5)
$\gamma_{(-1,17)}(Np)$	$411,\!27$	0,0000018 (4)
$\gamma_{22,1}(Np)$	419,33 (4)	0,0000284 (4)
$\gamma_{23,1}(Np)$	$426,\!47$ (4)	0,000031 (6)
$\gamma_{(-1,18)}(Np)$	429,9(1)	0,00000109 (5)
$\gamma_{(-1,19)}(Np)$	440,63	0,00000056 (3)
$\gamma_{(-1,20)}(Np)$	442,81 (7)	0,00000331 (8)
$\gamma_{35,13}(\mathrm{Np})$	446,15~(6)	0,00000011 (2)
$\gamma_{22,0}(\rm Np)$	452,6(2)	0,00000236 (7)
$\gamma_{26,2}(\rm Np)$	$454,\!66$ (8)	$0,00000953\ (12)$
$\gamma_{23,0}(\rm Np)$	$459,\!68\ (10)$	0,00000355 (7)
$\gamma_{29,5}(Np)$	462,34 (8)	0,000001
$\gamma_{30,5}(Np)$	468,12 (15)	0,00000269~(6)
$\gamma_{(-1,21)}(Np)$	486,05	0,00000105~(6)

keVper 100 disint. $\gamma_{28,4}(Np)$ $487,13$ (4) $0,00000062$ (5) $\gamma_{(-1,22)}(Np)$ $501,39$ $0,0000011$ (2) $\gamma_{(-1,23)}(Np)$ $501,39$ $0,0000014$ (2) $\gamma_{27,1}(Np)$ $512,5$ (3) $0,0000038$ (2) $\gamma_{30,3}(Np)$ $522,06$ (15) $0,00000099$ (5) $\gamma_{(-1,24)}(Np)$ $525,14$ $0,00000099$ (5) $\gamma_{(-1,25)}(Np)$ $532,44$ $0,00000008$ (2) $\gamma_{27,0}(Np)$ $546,12$ (6) $0,00000005$ (2) $\gamma_{(-1,26)}(Np)$ $543,46$ (2) $0,00000042$ (2) $\gamma_{33,6}(Np)$ $573,94$ (20) $0,00000128$ (5) $\gamma_{(-1,26)}(Np)$ $582,89$ $0,00000128$ (5) $\gamma_{(-1,29)}(Np)$ $586,59$ (20) $0,00000128$ (5) $\gamma_{(-1,29)}(Np)$ $586,59$ (20) $0,00000124$ (5) $\gamma_{28,0}(Np)$ $590,09$ (4) $0,0000022$ (3) $\gamma_{33,4}(Np)$ $619,01$ (2) $0,00000124$ (5) $\gamma_{(-1,29)}(Np)$ $632,93$ (15) $0,00000124$ (5) $\gamma_{(-1,30)}(Np)$ $636,9$ $0,0000021$ (3) $\gamma_{33,4}(Np)$ $619,01$ (2) $0,0000704$ (10) $\gamma_{34,4}(Np)$ $652,73$ (2) $0,0000051$ (2) $\gamma_{33,2}(Np)$ $662,40$ (2) $0,0000051$ (7) $\gamma_{37,5}(Np)$ $675,78$ (13) $0,0000051$ (7) $\gamma_{33,2}(Np)$ $662,40$ (2) $0,0000051$ (7) $\gamma_{33,4}(Np)$ $679,79$ (2) $0,0000051$ (8) $\gamma_{33,2}(Np)$ $662,40$ (2) $0,0000051$ (7) $\gamma_{33,5}(Np)$ $675,78$ (13) $0,0000051$ (7) $\gamma_{33,5}(Np)$ $679,79$ (2)		Energy	Photons
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$		keV	per 100 disint.
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{28,4}(Np)$	487,13 (4)	0,00000062 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,22)}(Np)$	494,39	0,0000010(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,23)}(Np)$	501,39	0,0000014(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{27.1}(Np)$	512,5(3)	0,0000021(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{26,0}(Np)$	514,0(5)	0,0000038(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{30,3}(Np)$	522,06(15)	0,00000099(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,24)}(Np)$	525,14	0,00000016 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{38,13}(Np)$	529,17(20)	0,00000069(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,25)}(Np)$	532,44	0,00000008(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{27.0}(Np)$	546, 12(6)	0,00000025 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,26)}(Np)$	548,15	0,00000005(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,27)}(Np)$	$555,\!25$	0,00000009 (2)
$\begin{split} &\gamma_{36,8}(\mathrm{Np}) & 573,94 \ (20) & 0,0000128 \ (5) \\ &\gamma_{(-1,28)}(\mathrm{Np}) & 582,89 & 0,00000114 \ (5) \\ &\gamma_{31,2}(\mathrm{Np}) & 590,09 \ (4) & 0,00000280 \ (6) \\ &\gamma_{34,6}(\mathrm{Np}) & 597,19 \ (2) & 0,00000729 \ (11) \\ &\gamma_{(-1,29)}(\mathrm{Np}) & 600,26 & 0,00000022 \ (3) \\ &\gamma_{33,4}(\mathrm{Np}) & 619,01 \ (2) & 0,00000051 \ (2) \\ &\gamma_{32,1}(\mathrm{Np}) & 632,93 \ (15) & 0,00000124 \ (5) \\ &\gamma_{(-1,30)}(\mathrm{Np}) & 636,9 & 0,000000124 \ (5) \\ &\gamma_{(-1,30)}(\mathrm{Np}) & 636,9 & 0,00000021 \ (3) \\ &\gamma_{36,6}(\mathrm{Np}) & 641,32 \ (4) & 0,00000074 \ (10) \\ &\gamma_{34,4}(\mathrm{Np}) & 652,73 \ (2) & 0,0000376 \ (9) \\ &\gamma_{32,0}(\mathrm{Np}) & 666,240 \ (2) & 0,0000051 \ (7) \\ &\gamma_{36,5}(\mathrm{Np}) & 6675,78 \ (13) & 0,00000051 \ (7) \\ &\gamma_{37,5}(\mathrm{Np}) & 675,78 \ (13) & 0,00000051 \ (7) \\ &\gamma_{33,1}(\mathrm{Np}) & 688,72 \ (4) & 0,00000323 \ (6) \\ &\gamma_{(-1,31)}(\mathrm{Np}) & 693,46 & 0,00000354 \ (8) \\ &\gamma_{34,2}(\mathrm{Np}) & 696,14 \ (2) & 0,00000517 \ (8) \\ &\gamma_{(-1,32)}(\mathrm{Np}) & 712,5 & 0,00000020 \ (3) \\ &\gamma_{33,0}(\mathrm{Np}) & 721,96 \ (2) & 0,00000137 \ (5) \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 731,44 & 0,00000028 \ (5) \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 731,44 & 0,000000188 \ (5) \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 740,51 & 0,00000018 \ (4) \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 745,02 & 0,00000055 \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 745,02 & 0,00000055 \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 745,02 & 0,000000188 \ (5) \\ &\gamma_{34,0}(\mathrm{Np}) & 755,68 \ (2) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,55 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,55 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,55 \ (1) & 0,00000023 \ (2) \\ \end{pmatrix}$	$\gamma_{33.6}(Np)$	563, 46(2)	0,00000044 (2)
$\begin{split} &\gamma_{(-1,28)}(\mathrm{Np}) & 582,89 & 0,0000101 \ (6) \\ &\gamma_{31,2}(\mathrm{Np}) & 586,59 \ (20) & 0,0000124 \ (5) \\ &\gamma_{28,0}(\mathrm{Np}) & 590,09 \ (4) & 0,0000280 \ (6) \\ &\gamma_{34,6}(\mathrm{Np}) & 597,19 \ (2) & 0,00000729 \ (11) \\ &\gamma_{(-1,29)}(\mathrm{Np}) & 600,26 & 0,0000022 \ (3) \\ &\gamma_{33,4}(\mathrm{Np}) & 619,01 \ (2) & 0,0000051 \ (2) \\ &\gamma_{32,1}(\mathrm{Np}) & 632,93 \ (15) & 0,00000124 \ (5) \\ &\gamma_{(-1,30)}(\mathrm{Np}) & 636,9 & 0,00000021 \ (3) \\ &\gamma_{36,6}(\mathrm{Np}) & 641,32 \ (4) & 0,00000704 \ (10) \\ &\gamma_{34,4}(\mathrm{Np}) & 652,73 \ (2) & 0,00000704 \ (10) \\ &\gamma_{33,2}(\mathrm{Np}) & 662,40 \ (2) & 0,00000704 \ (10) \\ &\gamma_{34,4}(\mathrm{Np}) & 652,73 \ (2) & 0,0000051 \ (7) \\ &\gamma_{36,5}(\mathrm{Np}) & 666,2 \ (2) & 0,00000051 \ (7) \\ &\gamma_{37,5}(\mathrm{Np}) & 675,78 \ (13) & 0,00000051 \ (7) \\ &\gamma_{33,1}(\mathrm{Np}) & 688,72 \ (4) & 0,00000323 \ (6) \\ &\gamma_{(-1,31)}(\mathrm{Np}) & 693,46 & 0,00000354 \ (8) \\ &\gamma_{(-1,32)}(\mathrm{Np}) & 709,42 \ (5) & 0,00000517 \ (8) \\ &\gamma_{(-1,32)}(\mathrm{Np}) & 712,5 & 0,000000517 \ (8) \\ &\gamma_{(-1,33)}(\mathrm{Np}) & 712,5 & 0,00000020 \ (3) \\ &\gamma_{33,0}(\mathrm{Np}) & 721,96 \ (2) & 0,0000137 \ (5) \\ &\gamma_{(-1,34)}(\mathrm{Np}) & 731,44 & 0,00000018 \ (5) \\ &\gamma_{35,1}(\mathrm{Np}) & 736,68 & 0,00000128 \ (5) \\ &\gamma_{35,1}(\mathrm{Np}) & 737,34 \ (5) & 0,00000018 \ (4) \\ &\gamma_{(-1,36)}(\mathrm{Np}) & 745,02 & 0,00000019 \ (3) \\ &\gamma_{(-1,39)}(\mathrm{Np}) & 750,39 & 0,00000005 \\ &\gamma_{(-1,39)}(\mathrm{Np}) & 750,39 & 0,00000018 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,00000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,00000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,000000181 \ (5) \\ &\gamma_{(-1,41)}(\mathrm{Np}) & 759,5 \ (1) & 0,00000023 \ (2) \\ \end{pmatrix}$	$\gamma_{36.8}(Np)$	573,94 (20)	0,00000128(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,28)}(Np)$	582,89	0,00000101 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{31.2}(Np)$	586,59(20)	0,00000124 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{28,0}(Np)$	590,09 (4)	0,00000280 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{34.6}(Np)$	597,19(2)	0,00000729 (11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,29)}(Np)$	600,26	0,00000022 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{33.4}(Np)$	619,01 (2)	0,000060(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{38.8}(Np)$	627,18 (20)	0,00000051 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{32.1}(Np)$	632,93 (15)	0,00000124 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,30)}(Np)$	636,9	0,00000021 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{36.6}(Np)$	641,32 (4)	0,00000704 (10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{34.4}(Np)$	652,73 (2)	0,0000376 (9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{33,2}(Np)$	662,40(2)	0,000367 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{32.0}(Np)$	666,2(2)	0,00000095 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{36,5}(Np)$	669,83(2)	0,00000051 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{37.5}(Np)$	675,78(13)	0,00000085 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{34,3}(Np)$	679,79(2)	0,00000331 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{33,1}(Np)$	688,72 (4)	0,0000323 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1.31)}(Np)$	693,46	0,00000354 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{34.2}(Np)$	696, 14(2)	0,00000517 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,32)}(Np)$	709,42(5)	0,00000641 (19)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,33)}(Np)$	712,5	0,00000020 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{33.0}(Np)$	721,96(2)	0,000196(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{37,3}(Np)$	729,72 (15)	0,00000137(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,34)}(Np)$	731,44	0,00000046 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1.35)}(Np)$	736,68	0,00000128(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{35.1}(Np)$	737,34 (5)	0,00000794 (11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,36)}(Np)$	740.51	0,00000019(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{(-1,37)}(Np)$	742.9(3)	0,00000035
$\begin{array}{cccc} \gamma_{(-1,35)}(\mathrm{Np}) & 750,39 & 0,00000006 & (2) \\ \gamma_{34,0}(\mathrm{Np}) & 755,68 & (2) & 0,00000784 & (11) \\ \gamma_{(-1,40)}(\mathrm{Np}) & 759,5 & (1) & 0,00000181 & (5) \\ \gamma_{(-1,41)}(\mathrm{Np}) & 763,31 & 0,0000023 & (2) \end{array}$	$\gamma_{(-1,38)}(Np)$	745.02	0.00000009(2)
$\begin{array}{cccc} \gamma_{34,0}(\mathrm{Np}) & 755,68 & (2) & 0,00000784 & (11) \\ \gamma_{(-1,40)}(\mathrm{Np}) & 759,5 & (1) & 0,00000181 & (5) \\ \gamma_{(-1,41)}(\mathrm{Np}) & 763,31 & 0,0000023 & (2) \end{array}$	$\gamma_{(-1,30)}(Np)$	750.39	0.00000006(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{340}(Np)$	755.68(2)	0.00000784(11)
$\gamma_{(-1,41)}(Np)$ 763,31 0,0000023 (2)	$\gamma_{(-1,40)}(Np)$	759.5(1)	0.00000181(5)
(-1,41)(1,12) (00,01 0,00000020 (2)	$\gamma_{(-1,40)}(1,1)$	763.31	0.00000023(2)
	/(-1,41)(**P)	,	-,

