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A Wavelet-based Optimal Filtering Method for Adaptive 
Detection: Application to Metallic Magnetic Calorimeters 

B. Censier, M. Rodrigues and M. Loidl 

CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91191 Gif-sur-Yvette, France 

Abstract.  Optimal filtering allows the maximization of signal-over-noise ratio for the improvement of both energy 
threshold and resolution. Nevertheless, its effective efficiency depends on the estimation of signal and noise spectra. 
In practice, these are often estimated by averaging over a set of carefully chosen data. In case of time-varying noise, 
adaptive non-linear algorithms can be used if the shape of the signal is known. However, their convergence is not 
guaranteed, especially with 1/f-type noise. In this paper, a new method is presented for adaptive noise whitening and 
template signal estimation. First, the noise is continuously characterized in the wavelet domain, where the signal is 
decomposed over a set of scales, corresponding to band-pass filters. Both time resolution and decorrelation properties of 
the wavelet transform allow an accurate and robust estimation of the noise structure, even if pulses or correlated noise 
are present. The whitening step then amounts to a normalization of each scale by the estimated noise variance. A 
matched filter is then applied on the whitened signal. The required signal template is constructed from a single event, 
denoised by a filtering technique called wavelet thresholding. As an example, application to metallic magnetic 
calorimeter data is presented. The method reaches the precision of conventional optimal filtering, further allowing noise 
monitoring, adaptive threshold and improving the energy resolution of up to 8% in some cases. 
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INTRODUCTION 

We propose a wavelet-based method for adaptive 
noise measurement on a signal containing pulses and 
for template signal construction. The main idea is to 
take profit of the discrimination features of signal and 
noise in the time/scale plan. We first briefly recall the 
main properties of wavelet transform. The method is 
presented in a second section, followed by some 
example applications on metallic magnetic calorimeter 
data in the last section. 

WAVELET TRANSFORM 

A wavelet transform is a decomposition on a set of 
time localized oscillating functions basis j,k, instead 
of sine and cosine functions basis used for Fourier 
transform. The j index stands for time while k stands 
for scale. The wavelet transform of a signal is thus 
composed of several time series, each of them being 
the signal content at a given scale, i.e. in a given 
frequency band with a signal processing point of view 

(see figures 1 and 2). While the Fourier transform of a 
signal has a constant frequency resolution and a 
complete loss of time resolution, its wavelet transform 
keeps both in a somewhat optimized way. In analogy 
with the Heisenberg's uncertainty principle, large time 
scales have a better frequency resolution and a worse 
time resolution than small time scales. Besides this 
general property, a wavelet functions basis j,k must 
match several mathematical constraints. Among them 
let us cite orthogonality, built-in scaling (all basis 
functions are translation and dilatation of each other), 
Fourier compact support (all basis functions can be 
seen as band-pass impulse responses) and number of 
vanishing moments[1]. Having p vanishing moments 
means that wavelet-coefficients for pth order 
polynomial will be zero. This property is strongly 
connected to the decorrelation properties of wavelet, 
allowing a signal to be represented with few non-zero 
wavelet coefficients, and an approximate whitening of 
long range correlated noise at each scale[2]. These 
features are extensively used for image denoising and 
compression: wavelet coefficients at each scale are set 
to zero when being lower than a given threshold, and 



the inverse transform gives the denoised image. This 
“wavelet thresholding” technique is often seen as a 
nearly optimal smoothing method. It can be used on a 
decimated discrete wavelet transform that allows the 
computing time to be as low as the fast Fourier 
transform one. This is due to the use of a dyadic scale 
grid, where scale k is twice the scale k-1, and where 
the signal at scale k is decimated k times[9]. Although 
this does not imply any information loss, the main 
drawback is the loss of time invariance that can 
generate non-linear artifacts on the thresholded 
signal[7]. This problem can be overcome using a non-
decimated wavelet transform on a dyadic grid, at the 
cost of computing time.  Wavelet thresholding is thus a 
very efficient, almost non-parametric tool for 
smoothing an unknown shape buried in noise, but it is 
non-linear and often ill-adapted to measurements 
requiring precise determination of specific parameters 
such as pulses amplitude.  

 

 

FIGURE 1. Frequency responses for a filter bank 
implementation of a Daubechies 8 wavelet transform (thick 
solid lines and dashed lines). The thick dotted line is the 
Fourier spectrum of a typical pulse. Note the logarithmic 
scale of the frequency axis. 

