M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi et al., Solar cell efficiency tables (version 50), Prog. Photovoltaics, vol.2017, issue.7, pp.668-676

B. Burger, K. Kiefer, C. Kost, S. Nold, S. Philipps et al., Photovoltaics Report; Frauhofer ISE, 2018.

, Report on Critical Raw Materials for the EU; European Commission, 2014.

R. L. Moss, E. Tzimas, P. Willis, J. Arendorf, P. Thompson et al., Critical Metals in the Path Towards the Decarbonisation of the EU Energy Sector. Assessing Rare Metals As Supply-Chain Bottlenecks in Low-Carbon Energy Technologies, JRC-report-Critical-Metals-Energy-Sector, 2013.

, Geochim. Cosmochim. Acta, vol.59, issue.7, pp.1217-1232, 1995.

D. A. Horn, The international development of RoHS, Technologies for Sustainability (SusTech). Proc. IEEE Conference, pp.34-38, 2016.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara et al., High efficiency Cu 2 ZnSn(S,Se) 4 solar cells by applying a double In 2 S 3 /CdS emitter, Adv. Mater, vol.26, issue.44, pp.7427-7431, 2014.

T. Ericson, F. Larsson, T. Torndahl, C. Frisk, J. Larsen et al., C. Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing

, 0% Efficient Cd-Free Cu 2 ZnSnS 4 Solar Cell, vol.2017, p.1700001

R. D. Snee, W. F. Rodebaugh, R. Aninat, L. E. Quesada-rubio, E. Sanchez-cortezon et al., Mapping and comparison of the shortcomings of kesterite absorber layers, and how they could affect industrial scalability, Thin Solid Films, vol.633, issue.10, pp.146-150, 2008.

S. Delbos, Kesterite thin films for photovoltaics: a review, EPJ Photovoltaics, vol.3, p.35004, 2012.

S. Siebentritt, Why are kesterite solar cells not 20% efficient? Thin Solid Films, vol.535, pp.1-4, 2013.

A. Polizzotti, I. L. Repins, R. Noufi, S. H. Wei, and D. B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci, vol.6, pp.3171-3182, 2013.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao et al., The current status and future prospects of kesterite solar cells: a brief review, Prog. Photovoltaics, vol.24, issue.6, pp.879-898, 2016.

I. Repins, N. Vora, C. Beall, S. Wei, Y. Yan et al., Kesterites and chalcopyrites: a comparison of close cousins, MRS Online Proc. Libr, 1324.

S. Ru?le, Tabulated values of the Shockley?Queisser limit for single junction solar cells, Sol. Energy, vol.130, pp.139-147, 2016.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov et al., Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater, 2014.

T. Kato, N. Sakai, and H. Sugimoto, Efficiency improvement of Cu 2 ZnSn(S,Se) 4 submodule with graded bandgap and reduced backside ZnS segregation, Proc. 40th IEEE PVSC, pp.844-0846, 2014.

S. G. Haass, M. Diethelm, M. Werner, B. Bissig, Y. E. Romanyuk et al., Cu 2 ZnSnSe 4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length, Adv. Energy Mater, vol.2015, issue.7, pp.14-22, 2015.

S. Kim, K. M. Kim, H. Tampo, H. Shibata, S. Niki et al., Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency, Appl. Phys. Express, vol.2016, issue.10, p.1501070, 2015.

A. Collord and H. Hillhouse, Germanium Alloyed Kesterite Solar Cells with Low Voltage Deficits, Chem. Mater, vol.28, issue.7, pp.2067-2073, 2016.

S. Sahayaraj, G. Brammertz, B. Vermang, T. Schnabel, E. Ahlswede et al., Optoelectronic properties of thin film Cu 2 ZnGeSe 4 solar cells, Sol. Energy Mater. Sol. Cells, vol.171, pp.136-141, 2017.

L. Choubrac, G. Brammertz, L. Arzel, S. Harel, L. Assmann et al., Experimental evidence of light soaking effect in Cd-free Cu 2 ZnSn(S,Se) 4 -based solar cells, Thin Solid Films, vol.564, issue.27, pp.375-378, 2014.

X. Li, Z. Su, S. Venkataraj, S. K. Batabyal, and L. H. Wong, , vol.8, p.6

, Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer, Sol. Energy Mater. Sol. Cells, vol.157, pp.101-107, 2016.

J. Li, X. Liu, W. Liu, L. Wu, B. Ge et al., Restraining the Band Fluctuation of CBD-Zn (O, S) Layer: Modifying the Hetero-Junction Interface for High Performance Cu 2 ZnSnSe 4 Solar Cells With Cd-Free Buffer Layer. Sol. RRL 2017, 1, 1700075. (30), Phys. Status Solidi RRL, vol.2016, issue.8, pp.583-586

H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, and A. Yamada, New world-record efficiency for pure-sulfide Cu(In,Ga)S 2 thin-film solar cell with Cd-free buffer layer via KCN-free process, IEEE J. Photovoltaics, vol.6, issue.3, pp.760-763, 2016.