	Energy	Photons
	keV	per 100 disint.
$\gamma_{36.1}(Np)$	766,62 (4)	0,00000501 (6)
$\gamma_{35.0}(Np)$	770,57 (10)	0,00000481 (7)
$\gamma_{37,1}(Np)$	772,57 (12)	0,00000279(4)
$\gamma_{(-1.42)}(Np)$	774,67	0,00000011(2)
$\gamma_{(-1,43)}(Np)$	777,39	0,00000015(2)
$\gamma_{(-1.44)}(Np)$	780,53	0,00000031(2)
$\gamma_{(-1,45)}(Np)$	782,2(5)	0,00000015
$\gamma_{39,3}(Np)$	786,00(15)	0,00000062
$\gamma_{(-1,46)}(Np)$	789,0(3)	0,00000042 (6)
$\gamma_{(-1,47)}(Np)$	792,6	0,00000003(1)
$\gamma_{(-1,48)}(Np)$	794,92 (20)	0,00000094
$\gamma_{39,2}(Np)$	801,94(20)	0,00000123 (7)
$\gamma_{(-1,49)}(Np)$	803,19	0,00000016 (3)
$\gamma_{37,0}(Np)$	805,77(12)	0,00000031
$\gamma_{(-1.50)}(Np)$	811,9(3)	0,0000063 (6)
$\gamma_{(-1,51)}(Np)$	819,33	0,00000043 (6)
$\gamma_{(-1.52)}(Np)$	822,21	0,0000024 (6)
$\gamma_{39,1}(Np)$	828,60(12)	0,00000021 (4)
$\gamma_{(-1,53)}(Np)$	835,21	0,0000003 (1)
$\gamma_{(-1,54)}(Np)$	838,88	0,0000004(1)
$\gamma_{(-1,55)}(Np)$	841,14	0,0000010 (3)
$\gamma_{(-1,56)}(Np)$	843,7	0,00000097 (8)
$\gamma_{(-1,57)}(Np)$	846,86	0,0000016 (3)
$\gamma_{(-1,58)}(Np)$	847,4(5)	0,00000027 (3)
$\gamma_{(-1,59)}(Np)$	851,6(10)	0,00000041 (6)
$\gamma_{(-1,60)}(Np)$	$854,\!95$	0,0000023 (4)
$\gamma_{(-1,61)}(Np)$	856, 26	0,0000010 (3)
$\gamma_{40,2}(\mathrm{Np})$	$861,\!34\ (20)$	0,0000008 (3)
$\gamma_{39,0}(Np)$	$861,\!80\ (12)$	0,00000061 (6)
$\gamma_{(-1,62)}(Np)$	$870,\!63$	0,00000150 (4)
$\gamma_{(-1,63)}(Np)$	882	0,00000004 (1)
$\gamma_{(-1,64)}(Np)$	886,53	0,0000015 (3)
$\gamma_{40,1}(\mathrm{Np})$	887,68(20)	0,00000033 (6)
$\gamma_{(-1,65)}(Np)$	890,38	0,0000032 (5)
$\gamma_{(-1,66)}(Np)$	894,47	0,0000003 (1)
$\gamma_{(-1,67)}(Np)$	898,17	0,0000006 (2)
$\gamma_{(-1,68)}(Np)$	902,61	0,0000033 (3)
$\gamma_{(-1,69)}(Np)$	909,95	0,0000005(1)
$\gamma_{(-1,70)}(Np)$	912,4	0,0000028 (3)
$\gamma_{40,0}(\mathrm{Np})$	920,88 (20)	0,00000019 (3)
$\gamma_{(-1,71)}(Np)$	928,95	0,0000009(2)
$\gamma_{(-1,72)}(Np)$	939,2	0,0000005(1)
$\gamma_{41,0}(Np)$	946,06	0,00000010(2)
$\gamma_{(-1,73)}(\mathrm{Np})$	952,72	0,0000003(1)
$\gamma_{(-1,74)}(Np)$	955,91	0,00000060(5)
$\gamma_{42,0}(\mathrm{Np})$	962,19	0,0000004(1)
$\gamma_{(-1,75)}(Np)$	969,09	0,0000003 (1)

	Energy keV	Photons per 100 disint.
$\gamma_{(-1,76)}(\mathrm{Np}) \ \gamma_{43,0}(\mathrm{Np})$	980,84 1014,33	0,00000003 (1) 0,0000010 (2)

7 Main Production Modes

 $\mathrm{Pu}-241(\beta^-)\mathrm{Am}-241$

8 References

- J. K. BELING, J. O. NEWTON, B. ROSE. Phys. Rev. 86 (1952) 797 (gamma-ray emission probabilities.)
- J. F. TURNER. Phil. Mag. 46 (1955) 687 (gamma-ray emission probabilities.)
- H. JAFFE, T. O. PASSELL, C. I. BROWNE, I. PERLMAN. Phys. Rev. 97 (1955) 142 (gamma-ray emission probabilities.)
- R. B. DAY. Phys. Rev. 97 (1955) 689 (gamma-ray emission probabilities.)
- J. M. HOLLANDER, W. G. SMITH, J. O. RASMUSSEN. Phys. Rev. 102 (1956) 1372 (gamma-ray emission probabilities.)
- L. L. GOLDIN, G. I. NOVIKOVA, E. F. TRETYAKOV. Conf. Acad. Sci. USSR Moscow (1956) 226 (energies of alpha-particles, alpha-particle emission probabilities.)
- S. ROSENBLUM, M. VALADARES, J. MILSTED. J. Phys. Radium 18 (1957) 609 (energies of alpha-particles.)
- L. B. MAGNUSSON. Phys. Rev. 107 (1957) 161 (gamma-ray energies and emission probabilities.)
- P. S. SAMOILOV. Columbia Tech. Transl. (Izv.Akad.Nauk SSSR, ser.fiz. 23 (1959) 1416) 23 (1960) 1401 (gamma-ray energy, gamma transition probabilities and multipolarities.)
- F. ASARO, F. S. STEPHENS, J. M. HOLLANDER, I. PERLMAN. Phys. Rev. 117 (1960) 494 (anomalous electric dipole gamma-ray transitions.)
- C. F. LEANG. Comp. Rend. Acad. Sci. (Paris) 255 (1962) 3155 (energies of alpha-particles.)
- J. L. WOLFSON, J. H. PARK. Can. J. Phys. (also Erratum Can. J. Phys. 48(1970)2782) 42 (1964) 1387 (gamma-ray energies and multipolarities.)
- S. A. BARANOV, V. M. KULAKOV, V. M. SHATINSKY. Nucl. Phys. 56 (1964) 252 (alpha-particle energies and emission probabilities.)
- W. MICHAELIS. Z. Phys. 186 (1965) 42
- (alpha particle energies and emission probabilities.)
- G. BERTOLINI, F. CAPPELLANI, G. RESTELLI. Nucl. Instrum. Methods 32 (1965) 86 (gamma-ray emission probabilities.)
- L. D. MCISAAC. Report IDO-17052 (1965) 31 (gamma-ray emission probabilities.)
- W. YAMAZAKI, J. M. HOLLANDER. Nucl. Phys. 84 (1966) 505 (internal conversion probabilities.)
- C. M. LEDERER, J. K. POGGENBURG, F. ASARO, J. O. RASMUSSEN, I. PERLMAN. Nucl. Phys. 84 (1966) 481 (internal conversion coefficients.)
- H. -C. PAULI, K. ALDER. Z. Physik 202 (1967) 255 (anomalous electric dipole gamma-ray transitions.)
- C. GUNTHER, D. R. PARSIGNAULT. Nucl. Phys. A104 (1967) 588 (XK-ray emission probabilities.)