WAVELET-BASED METHOD 

Let us first recall the definition of a matched filter. 
It is constructed from a template pulse Fourier 
spectrum S(f) and a noise power spectral density N(f) 
and is theoretically optimal in the sense of maximizing 
the instantaneous signal-over-noise ratio (SNR in the 
following)[3]. Its transfer function H(f) is given by: 
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where K is normalization constant. This can be 

interpreted in practice by a whitening filter (the N(f) 

denominator) followed by a correlation of the signal 
with the time reversed template pulse (the S*(f) 
numerator). The main advantage about implementing a 
matched filter using wavelet is the possibility of being 
adaptive by evaluating continuously the structure of 
the noise. An example application and a discussion 
about the advantages of an adaptive implementation of 
the matched filter in the wavelet domain can be found 
in [5]. In our implementation though, only the 
estimation of N(f) and the whitening process is done in 
the wavelet domain, while the correlation is done 
afterward back in the time domain. This choice is 
mainly driven by the reduction of computing time as 
will be explained further. 

Thanks to the decorrelation properties of wavelets, 
the wavelet transform of a Gaussian correlated noise at 
each scale k is a centered, nearly white Gaussian noise 
[2] with a variance k², which is also the noise power 
at scale k. Once this variance is calculated at each 
scale, the whitening step amounts to a simple 
normalization of scale k by k². 

The question is: how to compute these variances? 
We can once again use the decorrelation properties of 
wavelets. As stated above, the wavelet transform of a 
pulse has only few non-zero coefficients, contrary to 
the wavelet transform of the noise (see figure 2). We 
can then estimate k by computing the median 
absolute deviation (MAD) which is often used as a 
robust estimator for wavelet thresholding[4][5]. The 
quality of the estimation depends in some way on the 
ratio of the number of non-zero wavelet coefficients 
over the total number of samples, thus on the number 
of pulses in the data. Note that the duration of the 
pulses is not playing a significant role here: the 
duration of a wavelet transformed pulse at a given 
scale k mostly depends on k. The filter used to derived 
the wavelet transform at scale k has indeed a finite 
support (it is a band-pass filter), and its bandwidth sets 
a corresponding time scale. 
The main limitation is thus concerning the largest 
scales (or lowest frequencies): for a given number of 
pulses in the data, the larger is the scale k, the larger is 
the proportion of non-zero wavelet coefficients, and 
the larger is the bias to be expected on the estimation 
of k. As a reference, we know an efficient matched 
filter requires template spectra approaching the real 
spectra at the percent level.  

In order to check the validity domain of this noise 
estimation technique, simulated signals including 
exponentially decaying pulses, white noise and low 
frequency 1/f² noise have been analyzed. The decay 
time constant have been set to 15 ms, the (exponential) 
rise time constant to 10s, and the simulated data sets 
are 220 points long (about 10s with a 100kHz sampling 
frequency). These parameters, as well as those of the 



noise, have been chosen to be close to the real data 
analyzed further in the last section of this article. We 
tested two SNRs of 100 and 1000. Simulated pulses all 
have the same amplitude and their occurrence times 
are drawn from a Poisson law.  The FWMH obtained 
on the corresponding peak in the amplitude histogram 
have been used as an indicator of efficiency. Up to 
about 50 pulses per acquisition (5 events/s), the 
measured FWMH was less than 5% close to the 
theoretical FWHM of baseline noise. At higher event 
rates, the resolution is degraded because of an over-
estimation of the noise power at large scales. It should 
however be noted that pile-up events become 
predominant at these rates, which also limits the 
achievable resolution in practice, and calls for a 
shortening of the pulses decay constant. By shortening 
this decay, the energy content of a pulse is spread over 
a larger part of the frequency spectrum toward high 
frequencies, so that the relative importance of low 
frequencies (and of large scales) is diminished.  

If we use a decimated wavelet transform, which is 
not time invariant, the filtering of a pulse at a given 
time will be different than that of the very same pulse 
at another time, which is redhibitory for the precision 
of pulse amplitude measurement. On the other hand, 
the use of a non-decimated transform may 
dramatically increase the computing time. A good 
compromise can been found in [7], where the authors 
present an optimized, faster algorithm for time 
invariant wavelet transform. Its main drawback is the 
loss of time ordering of the wavelet coefficients at 
each scale. Nevertheless, this not a concern for us 
since the computation of MAD does not depend on 
time ordering. This prevents us from computing the 
correlation step in the wavelet domain and exploring 
all the possibilities of the time/scale plan. While this 
latter point is quite obvious, the former one may not be 
an advantage as stated in [8]. 

Finally, we need to construct a template pulse. This  
is done by wavelet thresholding a single pulse with 
sufficient SNR (typically >100). The use of a time 
invariant transform is also crucial here, since it ensures 
the quality of the filtering. 