R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai et al., ) 2 thin film solar cell efficiency beyond 22%, Proc. 43rd IEEE PVSC 2016, pp.1287-1291

J. Abushama, R. Noufi, S. Johnston, S. Ward, and X. Wu, Improved Performance in CuInSe 2 and Surface Modified CuGaSe 2 Solar Cells, Proc. 31st IEEE PVSC 2005, pp.299-302

D. Braunger, T. Durr, D. Hariskos, C. Koble, T. Walter et al., Improved open circuit voltage in CuInS 2 -based solar cells, Proc. 25th IEEE PVSC, pp.1001-1004, 1996.

F. Larsson, N. S. Nilsson, J. Keller, C. Frisk, V. Kosyak et al., Record 1.0 V open-circuit voltage in wide band gap chalcopyrite solar cells, Prog. Photovoltaics, vol.2017, issue.9, pp.755-763

C. J. Hages, N. J. Carter, R. Agrawal, T. Unold, C. J. Hages et al., Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu 2 ZnSn(S x Se 1?x ) 4 and Cu 2 Zn(Sn y Ge 1?y )(S x Se 1?x ) 4, Adv. Energy Mater, vol.2014, issue.23, p.103506, 2013.

J. J. Scragg, J. K. Larsen, M. Kumar, C. Persson, J. Sendler et al., Cu?Zn disorder and band gap fluctuations in Cu 2 ZnSn(S, Se) 4 : Theoretical and experimental investigations, Phys. Status Solidi B, vol.253, issue.40, p.84507, 2016.

G. W. Guglietta, K. R. Choudhury, J. V. Caspar, and J. B. Baxter, Employing time-resolved terahertz spectroscopy to analyze carrier dynamics in thin-film Cu 2 ZnSn(S,Se) 4 absorber layers, Appl. Phys. Lett, vol.104, issue.25, p.253901, 2014.

K. Sardashti, R. Haight, T. Gokmen, W. Wang, L. Y. Chang et al., Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells, Adv. Energy Mater, vol.2015, issue.10, p.1402180

J. B. Li, V. Chawla, and B. M. Clemens, Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy, Adv. Mater, vol.24, pp.720-723, 2012.

C. Jiang, I. L. Repins, C. Beall, H. Moutinho, K. Ramanathan et al., Investigation of micro-electrical properties of Cu 2 ZnSnSe 4 thin films using scanning probe microscopy, Sol. Energy Mater. Sol. Cells, vol.132, pp.342-347, 2015.

A. Nagaoka, H. Miyake, T. Taniyama, K. Kakimoto, Y. Nose et al., Intragrain charge transport in kesterite thin films?Limits arising from carrier localization, Appl. Phys. Lett, vol.104, issue.47, p.175302, 2014.

O. Gunawan, T. Gokmen, and D. B. Mitzi, Suns-V OC characteristics of high performance kesterite solar cells, J. Appl. Phys, vol.116, issue.8, p.84504, 2014.

G. Larramona, S. Levcenko, S. Bourdais, A. Jacob, C. Chone et al., Fine-Tuning the Sn Content in CZTSSe Thin Films to Achieve 10.8% Solar Cell Efficiency from Spray-Deposited Water?Ethanol-Based Colloidal Inks, Adv. Energy Mater, vol.2015, issue.24, pp.8338-8343

J. V. Li, D. Kuciauskas, M. R. Young, and I. L. Repins, Effects of sodium incorporation in Co-evaporated Cu 2 ZnSnSe 4 thin-film solar cells, Appl. Phys. Lett, p.163905, 2013.

Z. K. Yuan, S. Chen, H. Xiang, X. G. Gong, A. Walsh et al., Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu-and Ag-based kesterite compounds, Adv. Funct. Mater, vol.25, issue.43, pp.6733-6743, 2015.

L. Yin, G. Cheng, Y. Feng, Z. Li, C. Yang et al., Limitation factors for the performance of kesterite Cu 2 ZnSnS 4 thin film solar cells studied by defect characterization, RSC Adv, vol.2015, issue.50, pp.40369-40374

B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay-chey, and S. Guha, Control of an interfacial MoSe 2 layer in Cu 2 ZnSnSe 4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier, Appl. Phys. Lett, vol.2012, issue.5, p.53903

J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart et al., A detrimental reaction at the molybdenum back contact in Cu 2 ZnSn(S,Se) 4 thin-film solar cells, J. Am. Chem. Soc, vol.2012, issue.47, 19330.

D. A. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto et al., Cd-free buffer layer materials on Cu 2 ZnSn(S x Se 1?x ) 4 : Band alignments with ZnO, ZnS, and In 2 S 3, Appl. Phys. Lett, vol.2012, issue.19, 193904.

M. Neuschitzer, K. Lienau, M. Guc, L. C. Barrio, S. Haass et al., Towards high performance Cd-free CZTSe solar cells with a ZnS(O,OH) buffer layer: the influence of thiourea concentration on chemical bath deposition, J. Phys. D: Appl. Phys, vol.2016, issue.12, p.125602

J. Kim, C. Park, S. M. Pawar, A. I. Inamdar, Y. Jo et al., Optimization of sputtered ZnS buffer for Cu 2 ZnSnS 4 thin film solar cells, Thin Solid Films, vol.566, pp.88-92, 2014.