- C. BRIANCON, M. VALADARES, R. J. WALEN. Comp. Rend. 265B (1967) 1496 (gamma-ray emission probabilities.)
- F. L. OETTING, S. R. GUNN. J. Inorg. Nucl. Chem. 29 (1967) 2659 (half-life.)
- L. N. KONDRATEV, E. F. TRETYAKOV. Bull. Acad. Sci. URSS, Phys. Ser. 30 (1967) 393 (internal conversion probabilities.)
- R. E. STONE, E. K. HULET. J. Inorg. Nucl. Chem. 30 (1968) 2003 (half-life.)
- R. W. JEWELL, W. JOHN, R. MASSEY, B. G. SAUNDERS. Nucl. Instrum. Methods 62 (1968) 68 (gamma-ray energies.)
- L. C. BROWN, R. C. PROPST. J. Inorg. Nucl. Chem. 30 (1968) 2591 (half-life.)
- S. A. BARANOV, V. M. KULAKOV, V. M. SHATINSKII. Sov. J. Nucl. Phys. 7 (1968) 442. (energies of alpha-particles.)
- R. KAMOUN, R. BALLINI, S. BERGSTROM-ROHLIN, J. -M. KUCHLY, P. SIFFERT. Comp. Rend. Acad. Sci. (Paris) B266 (1968) 1241 (energies of alpha-particles.)
- A. PEGHAIRE. Nucl. Instrum. Methods 75 (1969) 66 (gamma-ray emission probabilities.)
- G. C. NELSON, B. G. SAUNDERS. Nucl. Instrum. Methods 84 (1970) 90 (gamma-ray energies.)
- V. N. GRIGOREV, A. P. FERESIN. Sov. J. Nucl. Phys. 12 (1970) 361 (anomalous electric dipole gamma-ray transitions.)
- J. E. CLINE. IN-1448 Rev. (1971) (1971) (gamma-ray emission probabilities.)
- R. L. WATSON, T. K. LI. Nucl. Phys. A178 (1971) 201 (LX-ray emission probabilities.)
- B. GRENNBERG, A. RYTZ. Métrologia 7 (1971) 65 (energies of alpha-particle.)
- E. KARTTUNEN, H. U. FREUND, R. W. FINK. Phys. Rev. A4 (1971) 1695 (MX-ray emission probability.)
- R. J. GEHRKE, R. A. LOKKEN. Nucl. Instrum. Methods 97 (1971) 219 (XL- and gamma -ray emission probabilities.)
- J. JOVE, R. ROBERT. Radiochem. Radioanal. Letters 10 (1972) 139 (half-life.)
- R. L. HEATH. Report ANCR 1000 (1974) 2 (gamma ray energies and emission probabilities.)
- W. J. GALLAGHER, S. J. CIPOLLA. Nucl. Instrum. Methods 122 (1974) 405 (LX- ray emission probabilities.)
- J. L. CAMPBELL, L. A. MCNELLES. Nucl. Instrum. Methods 117 (1974) 519 (LX- and gamma - ray emission probabilities.)
- W. W. STROHM, K. C. JORDAN. Trans. Am. Nucl. Soc. 18 (1974) 185 (half-life.)
- V. G. POLYUKHOV, G. A. TIMOFEEV, P. A. PRIVALOVA, P. F. BAKLANOVA. Soviet J. At. Energy 36 (1974) 402 (half-life.)
- H. RAMTHUN, W. MULLER. Int. J. Appl. Radiat. Isotop. 26 (1975) 589 (half-life.)
- J. LEGRAND, J. P. PEROLAT, C. BAC, J. GORRY. Int. J. Appl. Radiat. Isotop. 26 (1975) 179 (gamma ray emission probabilities.)
- J. Plch, J. Zderadicka, L. Kokta. Czech. J. Phys. 26B (1976) 1344 (gamma-ray emission probability.)
- R. GUNNINK, J. E. EVANS, A. L. PRINDLE. Report UCRL-52139 (1976) (LX-, KX- and gamma-ray emission probabilities.)
- A. GENOUX-LUBAIN, G. ARDISSON. Radiochem. Radioanal. Letters 33 (1978) 59 (gamma-ray energies and emission probabilities.)
- V. V. OVECHKIN. Bull. Acad. Sci. URSS, Ser. Phys. 42(1) (1978) 82 (gamma-ray energies and emission probabilities.)
- A. GENOUX-LUBAIN, G. ARDISSON. Comp. Rend. Acad. Sci. (Paris) B287 (1978) 13 (Gamma-ray emission energies and intensities.)

- C. ARDISSON, A. GENOUX-LUBAIN, V. BARCI, G. ARDISSON. Radiochem. Radioanal. Letters 40 (1979) 207 (gamma-ray energies.)
- D. D. COHEN. Nucl. Instrum. Methods 178 (1980) 481 (LX-ray emission probabilities.)
- G. BARREAU, H. G. BORNER, T. VON EGIDY, R. W. HOFF. Z. Phys. A308 (1982) 209 (KX-ray energies.)
- K. DEBERTIN, W. PESSARA. Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (gamma-ray emission probabilities.)
- J. M. R. HUTCHINSON, P. A. MULLEN. Int. J. Appl. Radiat. Isotop. 34 (1983) 543 (gamma-ray emission probabilities.)
- I. AHMAD, J. HINES, J. E. GINDLER. Phys. Rev. C27 (1983) 2239 (LX-, KX-ray energies and KX-, gamma-ray emission probabilities.)
- I. AHMAD. Nucl. Instrum. Methods 223 (1984) 319 (alpha-particle emission probabilities.)
- V. V. OVECHKIN, A. E. KHOKHLOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1032 (gamma-ray energies and emission probabilities.)
- G. BORTELS, P. COLLAERS. Appl. Rad. Isotopes 38 (1987) 831 (alpha-particle emission probabilities.)
- B. DENECKE. Appl. Rad. Isotopes 38 (1987) 823 (gamma-ray emission probabilities.)
- V. P. CHECHEV, N. K. KUZMENKO, V. O. SERGEEV, K. P. ARTAMONOVA. Evaluated decay data, Energoatomizdat Ed. Moscow (1988)
- (gamma-ray energies.)
- D. D. COHEN. Nucl. Instrum. Meth. Phys. Res. A267 (1988) 492 (LX-ray emission probabilities.)
- J. H. HUBBELL. Report NIST 89-4144 (1989) (M fluorescence yield.)
- L. J. MARTIN, P.A.BURNS. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 146 (gamma-ray emission probabilities.)
- C. J. BLAND, J. MOREL, E. ETCHEVERRY, M. C. LÉPY. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 323 (LX-ray emission probabilities.)
- M. C. LÉPY, K. DEBERTIN, H. JANSSEN, U. SCHÖTZIG. Report PTB- Ra-31 (1993) (L X-ray emission intensities.)
- I. Ahmad. Private communication, cited in 1994Bl12 (1993) (alpha-particle emission probabilities.)
- M. C. LÉPY, B. DUCHEMIN, J. MOREL. Nucl. Instrum. Meth. Phys. Res. A353 (1994) 10 (LX-ray emission probabilities.)
- C. J. BLAND. Nucl. Instrum. Meth. Phys. Res. A339 (1994) 180 (alpha-particle emission probabilities.)
- Y. A. AKOVALI. Nucl. Data Sheets 74 (1995) 461 (Decay scheme.)
- C. C. BUENO, J. A. C.GONÇALVES, M. D. S. SANTOS. Nucl. Instrum. Meth. Phys. Res. A371 (1996) 460 (alpha-particle emission probabilities.)
- A. M. SANCHEZ, P. R. MONTERO, F. V. TOME. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 593 (alpha-particle emission probabilities.)
- P. N. JOHNSON. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 107 (evaluated gamma-ray emission probabilities and internal conversion coefficients.)
- A. ABDUL-HADI. J. Radional. Nucl. Chem 231 (1998) 147 (Gamma-ray emission energies and intensities.)
- A. Kovalik, E. A. Yakushev, V. M. Gorozhankin, M. Novgorodov, M. Rysavy. J. Phys. (London) G24 (1998) 2247
- (Conv. Elec. emission energies and intensities.)
- Y. JANG, J. NI. Nucl. Instrum. Meth. Phys. Res. A413 (1998) 239 (Alpha emission intensities.)
- E. SCHÖNFELD, G. RODLOFF. Report PTB 6.11-1, Braunscheig (1999) (XK-ray energies and emission probabilities.)
- N. E. HOLDEN, D. C. HOFFMAN. Pure Appl. Chem. 72 (2000) 1525 (241Am spontaneous fission half-life.)
- R. G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Meth. Phys. Res. A450 (2000) 35 (gamma-ray energies.)
- E. SCHÖNFELD, U. SCHÖTZIG. Appl. Rad. Isotopes 54 (2001) 785 (calculated absolute emission probabilities of LX-rays.)
- M.M. Bé, R. Helmer, V. Chisté, J. Nucl. Sci. Tech., suppl.2 (2002) 481 (Saisinuc software.)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- A. IWAHARA, M. A. L. DA SILVA, A. E. CARVALHO FILHO, E. M. DE OLIVEIRA BERNARDES, J. U. DELGADO. Appl. Rad. Isotopes 63 (2005) 107
- (absolute emission probabilities of gamma-rays.)M. S. BASUNIA. Nucl. Data Sheets 107 (2006) 2323
- (241Am decay scheme, 237Np level energies and gamma-ray transition multipolarities.)
 M. C. LÉPY, J.PLAGNARD, L.FERREUX. Appl. Rad. Isotopes 66 (2008) 715 (absolute emission probabilities of LX-rays.)
- V. M. GOROZHANKIN, M. -M.BÉ. Appl. Rad. Isotopes 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions.)
- T. KIBEDI, W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions.)

KRI /V. P. Chechev, N. K. Kuzmenko

KRI /V. P. Chechev, N. K. Kuzmenko

KRI /V. P. Chechev, N. K. Kuzmenko

KRI /V. P. Chechev, N. K. Kuzmenko

LNE – LNHB/CEA – Table de Radionucléides

KRI /V. P. Chechev, N. K. Kuzmenko

Pu-242 decays 100% by alpha transitions to U-238 and by spontaneous fission with branching fraction of 5.5 10^{-4} %. Most of the alpha decay populates the U-238 ground state (76.5 %) and the U-238 first excited level with energy of 44.9 keV (23.4 %).

Le plutonium 242 se désintègre par émission alpha et par fission spontanée dans une proportion de 5,5 10^{-4} %. L'émission alpha a lieu principalement vers le niveau excité de 44,9 keV (23,4 %) et le niveau fondamental (76,5 %) de l'uranium 238.