To Summarize, here is the different steps of the 
method: 
 Time invariant wavelet transform of a signal with 

pulses and noise 
 Estimation of the k by MAD 
 Wavelet thresholding with the computed k's of a 

high SNR pulse: definition of the template pulse 
 Whitening of each scale (normalization by k) 
 Inverse wavelet transform back to the time 

domain 
-   convolution of the whitened signal by the pulse 
template 
 

 

FIGURE 2.  5.9 keV event from a 55Fe source (top) and its 
corresponding wavelet coefficients at scale 9 (middle, ‘.’) 
and 4 (bottom, ‘+’, with an offset of -0.4 for a clearer view). 
Scale 9 corresponds to a frequency band  100Hz to 200Hz 
and scale 4 3.1 kHz to 6.2 kHz. Wavelet coefficients are 
decimated according to their scale: if the original data has 2N 
points, scale k will have 2N-k points. The dashed lines are the 
negative and positive thresholds derived from 4. The type 
of wavelet used is Daubechies 8. 

 

EXAMPLE APPLICATION  

Two data sets have been analyzed from two different 
detectors with two different radioactive sources, 
namely 55Fe and 133Ba. These runs have a SNR of the 
order of 100 and 1000 respectively. Data streams are 
digitalized continuously at a 100 kHz sampling rate 
and stored on a hard disk. They are then analyzed off-
line, being divided into contiguous segments of 220 
samples (10s) that are treated one by one. The 
counting rate is about 0.4 event/s for both sources. The 
analysis have been carried out under GNU Octave[10], 
an open source equivalent to Matlab, with the free 
Wavelab802 toolbox[11] including the time invariant 
wavelet transform algorithm[7] discussed above. 

The K normalization constant of equation (1) has 
been chosen to get a unity standard deviation  of the 
residual noise in the filtered signal [6]. By doing so, 
we can set an adaptive threshold in  units. Threshold 
has been set to 6. 

 Three different analyses have been tested: 
conventional non adaptive matched filter, adaptive 
wavelet-based matched filter, and linear fit with a 
template pulse. Results from a linear template fit are 
usually close from a matched filter ones and may 
sometimes be more robust against noise variations. 
Two different wavelets have been tested: Haar and



Daubechies 8. Although the latter has more 
vanishing moments, no significant differences have 
been seen on the results, but this behavior may not be 
the same for every types of noise.  

The 55Fe run shows an increasing drift of pulses 
amplitude due to a progressive lowering of the 
temperature. The FWHM of the 5,9 keV peak is 55 eV 
for the matched filter, 50 eV for the template fit, and 
46 eV for the wavelet-based method. Given the chosen 
theshold and considering a gaussian noise, we expect 
about 30 noise events on the total run, which is 
compatible with the ~20 events counted under 500 eV. 
Besides the monotonic amplitude drift, a complex drift 
of the noise structure is observed, with a different 
behavior at low and high frequencies. The energy 
threshold is varying by about 2 eV on the whole run. 

The 133Ba run shows even more important 
variations of amplitude, with steep jumps and a 
smoother, non monotonic amplitude drift. Energy 
resolutions are summed up in table 1. The time varying 
FWHM of baseline noise as measured by the wavelet 
algorithm is varying by about 4eV during the run. The 
number of noise events is 5 to 10 times the expected 
one. This could be due to events interacting inside the 
wafer support of the detector or in the sensor itself. A 
preliminary analysis of the wavelet coefficients of the 
pulses tends to confirm this hypothesis: two 
populations of faster (sensor interaction) and slower 
(wafer interaction) pulses can be discriminated in the 
lower part of the energy spectrum. 

 CONCLUSION 

The structure of wavelet transform is particularly 
adapted to noise measurements when pulses are 
present. The use of MAD allows statistics 
accumulation about the noise independently in each 
frequency band and on an adapted time scale. 
Application to metallic magnetic calorimeter shows a 
clear improvement in energy resolution compared to 
non-adaptive methods, and allows a deeper insight into 
the time/frequency evolution of the noise structure. 
Besides being adaptive about noise variations, the 
method could also be made adaptive to pulse shape 
variations, since wavelet thresholding allows defining 
a template on a single event. Further developments 
could also include pulse shape discrimination by 
wavelet coefficients or scale-dependent detection of 
pile-up events. In this perspective, an implementation 
of non decimated wavelet transforms on FPGA would 
be particularly convenient in terms of computing time 

and would allow a real time and almost non parametric 
filtering of experimental signals. 
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TABLE 1. FWHM of three lines of the 133Ba energy spectrum. X lines FWHM have been corrected from natural width. 
Analysis method/line name Ka1 (30.974 keV) K-M3 (34.987 keV)  (53.168 keV) 
Non adaptive matched filter 52.3 eV 51.5 eV 55 eV 
Linear fit with template 51.5 eV 50.6 eV 54.6 eV 
Wavelet based matched filter 46.7 eV 41 eV 44 eV 


