. Bruker, . Bruker, and M. A. Billerica, For detection, a SMITHS DETECTION DuraSamplIR IIDiamond ATR sensor (Smiths Detection, Hemel Hempstead, UK) was used. Wavenumbers are reported in cm ?1 starting at an absorption of 10%. Melting points (m.p.) were determined on a BÜCHI B-540 melting point apparatus (BÜCHI LabortechnikAG, Flawil, Switzerland) and are uncorrected. Compounds decomposing upon melting are indicated by (decomp.). Gas chromatography was executed with machines of type Agilent Technologies 7890A GC-Systems with 6890 GC inlets, detectors (Agilent, Chemical shifts are reported as ?-values in ppm relative to tetramethylsilane. The following abbreviations were used to characterize signal multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and bs (broad singlet), vol.5

/. Msd and . Gc/ms, HP, vol.5

M. L. Crawley and B. M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective

N. Miyaura, Cross-Coupling Reactions. A Practical Guide, Org. Process Res. Dev, vol.7, 1084.

V. B. Phapale and D. J. Cárdenas, Nickel-Catalysed Negishi cross-coupling reactions: Scope and mechanisms, Chem. Soc. Rev, vol.38, pp.1598-1607, 2009.

J. F. Hartwig, Organotransition Metal Chemistry. From Bonding to Catalysis, Angew. Chem. Int. Ed, vol.49, 2010.

R. Jana, T. P. Pathak, and M. S. Sigman, Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners, Chem. Rev, vol.111, pp.1417-1492, 2011.

, FeCl 2 , rat oral) = 900 mg/kg; LD 50 (NiCl 2 , rat oral) = 186 mg/kg, LD, vol.50

K. S. Egorova, V. P. Ananikov, F. Cu, . Pd, R. Pt et al., Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Angew. Chem. Int. Ed, vol.55, pp.12150-12162, 2016.

, FeCl 2 ca. 332 ?/mol, PdCl 2 ca. 6164 ?/mol; prices retrieved from Alfa Aesar, 2019.

S. Thapa, B. Shrestha, S. K. Gurung, and R. Giri, Copper-catalysed cross-coupling: An untapped potential, Org. Biomol. Chem, vol.13, pp.4816-4827, 2015.

A. Fürstner, A. Leitner, M. Méndez, and H. Krause, Iron-Catalyzed Cross-Coupling Reactions, J. Am. Chem. Soc, vol.124, pp.13856-13863, 2002.

R. B. Bedford and P. B. Brenner, Iron Catalysis II

E. Bauer, . Ed, and . Springer, , 2015.

G. Cahiez, A. Moyeux, and J. Cossy, Grignard Reagents and Non-Precious Metals: Cheap and Eco-Friendly Reagents for Developing Industrial Cross-Couplings. A Personal Account, Adv. Synth. Catal, vol.357, 1983.

I. Bauer and H. Knölker, Iron Catalysis in Organic Synthesis, Chem. Rev, vol.115, pp.3170-3387, 2015.

G. Cahiez and A. Moyeux, Cobalt-Catalyzed Cross-Coupling Reactions, Chem. Rev, vol.110, pp.1435-1462, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00705987

G. Cahiez, C. Duplais, and J. Buendia, Chemistry of Organomanganese(II) Compounds, Chem. Rev, vol.109, pp.1434-1476, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00462621

, Molecules, vol.25, p.723, 2020.

Z. Peng, N. Li, X. Sun, F. Wang, L. Xu et al., The transition-metal-catalyst-free oxidative homocoupling of organomanganese reagents prepared by the insertion of magnesium into organic halides in the presence of MnCl 2 ·2LiCl, Org. Biomol. Chem, vol.12, pp.7800-7809, 2014.

D. Haas, J. M. Hammann, A. Moyeux, G. Cahiez, and P. Knochel, Oxidative Homocoupling of Diheteroaryl-or Diarylmanganese Reagents Generated via Directed Manganation Using TMP 2 Mn, Synlett, vol.26, 1515.

G. Cahiez, A. Masuda, D. Bernard, and J. F. Normant, Reactivite des derives organo-manganeux.I-action sur les chlorures d'acides. synthese de cetones, Tetrahedron Lett, vol.36, pp.3155-3156, 1976.

G. Friour, A. Alexakis, G. Cahiez, and J. F. Normant, Reactivite des derives organomanganeux-VIII: Préparation de cétones par acylation d'organomanganeux. Influence de la nature de l'agent acylant, des solvants et des ligands, Tetrahedron, vol.40, pp.683-693, 1984.

T. Kauffmann and M. Bisling, Zwei neue reaktionsweisen von alkyl-Mn(II)-verbindungen: 1,4-addition an cyclohex-2-enon(1) und desoxygenierung von oxiranen (1), Tetrahedron Lett, vol.25, pp.293-296, 1984.

G. Cahiez and M. Alami, Organomanganese (II) reagents XI.: A study of their reactions with cyclic conjugated enones: Conjugate addition and reductive dimerization, Tetrahedron Lett, vol.27, pp.569-572, 1986.

G. Cahiez and M. Alami, Organomanganese (II) reagents XVI1: Copper-catalyzed 1,4-addition of organomanganese chlorides to conjugated enones, Tetrahedron Lett, vol.30, pp.3541-3544, 1989.

G. Cahiez and M. Alami, Composés organomanganeux XXI. Réaction d'un composé organomanganeux avec une énone conjuguée: Influence d'un acide de Lewis, d'un sel de fer ou d'un sel de nickel, J. Organomet. Chem, vol.397, pp.291-298, 1990.