2 Nuclear Data

$T_{1/2}(^{242}\mathrm{Pu})$:	3,73	(3)	$10^{5} { m a}$
$T_{1/2}^{'}(^{238}\mathrm{U})$:	4,468	(5)	$10^{9} {\rm a}$
$Q^{\dot{lpha}}(^{242}\mathrm{Pu})$:	4984,5	(10)	keV

2.1 α Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	F
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4677,3\ (10)\\ 4836,1\ (10)\\ 4939,6\ (10)\\ 4984,5\ (10) \end{array}$	$\begin{array}{c} 0,00084\ (6)\\ 0,0304\ (13)\\ 23,44\ (17)\\ 76,53\ (17) \end{array}$	$609 \\ 238 \\ 1,62 \\ 1$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{1,0}({ m U}) \ \gamma_{2,1}({ m U}) \ \gamma_{3,2}({ m U})$	$\begin{array}{c} 44,915 \ (13) \\ 103,50 \ (4) \\ 158,80 \ (8) \end{array}$	$\begin{array}{c} 23,5 \ (7) \\ 0,0313 \ (16) \\ 0,00084 \ (6) \end{array}$	E2 E2 E2	0,210 (4)	$\begin{array}{c} 445 \ (9) \\ 8,27 \ (17) \\ 1,180 \ (24) \end{array}$	$\begin{array}{c} 122,8 \ (25) \\ 2,29 \ (5) \\ 0,326 \ (7) \end{array}$	$\begin{array}{c} 610 \ (12) \\ 11,36 \ (23) \\ 1,83 \ (4) \end{array}$

3 Atomic Data

3.1 U

ω_K	:	$0,\!970$	(4)
$\bar{\omega}_L$:	0,500	(19)
n_{KL}	:	0,794	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_{K}				
	$K\alpha_2$	94,666		62,47
	$K\alpha_1$	98,44		100
	$K\beta_3$	110,421	}	
	$\mathrm{K}eta_1$	$111,\!298$	}	
	$\mathrm{K}\beta_5''$	$111,\!964$	}	$36,\!06$
	$K\beta_2$	114,407	}	
	$K\beta_4$	115,012) }	12,33
	$\mathrm{KO}_{2,3}$	$115,\!377$	}	,
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$11,\!62$		
	$L\alpha$	$13,\!44-13,\!62$		
	$\mathrm{L}\eta$	15,4		
	$\mathrm{L}eta$	$15,\!73-18,\!21$		
	$\mathrm{L}\gamma$	$19,\!51-21,\!73$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	71,78-80,95 88,15-98,43 104,51-115,59	$100 \\ 59,6 \\ 8,88$
Auger L	$5,\!1-21,\!6$	

4 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4600,1 \ (10) \\ 4756,2 \ (10) \\ 4858,2 \ (10) \\ 4902,3 \ (10) \end{array}$	$\begin{array}{c} 0,00084 \ (6) \\ 0,0304 \ (13) \\ 23,44 \ (17) \\ 76,53 \ (17) \end{array}$

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5,1 - 21,6	8,40 (19)
e _{AK}	(U) KLL KLX KXY	71,78 - 80,95 88,15 - 98,43 104,51 - 115,59	0,00000188 (29) } } }
$ec_{1,0} L ec_{1,0} M ec_{1,0} N$	(U) (U) (U)	23,157 - 27,747 39,367 - 41,360 43,474 - 44,536	17,1 (5) 4,72 (14) 1,28 (4)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	$11,\!62 - 21,\!73$		8,71 (21)	
$XK\alpha_2$	(U)	94,666		0,0000180 (13)	$K\alpha$
$XK\alpha_1$	(U)	$98,\!44$		0,0000288 (21)	}
$XK\beta_3$	(U)	110,421	}		
$XK\beta_1$	(U)	$111,\!298$	}	0,0000104 (8)	$K' \beta_1$
$ ext{XK}eta_5^{\prime\prime}$	(U)	$111,\!964$	}		
$XK\beta_2$	(U)	$114,\!407$	}		
$XK\beta_4$	(U)	$115,\!012$	}	$0,00000355\ (27)$	$\mathrm{K}'eta_2$
$XKO_{2,3}$	(U)	$115,\!377$	}		

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(U)$ $\gamma_{2,1}(U)$ $\gamma_{3,2}(U)$	$\begin{array}{c} 44,915\ (13)\\ 103,50\ (4)\\ 158,80\ (8)\end{array}$	0,0384 (8) 0,00253 (12) 0,000298 (20)

7 Main Production Modes

 $Pu - 241(n,\gamma)Pu - 242$ Possible impurities : Pu - 238, Pu - 239, Pu - 240, Pu - 241, Am - 241

 $\begin{array}{l} \mathrm{Am}-241(\mathrm{n},\gamma)\mathrm{Am}-242\\ \mathrm{Possible \ impurities:} \ \mathrm{Am}-241, \ \mathrm{Cm}-242 \end{array}$

Am - 242(E.C.)Pu - 242

8 References

- F. ASARO. PhD Thesis, Univ. of California, Livermore, CA, Report UCRL-2180 (1953) (Alpha-particle energies and emission probabilities.)
- J. P. BUTLER, M. LOUNSBURY, J. MERRITT. Can. J. Chem. 34 (1956) 253 (Half-life.)
- J. P. BUTLER, T. A. EASTWOOD, T. L. COLLINS, M. E. JONES, F. M. ROURKE, R. P. SCHUMAN. Phys. Rev. 103 (1956) 634 (11-16-16) CE helf life.)
 - (Half-life, SF half-life.)
- J. P. HUMMEL. Report UCRL-3456 (1956) (Alpha-particle energies and emission probabilities.)
- L. M. KONDRATEV, G. I. NOVIKOVA, Y. P. SOBOLEV, L. L. GOLDIN. Zh. Eksp. Teor. Fiz. 31(1956)771; Sov. Phys. JETP 4 (1956) 645
- (Alpha-particle energies and emission probabilities.)
- J. F. MECH, H. DIAMOND, M. H. STUDIER, P. R. FIELDS, A. HIRSCH, C. M. STEPHENS, R. F. BARNES, D. J. HENDERSON, J. R. HUIZENGA. Phys. Rev. 103 (1956) 340 (Half-life, SF half-life.)
- M. H. STUDIER, A. HIRCH. Private Comm. Quoted in 1956Me37 (1956) (SF half-life.)
- V. A. DRUIN, V. P. PERELYGIN, G. I. KHLEBNIKOV. Soviet Phys. JETP 13 (1961) 913 (SF half-life.)
- L. Z. MALKIN, I. D. ALKHAZOV, A. S. KRIVOKHATSKY, K. A. PETRZHAK. At. Energ. USSR 15(1963)158; Sov. J. At. Energ. 15 (1964) 851 (SF half-life.)
- J. A. BEARDEN. Rev. Mod. Phys. 39 (1967) 78 (X-ray energies.)
- S. A. BARANOV, V. M. KULAKOV, V. M. SHATINSKII. Nucl. Phys. 7 (1968) 442 (Alpha-particle energies.)
- C. E. BEMIS JR., J. HALPERIN, R. EBY. J. Inorg. Nucl. Chem. 31 (1969) 599 (Half-life.)
- R. W. DURHAM, F. MOLSON. Can. J. Phys. 48 (1970) 716 (Half-life.)
- M. SCHMORAK, C. E. BEMIS JR., M. J. ZENDER, N. B. GOVE, P. F. DITTNER. Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and emission probabilities.)

- L. S. BULYANITSA, A. M. GEIDELMAN, Y. S. EGOROV, L. M. KRIZHANSKII, A. A. LIPOVSKII, L. D. PREOBRAZ-HENSKAYA, A. V. LOVTSYUS, Y. V. KHOLNOV. Bull. Akad. Sci. USSR, Phys. Ser. 40 (1976) 42 (Half-life.)
- S. A. BARANOV, A. G. ZELENKOV, V. M. KULAKOV. Sov. At. Energy 41 (1976) 987 (Alpha-emission probabilities.)
- D. W. OSBORNE, H. E. FLOTOW. Phys. Rev. C14 (1976) 1174 (Half-life.)
- J. W. MEADOWS. Report BNL-NCS-24273 (1978) 10 (Half-life, SF half-life.)
- S. K. Aggarwal, S. N. Acharya, A. R. Parab, H. C. Jain. Phys. Rev. C20 (1979) 1135 (Half-Life.)
- N. A. KHAN, H. A. KHAN, K. GUL, M. ANWAR, G. HUSSAIN, R. A. AKBAR, A. WAHEED, M. S. SHAIKH. Nucl. Instrum. Methods 173 (1980) 163 (SF half-life.)
- A. LORENZ. IAEA Tech. Rep. Ser., No 261 (1986) (Evaluated decay data.)
- R. VANINBROUKX, G. BORTELS, B. DENECKE. Int. J. Appl. Radiat. Isotop. 37 (1986) 1167 (Alpha-, gamma-ray emission probabilities.)
- YU. A. SELITSKY, V. B. FUNSHTEIN, V. A. YAKOVLEV. Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. (1988) 131
- (SF half-life.)
- YU. S. POPOV, I. B. MAKAROV, D. KH. SRUROV, E. A. ERIN. Radiokhimiya 32(1990)2; Sov. J.Radiochemistry 32 (1990) 425
- (MX-, LX- ray relative emission probabilities.)
- A. RYTZ. At. Data Nucl. Data Tables. 47 (1991) 205 (Alpha-emission energies.)
- M.C. LÉPY, B. DUCHEMIN, J. MOREL. Nucl. Instrum. Meth. Phys. Res. A353 (1994) 10 (LX-ray energies and emission probabilities.)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data.)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11 (1999) (KX-ray energies and relative emission probabilities.)
- E. SCHÖNFELD, H. JANSSEN. Appl. Rad. Isotop. 52 (2000) 595 (X-ray and Auger electron emission probabilities, EMISSION code.)
- N. E. HOLDEN, D. C. HOFFMAN. Pure Appl. Chem. 72 (2000) 1525 (SF half-life.)
- F. E. Chukreev, V. E. Makarenko, M. J. Martin. Nucl. Data Sheets 97 (2002) 129 (Decay Scheme, 238U level energies, gamma-ray multipolarities.)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- M. M. BÉ, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHONFELD, R. DERSCH. Table of Radionuclides (Vol.2 A = 151 to 242), Monographie BIPM-5, Vol. 2, Bureau International des Poids et Mesures (2004) (242Pu Decay Data Evaluation.)
- V. P. CHECHEV. Proc. Intern. Conf. Nuclear Data for Science and Technology, Santa Fé, New Mexico, 26 September-1 October 2004 (2005) (242Pu Decay Data Evaluation.)
- T. KIBÉDI, T. W. BURROWS, M. B. TRZHASKOVSKAYA, P. M. DAVIDSON, C. W. NESTOR JR. Nucl. Instrum. Meth. Phys. Res. A589 (2008) 202 (Theoretical ICC.)

Am-242 decays by beta- emission to the first excited level and ground state of Cm-242 (83.1 %), and by electron capture decay to the first excited level and ground state of Pu-242 (16.9 %). L'américium 242 se désintègre par émission bêta moins (83,1 %) vers un niveau excité et le niveau fondamental de curium 242, et par capture électronique vers le plutonium 242.