J. Li, D. B. Mitzi, and V. B. Shenoy, Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu 2 ZnSnSe 4, ACS Nano, vol.5, issue.11, pp.8613-8619, 2011.

A. Crovetto, M. L. Palsgaard, T. Gunst, T. Markussen, K. Stokbro et al., ZnSe Etching of Zn-Rich Cu 2 ZnSnSe 4 : An Oxidation Route for Improved Solar-Cell Efficiency, Appl. Phys. Lett, vol.2017, issue.8, pp.14814-14822, 2013.

S. Temgoua, R. Bodeux, N. Naghavi, and S. Delbos, Effects of SnSe 2 secondary phases on the efficiency of Cu 2 ZnSn(S x ,Se 1?x ) 4 based solar cells, Thin Solid Films, vol.582, pp.215-219, 2015.

A. Weber, R. Mainz, and H. W. Schock, On the Sn loss from thin films of the material system Cu?Zn?Sn?S in high vacuum, J. Appl. Phys, vol.2010, issue.1, p.13516

J. J. Scragg, T. Kubart, J. T. Wa?jen, T. Ericson, M. K. Linnarsson et al., Effects of back contact instability on Cu 2 ZnSnS 4 devices and processes, Chem. Mater, vol.25, pp.3162-3171, 2013.

O. Gunawan, T. Gokmen, C. W. Warren, J. D. Cohen, T. K. Todorov et al., Electronic properties of the Cu 2 ZnSn(Se,S) 4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods, Appl. Phys. Lett, vol.100, issue.66, p.101907, 2010.

A. Redinger, M. Mousel, M. H. Wolter, N. Valle, and S. Siebentritt, Influence of S/Se ratio on series resistance and on dominant recombination pathway in Cu 2 ZnSn(SSe) 4 thin film solar cells, Thin Solid Films, vol.535, pp.291-295, 2013.

G. Brammertz, M. Buffiere, S. Oueslati, H. Elanzeery, K. B. Messaoud et al., Characterization of defects in 9.7% efficient Cu 2 ZnSnSe 4 -CdS-ZnO solar cells, Appl. Phys. Lett, p.163904, 2013.

L. Grenet, R. Fillon, G. Altamura, H. Fournier, F. Emieux et al., Analysis of photovoltaic properties of Cu 2 ZnSn(S,Se) 4 -based solar cells, Sol. Energy Mater. Sol. Cells, vol.126, pp.135-142, 2014.

G. Brammertz, M. Buffiere, C. Verbist, S. Oueslati, J. Bekaert et al., Process variability in Cu 2 ZnSnSe 4 solar cell devices: Electrical and structural investigations. Proc. 42nd IEEE PVSC 2015, 1?4

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey et al., Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu 2 ZnSnS 4 absorber, Prog. Photovoltaics, vol.21, pp.72-76, 2013.

H. Sugimoto, H. Hiroi, N. Sakai, S. Muraoka, and T. Katou, Over 8% efficiency Cu 2 ZnSnS 4 submodules with ultra-thin absorber, Proc. 38th IEEE PVSC 2012, pp.2997-3000

E. Gautron, M. Buffiere, S. Harel, L. Assmann, L. Arzel et al., Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers, Thin Solid Films, vol.535, pp.175-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00975462

G. Rey, G. Larramona, S. Bourdais, C. Chone, B. Delatouche et al., On the origin of band-tails in kesterite, Sol. Energy Mater. Sol. Cells, vol.179, pp.142-151, 2018.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler et al., Ordering kesterite improves solar cells: A low temperature postdeposition annealing study, Sol. Energy Mater. Sol. Cells, vol.151, issue.78, pp.34-38, 2016.

D. B. Mitzi, O. Gunawan, T. K. Todorov, D. A. Barkhouse, C. J. Hages et al., Agrawal, R. Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu 2 ZnSnSe 4, Philos. Trans. R. Soc., A, vol.2016, issue.1, p.14505, 2013.

G. Altamura and J. Vidal, Impact of minor phases on the performances of CZTSSe thin-film solar cells, Chem. Mater, vol.28, issue.11, pp.3540-3563, 2016.

J. Just, D. Lu?zenkirchen-hecht, R. Frahm, S. Schorr, and T. Unold, Determination of secondary phases in kesterite Cu 2 ZnSnS 4 thin films by x-ray absorption near edge structure analysis, Appl. Phys. Lett, issue.26, p.262105, 2011.

M. Dimitrievska, H. Xie, A. Fairbrother, X. Fontane, G. Gurieva et al., Multiwavelength excitation Raman scattering of Cu 2 ZnSn(S x Se 1?x ) 4 (0? x? 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions, Appl. Phys. Lett, issue.3, p.51912, 2011.

D. M. Berg, M. Arasimowicz, R. Djemour, L. Gu?ay, S. Siebentritt et al., Discrimination and detection limits of secondary phases in Cu 2 ZnSnS 4 using X-ray diffraction and Raman spectroscopy, Thin Solid Films, vol.569, pp.113-123, 2014.