P. Quinio, A. D. Benischke, A. Moyeux, G. Cahiez, and P. Knochel, New Preparation of Benzylic Manganese Chlorides by the Direct Insertion of Magnesium into Benzylic Chlorides in the Presence of MnCl 2 ·2LiCl, Synlett, vol.26, 2015.

G. Cahiez and S. Marquais, Highly Chemo-and Stereoselective Fe-Catalyzed Alkenylation of Organomanganese Reagents, Tetrahedron Lett, vol.37, pp.1773-1776, 1996.

A. Desaintjean, S. Belrhomari, L. Rousseau, G. Lefèvre, and P. Knochel, Iron-Catalyzed Cross-Coupling of Functionalized Benzylmanganese Halides with Alkenyl Iodides, Bromides, and Triflates, Org. Lett, vol.21, pp.8684-8688, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02321208

K. Tamao, K. Sumitani, and M. Kumada, Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes, J. Am. Chem. Soc, vol.94, pp.4374-4376, 1972.

D. Haas, J. F. Hammann, R. Greiner, and P. Knochel, Recent Developments in Negishi Cross-Coupling Reactions, ACS Catal, vol.6, pp.1540-1552, 2016.

M. R. O'donovan, C. D. Mee, S. Fenner, A. Teasdale, and D. H. Phillips, Boronic acids-a novel class of bacterial mutagen, Mutat. Res, vol.724, pp.1-6, 2011.

M. M. Hansen, R. A. Jolly, and R. J. Linder, Boronic Acids and Derivatives-Probing the Structure-Activity Relationships for Mutagenicity, vol.19, pp.1507-1516, 2015.

A. D. Benischke, A. Desaintjean, T. Juli, G. Cahiez, and P. Knochel, Nickel-Catalyzed Cross-Coupling of Functionalized Organo-manganese Reagents with Aryl and Heteroaryl Halides Promoted by 4-Fluorostyrene, vol.49, 2017.

G. Cahiez, O. Gager, and F. Lecomte, Manganese-Catalyzed Cross-Coupling Reaction between Aryl Grignard Reagents and Alkenyl Halides, Org. Lett, vol.10, pp.5255-5256, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00462617

, Additionally, 55 Mn nucleus is quadrupolar (100 % natural abundance, I = 5/2)

R. J. Morris and G. S. Girolami, High-valent organomanganese chemistry. 2. Synthesis and characterization of manganese(III) aryls, Organometallics, vol.10, pp.799-804, 1991.

A. Krasovskiy and P. Knochel, Convenient Titration Method for Organometallic Zinc, Magnesium, and Lanthanide Reagents, Synthesis, vol.5, 2006.

R. Fischer, H. Görls, M. Friedrich, and M. Westerhausen, Reinvestigation of arylmanganese chemistry-Synthesis and molecular structures of [(thf) 4 Mg(µ-Cl) 2 Mn(Br)Mes], [Mes(thf)Mn(µ-Mes)] 2 , and

, Mes= mesityl, 2,4,6-Me 3 C 6 H 2 ), J. Organomet. Chem, vol.694, pp.1107-1111, 2009.

R. M. Meyer and T. P. Hanusa, Structural organomanganese chemistry. In The Chemistry of Organomanganese Compounds, p.45, 2011.

R. B. Bedford, P. B. Brenner, E. Carter, P. M. Cogswell, M. F. Haddow et al., TMEDA in Iron-Catalyzed Kumada Coupling: Amine Adduct versus Homoleptic "ate" Complex Formation, Angew. Chem. Int. Ed, vol.53, pp.1804-1808, 2014.

S. B. Muñoz, S. L. Daifuku, J. D. Sears, T. M. Baker, S. H. Carpenter et al., The N-Methylpyrrolidone (NMP) Effect in Iron-Catalyzed Cross-Coupling with Simple Ferric Salts and MeMgBr, Angew. Chem. Int. Ed, vol.57, pp.6496-6500, 2018.

M. Clémancey, T. Cantat, G. Blondin, J. Latour, P. Dorlet et al., Structural insights into the nature of Fe 0 and Fe I low-valent species obtained upon reduction of Iron salts by Aryl Grignard reagents, Inorg. Chem, vol.56, pp.3834-3848, 2017.

L. Rousseau, C. Herrero, M. Clémancey, A. Imberdis, G. Blondin et al., Evolution of ate organoiron(II) species towards lower oxidation states: Role of the steric and electronic factors, Chem. Eur. J, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02378178

, The mechanistic studies were pursued using only aryl Grignard nucleophiles, as the transmetalation of the latter with iron was proceeding in the same way than that of manganese, and as the NMR spectra allowed a much more precise and accurate interpretation thanks to the absence of highly paramagnetic Mn-containing species

J. Cheng, Q. Chen, X. Leng, S. Ye, and L. Deng, Three-Coordinate Iron(0) complexes with N-Heterocyclic Carbene and Vinyltrimethylsilane Ligation: Synthesis, Characterization, and Ligand Substitution Reactions, Inorg. Chem, vol.58, pp.13129-13141, 2019.

Z. Mo and L. Deng, Open-shell iron hydrocarbyls, Coord. Chem. Rev, vol.350, pp.285-299, 2017.

M. Mayer and A. Welther, Jacobi von Wangelin, A. Iron-Catalyzed Isomerizations of Olefins, ChemCatChem, vol.3, pp.1567-1571, 2011.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Licensee MDPI