2 Nuclear Data

$T_{1/2}(^{242}\text{Am})$:	$16,\!01$	(2)	h
$T_{1/2}^{(242} Pu)$:	3,73	(3)	$10^5~{\rm a}$
$T_{1/2}^{(242} \text{Cm})$:	$162,\!86$	(8)	d
$Q^{-}(^{242}\text{Am})$:	664,5	(4)	keV
$Q^{+}(^{242}\text{Am})$:	751,3	(7)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$egin{array}{c} eta_{0,1}^{-} \ eta_{0,0}^{-} \end{array}$	622,4 (4) 664,5 (4)	$\begin{array}{c} 45,8 \ (23) \\ 37,3 \ (23) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$6,\!84$ 7,03

2.2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,1}$ $\epsilon_{0,0}$	$\begin{array}{c} 706,8 \ (7) \\ 751,3 \ (7) \end{array}$	$\begin{array}{c} 10,6 \ (5) \\ 6,3 \ (6) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$7,26 \\ 7,55$	$\begin{array}{c} 0,7261 \ (23) \\ 0,7303 \ (22) \end{array}$	$0,2016 (15) \\ 0,1987 (15)$	$0,0532 (10) \\ 0,0522 (10)$

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_L$	$lpha_M$	α_T
$\gamma_{1,0}(\mathrm{Cm}) \ \gamma_{1,0}(\mathrm{Pu})$	$\begin{array}{c} 42,13 \ (5) \\ 44,54 \ (2) \end{array}$	$\begin{array}{c} 45,8 \ (23) \\ 10,6 \ (5) \end{array}$	E2 E2	$\begin{array}{c} 836 \ (13) \\ 543 \ (8) \end{array}$	$\begin{array}{c} 235 \ (4) \\ 151,6 \ (22) \end{array}$	$\begin{array}{c} 1155 \ (17) \\ 748 \ (11) \end{array}$

3 Atomic Data

```
3.1 Pu
```

ω_K	:	$0,\!971$	(4)
$\bar{\omega}_L$:	$0,\!521$	(20)
n_{KL}	:	0,790	(5)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X_{K}				
11	$K\alpha_2$	99.525		63,4
	$K\alpha_1$	103,734		100
	$K\beta_3$	116,244	}	
	$\mathrm{K}eta_1$	117,228	}	
	${ m K}eta_5^{\prime\prime}$	117,918	}	36,8
	Kβ ₂	120.54	}	
	$K\beta_4$	120.969	}	12.9
	$\mathrm{KO}_{2,3}$	121,543	}	,0
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$12,\!124$		
	$L\alpha$	14,087 - 14,282		
	$\mathrm{L}\eta$	16,333		
	$\mathrm{L}eta$	$16,\!498-18,\!541$		
	$\mathrm{L}\gamma$	$21,\!42 - 22,\!153$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	75,263 - 85,357 92,607 - 103,729 109,93 - 121,78	$100 \\ 60,5 \\ 9,05$
Auger L	$6,\!09-13,\!83$	4700

3.2 Cm

ω_K	:	0,972	(4)
$\bar{\omega}_L$:	$0,\!538$	(23)
n_{KL}	:	0,785	(5)

3.2.1 X Radiations

		Energy keV	Relative probability
X _L			
	$\mathrm{L}\ell$	$12,\!633$	
	$L\alpha$	$14,\!746 - 14,\!961$	
	$\mathrm{L}\eta$	$17,\!314$	
	$\mathrm{L}eta$	$17,\!286-19,\!688$	
	$\mathrm{L}\gamma$	$22,\!735-23,\!527$	

3.2.2 Auger Electrons

	Energy keV	Relative probability
Auger L	$6,\!19-14,\!46$	

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6,09 - 13,83	$9,\!9~(5)$
e _{AK}	(Pu) KLL KLX KXY	75,263 - 85,357 92,607 - 103,729 109,93 - 121,78	0,36 (4) } }
e_{AL}	(Cm)	6,19 - 14,46	15,4(10)
$\begin{array}{c} e_{AK} \\ ec_{1,0} \ {}_{L} \\ ec_{1,0} \ {}_{L} \\ ec_{1,0} \ {}_{M_{+}} \\ ec_{1,0} \ {}_{M_{+}} \end{array}$	(Cm) (Cm) (Pu) (Cm) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 33,1 \ (18) \\ 7,7 \ (4) \\ 12,7 \ (7) \\ 2,9 \ (2) \end{array}$
$\begin{array}{c} \beta_{0,1}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: avg: max: avg:	$\begin{array}{ccc} 622,4 & (4) \\ 185,92 & (14) \\ 664,5 & (4) \\ 200,17 & (14) \end{array}$	45,8(23) 37,3(23)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	$12,\!124 - 22,\!153$		10,8(5)	
$\begin{array}{c} {\rm XK}\alpha_2\\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99,525 \\ 103,734$		${3,55\ (17)}\ {5,6\ (3)}$	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116,244 \\117,228 \\117,918$	} } }	2,06 (11)	$\mathrm{K}'eta_1$
$egin{array}{c} XKeta_2\ XKeta_4\ XKO_{2,3} \end{array}$	(Pu) (Pu) (Pu)	120,54 120,969 121,543	} } }	0,72 (4)	$\mathrm{K}'eta_2$
XL	(Cm)	$12,\!633 - 23,\!527$		18,0 (11)	

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(\mathrm{Cm}) \ \gamma_{1,0}(\mathrm{Pu})$	$\begin{array}{c} 42,13 \ (5) \\ 44,54 \ (2) \end{array}$	0,040 (2) 0,014 (1)

6 Main Production Modes

 $Am - 241(n,\gamma)Am - 242$

7 References

- T.K.KEENAN, R.A.PENNEMAN, B.B.MCINTEER. J. Chem. Phys. 21 (1953) 1802 (Half-life)
- S.A.BARANOV, K.N. SHLYAGIN. Conf. Acad. Sci. USSR (1955) 183 (Gamma ray energies, Beta minus/Electron Capture ratio, Conv. Elec. probabilities/Beta probabilities ratio, EC and Beta branching fractions)
- R.W.HOFF, H. JAFFE, T.O. PASSELL, F.S. STEPHENS, E.K.HULET, S.G. THOMPSON. Phys. Rev. 100 (1955) 1403 (Beta minus/Electron Capture ratio)
- R.F. BARNES, D.J. HENDERSON, A.L. HARKNESS, H. DIAMOND. J. Inorg. Nucl. Chem. 9 (1959) 105 (EC branching fraction)
- R.W. HOFF, E.K. HULET. M.C. MICHEL. J. Nucl. Energy 8 (1959) 224 (Beta minus/Electron Capture ratio)

- F. ASARO, I. PERLMAN, J.O. RASMUSSEN, S.G. THOMPSON. Phys. Rev. 120 (1960) 934 (Beta minus/Electron Capture ratio)
- R. MARRUS, J. WINOCUR. Phys. Rev. 124 (1961) 1904 (Spin state)
- B.M. ALEKSANDROV, M.A. BAK, V.V. BERDIKOV, R.B. IVANOV, A.S. KRIVOKHATSKII, V.G. NEDOVESOV, K.A. PETRZHAK, YU.G. PETROV, YU.F. ROMANOV, E.A. SHLYAMIN. Sov. At. Energy 27 (1969) 724 (Half-life, Beta minus/Electron Capture ratio, Alpha Decay)
- R. GASTEIGER, G. HOEHLEIN, W. WEINLAENDER. Radiochim. Acta 11 (1969) 158 (Beta minus/Electron Capture ratio)
- V.YA. GABESKIRIYA. Sov. At. Energy 32 (1972) 201 (Beta minus/Electron Capture ratio)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies)
- TS. VYLOV, V.M. GOROZHANKIN, ZH. ZHELEV, A.I. IVANOV, R.B. IVANOV, V.G. KALINNIKOV, M.YA. KUZNET-SOVA, N.A. LEBEDEV, M.A. MIKHAILOVA, A.I. MUMINOV, A.F. NOVGORODOV, YU.V. NORSEEV, SH. OMANOV, B.P. OSIPENKO, E.K. STEPANOV, ET AL.. Spectra of Radiations of Radioactive Nuclides, Editor: K.Ya. Gromov, FAN Publishing, Tashkent, USSR (1980)
 - (X-ray and Gamma-ray Energies and Emission Probabilities)
- K. WISSHAK, J. WICKENHAUSER, F. KAPPELER, G. REFFO, F. FABBI. Nucl. Sci. Eng. 81 (1982) 396 (Half-life)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (XK-rays, XL-rays, Auger Electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report-6.11-98-1 (1998) (Auger Electrons)
- E.SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (XK-rays)
- Y.A.AKOVALI. Nucl. Data Sheets 96 (2002) 177 (Nuclear levels)
- I.M.BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
- (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- G. Audi, A.H. Wapstra, C. Thibault. Nucl Phys A729 (2003) 337 (Q-value)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Am-243 decays by emission of alpha particles to Np-239, with a minute branch of 3.8 (7) 10^{-9} % by spontaneous fission.

L'américium 243 se désintègre par émission alpha vers le neptunium 239. Un faible branchement (3,8 (7) 10^{-9} %) par fission spontanée existe.

2 Nuclear Data

$T_{1/2}(^{243}\text{Am})$:	7367	(23)	a
$T_{1/2}(^{239}\text{Np})$:	$2,\!356$	(3)	d
$Q^{\dot{lpha}}(^{243}\mathrm{Am})$:	$5438,\!8$	(10)	keV

2.1 α Transitions

	$rac{\mathrm{Energy}}{\mathrm{keV}}$	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	F
$\begin{array}{c} \alpha_{0,16} \\ \alpha_{0,15} \\ \alpha_{0,14} \\ \alpha_{0,13} \\ \alpha_{0,12} \\ \alpha_{0,11} \end{array}$	$\begin{array}{c} 4774 \ (3) \\ 5001 \ (3) \\ 5013 \ (3) \\ 5029 \ (3) \\ 5081 \ (3) \\ 5092 \ (3) \end{array}$	$\begin{array}{c} 0,0017 \ (5) \\ 0,000085 \\ 0,00018 \\ 0,00034 \\ 0,0009 \ (4) \\ 0 \ 0009 \ (4) \end{array}$	$7,2 \\ 5400 \\ 3000 \\ 2000 \\ 900$
$\begin{array}{c} \alpha_{0,10} \\ \alpha_{0,9} \\ \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,4} \end{array}$	5113 (3) 5119 (3) 5173 (5) 5199 (1) 5268 (1) 5320.9 (10)	$\begin{array}{c} 0,0020 \ (6) \\ 0,0020 \ (6) \\ 0,0055 \ (6) \\ 0,010 \ (1) \\ 1,383 \ (7) \\ 11,46 \ (5) \end{array}$	700 1100 900 17,7 4,71
$lpha_{0,3} \ lpha_{0,1} \ lpha_{0,0}$	5363,6 (10) 5410 (1) 5438,9 (23)	$\begin{array}{c} 86,74 \\ 0,192 \\ 0,240 \\ (3) \end{array}$	$ 1,14 \\ 95 \\ 1120 $

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	α_L	$lpha_M$	α_T
$\gamma_{1,0}(\mathrm{Np})$	31,130 (21)	12,7 (30)	M1+3,08%E2		195(10)	50(3)	263 (13)
$\gamma_{4,3}(\mathrm{Np})$	43,2	10,1	M1+12,6%E2		114 (13)	30(4)	154(18)
$\gamma_{3,1}(Np)$	43,53(2)	12,62 (23)	E1		0,856(12)	0,215(3)	1,143(16)
$\gamma_{6,5}(\mathrm{Np})$	50,6(10)	0,011(2)	(E1)		0,58(4)	0,144(9)	0,77(5)
$\gamma_{6,4}(\mathrm{Np})$	55,18(5)	1,81(26)	M1+26,4%E2		78(10)	21(3)	107(14)
$\gamma_{3,0}(\mathrm{Np})$	74,66(2)	85,7(16)	${ m E1}$		0,207(3)	0,0512 (8)	0,276 (4)
$\gamma_{4,1}(Np)$	86,71(2)	0,41(1)	E1		0,1401(20)	0,0345(5)	0,186(3)
$\gamma_{6,3}(\mathrm{Np})$	98,360(44)	0,25(4)	(E2)		11,31(20)	3,15(6)	15,6(3)
$\gamma_{4,0}(\mathrm{Np})$	117,84(15)	0,62(5)	$\mathbf{E1}$		0,0634(10)	0,01551 (23)	0,0842 (13)
$\gamma_{6,1}(\mathrm{Np})$	141,90(6)	0,141(10)	E1	0,1723 (25)	0,0391(6)	0,00955(14)	0,224(4)
$\gamma_{7,2}(Np)$	169	0,0014	(E1)	0,1156(23)	0,0251(6)	0,00612(13)	0,149(3)
$\gamma_{9,5}(\mathrm{Np})$	195,0 (18)	0,001	(E1)	0,0833 (22)	0,0176 (5)	0,00428 (12)	0,107 (3)

2.2 Gamma Transitions and Internal Conversion Coefficients

3 Atomic Data

3.1 Np

ω_K	:	$0,\!971$	(4)
$\bar{\omega}_L$:	0,511	(20)
n_{KL}	:	0,791	(5)

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X_K				
IX.	$K\alpha_2$	97,069		62,82
	$K\alpha_1$	101,059		100
	$K\beta_3$	113.303	}	
	$K\beta_1$	114,234	}	
	$\mathrm{K}eta_5^{''}$	114,912	}	36,21
	KB-	117 469	۱	
	$K\beta_2$ $K\beta_4$	117,403 117,876	} }	12.47
	$\mathrm{KO}_{2,3}$	118,429	}	12,11
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	$11,\!871$		
	$L\alpha$	$13,\!671 - 13,\!946$		
	$\mathrm{L}\eta$	$15,\!861$		
	$\mathrm{L}eta$	$16,\!109-17,\!992$		
	$\mathrm{L}\gamma$	$20,\!784 - 21,\!491$		

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY Auger L	73,501 - 83,134 90,358 - 101,054 107,19 - 118,66 6,04 - 13,52	$100 \\ 60,2 \\ 9,06$

4 α Emissions

	Energy keV	Probability × 100
$\alpha_{0.16}$	4695(3)	0.0017(5)
$\alpha_{0,15}$	4919(3)	0.000085
$\alpha_{0.14}$	4930 (3)	0,00018
$\alpha_{0,13}$	4946(3)	0,00034
$\alpha_{0,12}$	4997(3)	0,0009(4)
$\alpha_{0,11}$	5008(3)	0,0009(4)
$\alpha_{0,10}$	5029(3)	0,0020 (6)
$lpha_{0,9}$	5035~(3)	0,0020~(6)
$lpha_{0,8}$	5088~(5)	0,0055~(6)
$lpha_{0,7}$	5113(1)	0,010~(1)
$lpha_{0,6}$	5181(1)	$1,\!383\ (7)$
$\alpha_{0,4}$	5233,3(10)	11,46~(5)
$lpha_{0,3}$	5275,3(10)	86,74(5)
$\alpha_{0,1}$	$5321 \ (1)$	0,192~(3)
$lpha_{0,0}$	5349,4 (23)	0,240 (3)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(Np)	6,04 - 13,52	18,4 (11)
e _{AK}	(Np) KLL KLX KXY	73,501 - 83,134 90,358 - 101,054 107,19 - 118,66	0,00058 (9) } } }

		$egin{array}{c} { m Energy} \\ { m keV} \end{array}$	Electrons per 100 disint.
$ec_{1,0 L}$	(Np)	8,70 - $13,52$	9,4(22)
$ec_{4,3 L}$	(Np)	20,8 - $25,6$	7,4(8)
$ec_{3,1 L}$	(Np)	21,10 - $25,92$	5,04(11)
$ec_{1,0 M}$	(Np)	$25,\!39$ - $27,\!47$	2,4(6)
$ec_{1,0 N}$	(Np)	$29,\!63$ - $30,\!73$	$0,\!65\ (15)$
$ec_{6,4 L}$	(Np)	32,753 - 37,570	1,10(33)
$ec_{4,3 M}$	(Np)	37,5 - $39,5$	1,95(26)
$ec_{3,1}$ M	(Np)	37,79 - $39,87$	1,266(28)
$ec_{4,3}$ N	(Np)	41,7 - $42,8$	0,53~(6)
$ec_{3,1 N}$	(Np)	42,03 - $43,13$	0,336~(7)
ес _{6,4 М}	(Np)	49,441 - 51,516	$0,\!30$ (9)
$ec_{3,0 L}$	(Np)	$52,\!23$ - $57,\!05$	13,91 (32)
$ec_{6,4 N}$	(Np)	$53,\!679 - 54,\!777$	0,08~(2)
ес _{3,0 М}	(Np)	68,92 - $71,00$	3,44(8)
$ec_{3,0 N}$	(Np)	73,16 - $74,26$	0,917(21)
$ec_{6,3 L}$	(Np)	76,073 - 80,890	0,17(2)
$ec_{6,3}$ M	(Np)	92,761 - 94,836	0,05(1)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	$11,\!871 - 21,\!491$		18,9(7)	
$XK\alpha_2$	(Np)	97,069		0,0058(4)	$K\alpha$
$XK\alpha_1$	(Np)	$101,\!059$		0,0092 (7)	}
$XK\beta_3$	(Np)	113,303	}		
$XK\beta_1$	(Np)	$114,\!234$	}	0,00335 (25)	$\mathrm{K}^{'}eta_{1}$
$ ext{XK}eta_5''$	(Np)	$114,\!912$	}		
$XK\beta_2$	(Np)	$117,\!463$	}		
$XK\beta_4$	(Np)	117,876	}	0,00115 (9)	$\mathrm{K}^{\prime}eta_{2}$
$XKO_{2,3}$	(Np)	$118,\!429$	}		

6.2 Gamma Emissions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccc} \gamma_{6,1}(\mathrm{Np}) & 141,90 & (0) & 0,113 & (8) \\ \gamma_{7,2}(\mathrm{Np}) & 169 & 0,0012 \end{array}$

7 Main Production Modes

Pu - 239(mult. n capture) U - 238(mult. n capture)

8 References

- M.-M.Bé, V. CHISTÉ, C. DULIEU, E. BROWNE, V. CHECHEV, N. KUZMENKO, R. HELMER, A. NICHOLS, E. SCHÖNFELD, R. DERSCH.. Monographie BIPM-5, ISBN 92-822-2207-1 () (Am-241 half-life)
- F. STEPHENS, J. HUMMEL, F. ASARO. Phys. Rev. 98 (1955) 261 (Am-243 alpha-particle emission probabilities.)
- J.P. HUMMEL. Thesis. Univ. of California UCRL-3456 (1956) (Am-243 alpha-particle emission probabilities.)
- R.F. BARNES, D.J. HENDERSON, A.L. HARKNESS, H. DIAMOND. J. Inorg. Nucl. Chem. 9 (1959) 105 (Am-243 half-life.)
- F. ASARO, F.S. STEPHENS, J.M. HOLLANDER, I. PERLMAN. Phys. Rev. 117 (1960) 492 (Am-243 gamma-ray emission probabilities.)
- A.B. BEADLE, D.F. DANCE, K.M. GLOVER, J. MILSTED. J. Inorg. Nucl. Chem. 12 (1960) 359 (Am-243 half-life.)
- S.A. BARANOV, V.M. KULAKOV, V.M. SHATINSKY. Nucl. Phys. 56 (1964) 252 (Am-243 alpha-particle energies and emission probab)
- C.M. LEDERER, J.K. POGGENBURG, F. ASARO, J.O. RASMUSSEN, I. PERLMAN. Nucl. Phys. 84 (1966) 481 (Am-243 alpha-particle emission probabilities.)
- B.A. GVOZDEV, B.B. ZAKHVATAEV, V.I. KUZNETSOV, V.P. PERELYGIN, S.V. PIROZKOV, E.G. CHUDINOV, I.K. SHVETSOV. Sov. Radiochem. 8 (1966) 459 (Spontaneous fission branching)
- S.A. BARANOV, V.M. KULAKOV, V.M. SHATINSKII. Sov. J. Nucl. Phys. 7 (1968) 442 (Am-243 alpha-particle energies.)
- G. BERZINS, M.E. BUNKER, J.W. STARNER. Nucl. Phys. A114 (1968) 512 (Am-243 half-life.)
- J.R. VAN HISE, D. ENGELKEMEIR. Phys. Rev. 171 (1968) 1325 (Am-243 gamma-ray energies and emission probabilities.)

- D. ENGELKEMEIR. Phys. Rev. 181 (1969) 1675 (Am-243 gamma-ray energies.)
- B.M. ALEKSANDROV, O.I. GRIGOREV, N.S. SHIMANSKAYA. Soviet J. Nucl. Phys. 10 (1970) 8 (Am-243 gamma-ray emission probabilities.)
- I. AHMAD, M. WAHLGREN. Nucl. Instrum. Methods 99 (1972) 333 (Am-243 gamma-ray emission probabilities.)
- V.G. POLYUKOV, G.A. TIMOFEEV, P.A. PRIVALOVA, V.Y. GABESKIRIYA, A.P. CHETVERIKOV. Sov. At. Energ. 37 (1975) 1103 (Am-243 half-life.)
- J.C. PATE, K.R. BAKER, R.W. FINK, D.A. MCCLURE, N.S. KENDRICK JR. Z. Phys. A272 (1975) 169 (Am-243 gamma-ray energies and emission probabilities.)
- D.I. STAROZHUKOV, Y.S. POPOV, P.A. PRIVALOVA. Sov. At. Energy 42 (1977) 355 (Am-243 gamma-ray emission probabilities.)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies.)
- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data Nucl. Data Tables 21 (1978) 92 (gamma-ray theoretical internal conversion coefficients.)
- Y.S. POPOV, D.I. STAROZHUKOV, V.B. MISHENEV, P.A. PRIVALOVA, A.I. MISHCHENKO. Sov. At. Energy 46 (1979) 123
- (Am-243 gamma-ray emission probabilities.)
- S.K. AGGARWAL, A.R. PARAB, H.C. JAIN. Phys. Rev. C22 (1980) 767 (Am-243 half-life.)
- I. Ahmad. Nucl. Instrum. Methods 193 (1982) 9 (Am-243 gamma-ray energies and emission probabilities.)
- R. VANINBROUKX, G. BORTELS, B. DENECKE. Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (Am-243 gamma-ray emission probabilities.)
- W.L. ZIJP. Report ECN FYS/RASA-85/19 (1985) (Discrepant Data - Limited Relative Statistical Weight Method.)
- A. LORENZ. IAEA Tech. Rept. Ser. 261 (1986) (Am-243 recommended half-life.)
- E. BROWNE. Nucl. Instrum. Methods Phys. Res. A265 (1988) 541 (Uncertainties in alpha-particle emission probabilities.)
- W. BAMBYNEK, T. BARTA, R. JEDLOVSZKY, P. CHRISTMAS, N. COURSOL, K. DEBERTIN, R.G. HELMER, A.L. NICHOLS, F.J. SCHIMA, Y. YOSHIZAWA. IAEA-TECDOC-619 (1991) (Am-243 recommended half-life.)
- A. RYTZ. At. Data Nucl. Data Tables 47 (1991) 205 (Am-243 alpha-particle energies.)
- E. GARCIA-TORANO, M.L. ACENA, G. BORTELS, D. MOUCHEL. Nucl. Instrum. Methods Phys. Res. A312 (1992) 317
- (Am-243 alpha-particle energies and emission probabilities.)
- Y.A. AKOVALI. Nucl. Data Sheets 66 (1992) 897
- (Am-243 recommended half-life.)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods. Phys. Res. A369 (1996) 527 (Atomic data, X-rays, Auger electrons.)
- D. SARDARI, T.D. MAC MAHON, S.P. HOLLOWAY. Nucl. Instrum. Methods Phys. Res. A369 (1996) 486 (Am-243 gamma-ray energies and emission probabilities.)
- S.A. WOODS, D.H. WOODS, M.J. WOODS, S.M. JEROME, M. BURKE, N.E. BOWLES, S.E.M. LUCAS, C. PATON. Nucl. Instrum. Methods Phys. Res. A369 (1996) 472 (Am-243 gamma-ray emission probabilities.)
- A.M. SANCHEZ, P.R. MONTERO, F.V. TOME. Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Am-243 alpha-particle energies and emission probabilities.)
- E.SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1, Braunschweig (1998) (Auger electron energies.)
- Y.A. AKOVALI. Nucl. Data Sheets 84 (1998) 1 (Alpha decay. Radius parameter of even-even nuclei.)
 JICHUN YANG, JIANZHONG NI. Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha emission intensities)
- E. SCHÖNFELD, H. JANSSEN. Applied Radiation Isotopes 52 (2000) 595 (X-ray and Auger electron emission probabilities.)

- F. DAYRAS. Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Am-243 alpha-particle energies and emission probabilities.)
- R. SAMPATHKUMAR, P.C. KALSI, A. RAMASWAMI. J. Radioanal. Nucl. Chem. 253 (2002) 523 (Am-243 spontaneous fission branching.)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 337 (2003 Atomic Mass Adjustment.)
- E. BROWNE. Nucl. Data Sheets 98 (2003) 665 (Evaluated data (ENSDF for nuclei with A=239))
- S.K. Aggarwal, et al.. Nucl. Instrum. Methods Phys. Res. A571 (2007) 663 (Am-243 half-life.)
- T. KIBEDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, AND C.W.NESTOR, JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical Internal Conversion Coefficients)

LBNL,LNHB,INEEL /E.Browne,M.-M. Bé, R.G.Helmer₂₁₆

 ${ { Np } \atop { 93 } { 146 } \atop { 93 } { 146 } \atop { Q^{\alpha} = 5438,8 \ \text{keV} } \atop { \% \ \alpha = 100 } }$

Am-244 decays by beta minus emission to a single excited level of Cm-244 with energy 1040 keV. L'américium 244 se désintègre à 100% par émission bêta vers le niveau excité de 1040 keV du curium 244, qui se déexcite par transitions gamma vers le niveau fondamental.

2 Nuclear Data

$T_{1/2}(^{244}\text{Am})$:	10,1	(1)	h
$T_{1/2}(^{244}\text{Cm})$:	$18,\!11$	(3)	a
$Q^{-}(^{244}\text{Am})$:	$1427,\!3$	(10)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,9}^-$	387,1 (10)	100	1st forbidden non-unique	$5,\!63$

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$ \begin{array}{c} \gamma_{1,0}({\rm Cm}) \\ \gamma_{2,1}({\rm Cm}) \\ \gamma_{3,2}({\rm Cm}) \\ \gamma_{4,3}({\rm Cm}) \\ \gamma_{9,4}({\rm Cm}) \\ \gamma_{9,3}({\rm Cm}) \\ \gamma_{9,2}({\rm Cm}) \end{array} $	$\begin{array}{c} 42,965 \ (10) \\ 99,383 \ (4) \\ 153,863 \ (2) \\ 205,575 \ (4) \\ 538,402 \ (16) \\ 743,977 \ (5) \\ 897,840 \ (7) \end{array}$	$100 \\ 100 \\ 72 (15) \\ 0,66 (15) \\ 0,69 (20) \\ 71 (9) \\ 28 (8)$	E2 E2 E2 E2 E2 M1+0,46% E2 E2	$\begin{array}{c} 0,1741 \ (25) \\ 0,1409 \ (20) \\ 0,0292 \ (4) \\ 0,059 \ (4) \\ 0,01215 \ (17) \end{array}$	$\begin{array}{c} 760 \ (11) \\ 13,93 \ (20) \\ 1,90 \ (3) \\ 0,541 \ (8) \\ 0,01492 \ (21) \\ 0,0130 \ (7) \\ 0,00358 \ (5) \end{array}$	$\begin{array}{c} 214 \ (3) \\ 3,94 \ (6) \\ 0,536 \ (8) \\ 0,1514 \ (22) \\ 0,00396 \ (6) \\ 0,00321 \ (15) \\ 0,000912 \ (13) \end{array}$	$\begin{array}{c} 1050 \ (15) \\ 19,3 \ (3) \\ 2,81 \ (4) \\ 0,887 \ (13) \\ 0,0495 \ (7) \\ 0,077 \ (5) \\ 0,01697 \ (24) \end{array}$

3 Atomic Data

3.1 Cm

ω_K	:	$0,\!972$	(4)
$\bar{\omega}_L$:	0,538	(23)
n_{KL}	:	0,785	(5)

3.1.1 X Radiations

		Energy keV		Relative probability
X_K				
	$K\alpha_2$	$104,\!59$		64,7
	$K\alpha_1$	$109,\!271$		100
	$K\beta_3$	122,304	}	
	$K\beta_1$	123,403	}	
	${ m K}eta_5^{\prime\prime}$	$124,\!124$	}	$37,\!9$
	$\mathrm{K}eta_2$	$126,\!889$	}	
	$K\beta_4$	$127,\!352$	}	13,2
	$\mathrm{KO}_{2,3}$	$127,\!97$	}	
$\mathbf{X}_{\mathbf{L}}$				
	$\mathrm{L}\ell$	12,633		
	$L\alpha$	$14,\!746 - 14,\!961$		
	$\mathrm{L}\eta$	$17,\!314$		
	$\mathrm{L}eta$	$17,\!286-19,\!688$		
	$ m L\gamma$	22,735 - 23,527		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY Auger L	78,858 - 89,973 97,226 - 109,267 115,57 - 128,23 6,19 - 14,46	$100 \\ 62 \\ 9,5 \\ 69000$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Cm)	6,19 - 14,46	86(9)
еак	(Cm)		0.213(27)
	KLL	78,858 - 89,973	}
	KLX	97,226 - 109,267	}
	KXY	115,57 - 128,23	}
$ec_{1,0 L}$	(Cm)	18,439 - 24,000	73(15)
$ec_{3,2 \text{ K}}$	(Cm)	25,622 (2)	$3,\!3(7)$
ес _{1,0 М}	(Cm)	$36,\!628$ - $38,\!956$	21 (4)
$ec_{1,0 N}$	(Cm)	41,281 - 42,500	5,7(12)
$ec_{2,1 L}$	(Cm)	74,857 - 80,410	70(15)
$ec_{2,1 M}$	(Cm)	$93,\!046$ - $95,\!374$	20(4)
$ec_{2,1 N}$	(Cm)	$97,\!699$ - $98,\!910$	5,5(12)
$ec_{3,2 L}$	(Cm)	129,337 - 134,890	36~(8)
$ec_{3,2}$ M	(Cm)	$147,\!526 - 149,\!854$	10,2~(21)
$ec_{3,2 N}$	(Cm)	152,179 - 153,390	2,8~(6)
$ec_{4,3}$ L	(Cm)	181,049 - 186,600	$0,\!19~(4)$
$ec_{9,3}$ K	(Cm)	615,736 (5)	$3,\!9(5)$
$ec_{9,3 L}$	(Cm)	719,451 - 725,010	0,86~(11)
$ec_{9,3 M}$	(Cm)	737,640 - 739,968	0,21~(3)
$ec_{9,2 K}$	(Cm)	769,599 (7)	0,34~(10)
$ec_{9,2}$ L	(Cm)	873,31 - 878,87	0,10(3)
$\beta_{0,9}^-$	max:	387,1 (10)	100
$\beta_{0,9}^{-}$	avg:	109,6 (3)	

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cm)	$12,\!633 - 23,\!527$		100 (10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cm) (Cm)	104,59 109,271		$2,2\ (3)\ 3,4\ (4)$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122,304 \\123,403 \\124,124$	} } }	1,29 (16)	$\mathrm{K}'eta_1$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	126,889 127,352 127,97	} } }	0,45~(6)	$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{l} \gamma_{1,0}({\rm Cm}) \\ \gamma_{2,1}({\rm Cm}) \\ \gamma_{3,2}({\rm Cm}) \\ \gamma_{4,3}({\rm Cm}) \\ \gamma_{9,4}({\rm Cm}) \\ \gamma_{9,3}({\rm Cm}) \\ \gamma_{9,2}({\rm Cm}) \end{array}$	$\begin{array}{c} 42,965 \ (10) \\ 99,383 \ (4) \\ 153,863 \ (2) \\ 205,575 \ (4) \\ 538,402 \ (16) \\ 743,977 \ (5) \\ 897,840 \ (7) \end{array}$	$\begin{array}{c} 0,096 \ (20) \\ 5,0 \ (11) \\ 19 \ (4) \\ 0,35 \ (8) \\ 0,66 \ (19) \\ 66 \ (8) \\ 28 \ (8) \end{array}$

6 Main Production Modes

 $\mathrm{Am}-243(\mathrm{n},\gamma)\mathrm{Am}-244$

7 References

- S.E. VANDENBOSCH, P. DAY. Nucl. Phys. 30 (1962) 177 (Half-life, Beta emission probabilities, Conv. Elec. emission probabilities, Relative Gamma-ray emission probabilities)
- P.G. HANSEN, K. WILSKY, C.V.K. BABA, S.E. VANDENBOSCH. Nucl. Phys. 45 (1963) 410 (Nuclear levels, Mixing ratio)
- R.P. SCHUMAN. Report IN-1126 (1967) 19 (Relative Gamma-ray emission probabilities)
- F.P LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies)

- R.W. HOFF, T. VON EGIDY, R.W. LOUGHEED, D.H. WHITE, H.G. BORNER, K. SCHRECKENBACH, G. BARREAU, D.D. WARNER. Phys. Rev. C29 (1984) 618
- (Relative Gamma-ray emission probabilities, Multipolarities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (XK-rays, XL-rays, Auger Electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report-6.11-98-1 (1998) (Auger Electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report-6.11-1999-1 (1999) (XK-rays)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 337 (Q-value)
- Y.A. Akovali. Nucl. Data Sheets 99 (2003) 197 (Nuclear levels)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Am-244m decays predominantly by beta minus emission to a number of excited levels and the ground state of Cm-244. A small electron capture branch also occurs directly to the ground state of Pu-244. L'américium 244 métastable se désintègre principalement vers des niveaux excités et le niveau fondamental du curium 244. Un faible branchement par capture électronique vers le plutonium 244 a été observé.

2 Nuclear Data

$T_{1/2}(^{244} \mathrm{Am^m})$:	26	(3)	\min
$T_{1/2}(^{244}{\rm Pu})$:	80,0	(9)	10^{6} a
$T_{1/2}^{(244} \text{Cm})$:	$18,\!11$	(3)	a
$Q^{-}(^{244}\text{Am}^{\text{m}})$:	1516	(3)	keV
$Q^{+}(^{244}\text{Am}^{\text{m}})$:	164	(9)	keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,0}$	164 (9)	0,036(1)	allowed	6,37	0,24~(5)	0,53~(4)	0,168 (12)

2.2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,7}^{-} \end{array}$	$\begin{array}{c} 410 \ (3) \\ 432 \ (3) \\ 496 \ (3) \end{array}$	$\begin{array}{c} 0,35 \ (9) \\ 0,56 \ (13) \\ 0,08 \ (2) \end{array}$	(1st forbidden non-unique) (allowed) (allowed)	$6,8 \\ 6,67 \\ 7,7$

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
$\beta_{0,6}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-}$	$531,1 (30) \\ 1473 (3) \\ 1516 (3)$	$\begin{array}{c} 1,36 \ (16) \\ 31 \ (9) \\ 67 \ (9) \end{array}$	allowed allowed allowed	

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	$lpha_T$
$\gamma_{1,0}(Cm) \\ \gamma_{6,1}(Cm) \\ \gamma_{7,1}(Cm) \\ \gamma_{6,0}(Cm) \\ \gamma_{10,1}(Cm)$	$\begin{array}{c} 42,965 \ (10) \\ 941,95 \ (3) \\ 977,80 \ (4) \\ 984,91 \ (2) \\ 1041,22 \ (3) \end{array}$	$\begin{array}{c} 32 \ (9) \\ 0,36 \ (12) \\ 0,08 \ (2) \\ 1,0 \ (1) \\ 0,19 \ (6) \end{array}$	E2 E2 E0 (+ M1+E2) E0 (M1+E2)	0,01120 (16)	760 (11) 0,00318 (5)	$\begin{array}{c} 214 \ (3) \\ 0,000807 \ (12) \end{array}$	$\begin{array}{c} 1050 \ (15) \\ 0,01547 \ (22) \end{array}$
$\gamma_{11,1}(Cm)$	1062,95(3)	0,30(9)	anomalous E1	0,09(3)	0,015(4)	0,0032(1)	0,11(3)
$\gamma_{10,0}(\text{Cm})$	1084,181 (14)	0,37(12)	anomalous (E2)	0,030(8)	0,008(2)	0,0020(1)	0,041(11)
$\gamma_{11,0}(\mathrm{Cm})$	1105,91(2)	0,05(2)	anomalous (E1)	0,14(3)	0,024 (6)	0,0058(1)	0,17(4)

3 Atomic Data

3.1 Cm

ω_K	:	0,972	(4)
$\bar{\omega}_L$:	$0,\!538$	(23)
n_{KL}	:	0,785	(5)

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}	$\begin{array}{c} \mathrm{K}\alpha_2\\ \mathrm{K}\alpha_1 \end{array}$	104,59 109,271		$\begin{array}{c} 65\\ 100 \end{array}$
	$\begin{array}{c} \mathrm{K}\beta_{3} \\ \mathrm{K}\beta_{1} \\ \mathrm{K}\beta_{5}^{''} \end{array}$	$122,304 \\ 123,403 \\ 124,124$	} } }	38
	$egin{array}{c} \mathrm{K}eta_2\ \mathrm{K}eta_4\ \mathrm{KO}_{2,3} \end{array}$	$126,889 \\127,352 \\127,97$	} } }	13,5

		Energy keV	Relative probability
X_{L}			
	$\mathrm{L}\ell$	$12,\!633$	
	$L\alpha$	$14,\!746-14,\!961$	
	$\mathrm{L}\eta$	$17,\!314$	
	$\mathrm{L}eta$	$17,\!286-19,\!688$	
	$\mathrm{L}\gamma$	$22,\!735-23,\!527$	

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY Auger L	78,858 - 89,973 97,226 - 109,267 115,57 - 128,23 6,19 - 14,46	$100 \\ 61,6 \\ 9,5 \\ 1450000$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	
e_{AL}	(Pu)	6,09 - 13,83	0,0124 (11)	
e _{AK}	(Pu) KLL KLX KXY	75,263 - 85,357 92,607 - 103,729 109,93 - 121,78	0,000253 (45) } }	
e_{AL}	(Cm)	6,19 - 14,46	10,6~(23)	
e _{AK}	(Cm) KLL KLX KXY	78,858 - 89,973 97,226 - 109,267 115,57 - 128,23	0,00125 (27) } } }	
$ec_{1,0} L ec_{1,0} M_+$	(Cm) (Cm)	$18,439 - 23,995 \\ 36,628 - 42,948$	$23 (7) \\ 9 (3)$	
$\beta_{0,11}^{-} \\ \beta_{0,11}^{-}$	max: avg:	$\begin{array}{ccc} 410 & (3) \\ 116,9 & (7) \end{array}$	0,35 (9)	
		Ene ke	ergy eV	Electrons per 100 disint.
-----------------------------------	--------------	------------------	---------------	------------------------------
$\beta_{0,10}^{-}$	max:	432	(3)	0,56 (13)
$\beta_{0,10} \\ \beta_{0,7}^{-}$	avg: max:	123,7 496	(7) (3)	0,08 (2)
$\beta_{0,7}^{-}$	avg:	$144,\! 0$	(7)	
$eta_{0,6}^{-}\ eta_{0,6}^{-}$	max: avg:	$531,1 \\ 155,7$	$(30) \\ (7)$	$1,36\ (16)$
$\beta_{0,1}^{-}$	max:	1473	(3)	31 (9)
$\beta_{0,1} \\ \beta_{0,0}^{-}$	avg: max:	495,8 1516	(9) (3)	67 (9)
$\beta_{0,0}^{\underline{0},0}$	avg:	$512,\!3$	(9)	

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Cm)	$12,\!633 - 23,\!527$		12,3~(27)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cm) (Cm)	104,59 109,271		$0,013 (4) \\ 0,020 (6)$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122,\!304\\123,\!403\\124,\!124$	} } }	0,0076~(21)	$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	$126,889 \\ 127,352 \\ 127,97$	} } }	0,0027 (8)	$\mathbf{K}' \boldsymbol{\beta}_2$

5.2 Gamma Emissions

	${ m Energy}\ { m keV}$	Photons per 100 disint.	
$\begin{array}{c} \gamma_{1,0}({\rm Cm}) \\ \gamma_{6,1}({\rm Cm}) \\ \gamma_{10,1}({\rm Cm}) \\ \gamma_{11,1}({\rm Cm}) \\ \gamma_{10,0}({\rm Cm}) \\ \gamma_{11,0}({\rm Cm}) \end{array}$	$\begin{array}{c} 42,965 \ (10) \\ 941,95 \ (3) \\ 1041,22 \ (3) \\ 1062,95 \ (3) \\ 1084,181 \ (14) \\ 1105,91 \ (2) \end{array}$	$\begin{array}{c} 0,030 \ (9) \\ 0,35 \ (12) \\ 0,19 \ (6) \\ 0,27 \ (8) \\ 0,36 \ (12) \\ 0,04 \ (2) \end{array}$	

6 Main Production Modes

 $Am - 243(n,\gamma)Am - 244m$

7 References

- K. Street Jr., A. Ghiorso, G.T. Seaborg. Phys. Rev. 79 (1950) 530 (Half-life)
- A. GHIORSO, S.G. THOMPSON, G.R. CHOPPIN, B.G. HARVEY. Phys. Rev. 94 (1954) 1081 (Half-life)
- P.R. FIELDS JR., J.E. GINDLER, A.L. HARKNESS, M.H. STUDIER, J.R. HUIZENGA, A.M. FRIEDMAN. Phys. Rev. 100 (1955) 172
- (Electron Capture/Beta minus ratio)
- S.E. VANDENBOSCH, P. DAY. Nucl. Phys. 30 (1962) 177 (Spin and Parity)
- R. VANDENBOSCH, P.R. FIELDS, S.E. VANDENBOSCH, D. METTA. J. Inorg. Nucl. Chem. 26 (1964) 219 (Am243(n, gamma)Am244 cross-section ratio, Spin)
- V.YA. GABESKIPIYA, A.P. CHETVERIKOV, V.V. GRYZINA, V.V. TIKHOMIROV. Sov. At. Energy 41 (1976) 1008 (BF(EC))
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies)
- T. VON EGIDY, R.W. HOFF, R.W. LOUGHEED, D.H. WHITE, H.G. BORNER, K. SCHRECKENBACH, D.D. WARNER, G. BARREAU. Phys. Rev. C29 (1984) 1243
 (Spin and Parity, Nuclear level energy of Am244m)
- R.W. HOFF, T. VON EGIDY, R.W. LOUGHEED, D.H. WHITE. H.G. BORNER, K. SCHRECKENBACH, G. BARREAU, D.D. WARNER. Phys. Rev. C29 (1984) 618
 (Gamma-ray emission probabilities, Multipolarities)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (XK- and XL-rays, Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report-6.11-1999-1 (1999) (XK-rays)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1 (77)
- (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)
- Y.A. AKOVALI. Nucl. Data Sheets 99 (2003) 197 (Nuclear levels)
- G. Audi, A.H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q-values)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Reproduction Service 30, Boulevard Verd-de-Saint-Julien 92190 MEUDON

Achevé d'imprimer : avril 2010 Imprimé en France

ISBN-13 978-92-822-2234-8 (Vol. 5) ISBN-13 978-92-822-2235-5 (CD-Rom)