, Living Colors® A.v. Monoclonal Antibody, issue.8

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward et al., Global cancer statistics, CA Cancer J Clin, vol.61, pp.69-90, 2011.

K. Maier-hauff, F. Ulrich, and D. Nestler, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J Neurooncol, vol.103, pp.317-324, 2011.

M. S. Bradbury, E. Phillips, and P. H. Montero, Clinically-translated silica nanoparticles as dualmodality cancer-targeted probes for image-guided surgery and interventions, Integr Biol (Camb), vol.5, pp.74-86, 2013.

J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, Radiotherapy enhancement with gold nanoparticles, J Pharm Pharmacol, vol.60, pp.977-985, 2008.

S. J. Mcmahon, W. B. Hyland, and M. F. Muir, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Sci Rep, vol.1, p.18, 2011.

K. Kainz, G. P. Chen, and Y. W. Chang, A planning and delivery study of a rotational IMRT technique with burst delivery, Med Phys, vol.38, pp.5104-5118, 2011.

S. C. Michel, T. M. Keller, and J. M. Frohlich, Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement, Radiology, vol.225, pp.527-536, 2002.

W. S. Enochs, G. Harsh, F. Hochberg, and R. Weissleder, Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent, J Magn Reson Imaging, vol.9, pp.228-232, 1999.

R. C. Semelka and T. K. Helmberger, Contrast agents for MR imaging of the liver, Radiology, vol.218, pp.27-38, 2001.

Z. Bakhtiary, A. A. Saei, M. J. Hajipour, M. Raoufi, O. Vermesh et al., Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges, Nanomedicine, vol.12, pp.287-307, 2016.

S. Sharifi, H. Seyednejad, S. Laurent, F. Atyabi, A. A. Saei et al., Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging, Contrast Media Mol Imaging, vol.10, pp.329-355, 2015.

O. Veiseh, J. W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv Drug Deliv Rev, vol.62, pp.284-304, 2010.

S. Meriaux, M. Boucher, and B. Marty, Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner, Adv Healthc Mater, vol.4, pp.1076-1083, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116542

J. Xie, K. Chen, and X. Chen, Production, Modification and Bio-Applications of Magnetic Nanoparticles Gestated by Magnetotactic Bacteria, Nano Res, vol.2, pp.261-278, 2009.

A. S. Mathuriya, Magnetotactic bacteria: nanodrivers of the future, Crit Rev Biotechnol, vol.36, pp.788-802, 2016.

M. Boucher, F. Geffroy, and S. Preveral, Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor, Biomaterials, vol.121, pp.167-178, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01707807

E. Alphandery, A. Idbaih, and C. Adam, Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia, Biomaterials, vol.141, pp.210-222, 2017.

S. Mannucci, L. Ghin, and G. Conti, Magnetic nanoparticles from Magnetospirillum gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma, PLoS One, vol.9, p.108959, 2014.

P. Sangnier, A. Preveral, S. Curcio, and A. , Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia, J Control Release, vol.279, pp.271-281, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01950959

C. Chen, S. Wang, and L. Li, Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI, Biomaterials, vol.104, pp.352-360, 2016.

G. Mondal, S. Barui, and A. Chaudhuri, The relationship between the cyclic-RGDfK ligand and alphavbeta3 integrin receptor, Biomaterials, vol.34, pp.6249-6260, 2013.

X. Wang, J. G. Wang, and Y. Y. Geng, An enhanced anti-tumor effect of apoptin-cecropin B on human hepatoma cells by using bacterial magnetic particle gene delivery system, Biochem Biophys Res Commun, vol.496, pp.719-725, 2018.

K. Jingu, H. Matsushita, and T. Yamamoto, Stereotactic Radiotherapy for Pulmonary Oligometastases From Colorectal Cancer: A Systematic Review and Meta-Analysis, Technol Cancer Res Treat, vol.17, p.1533033818794936, 2018.

F. Buontempo, E. Orsini, and I. Zironi, Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device, PLoS One, vol.13, p.199312, 2018.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.

E. Brun, L. Sanche, and C. Sicard-roselli, Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution, Colloids Surf B Biointerfaces, vol.72, pp.128-134, 2009.

A. I. Kassis and S. J. Adelstein, Radiobiologic principles in radionuclide therapy, J Nucl Med, vol.46, issue.1, pp.4-12, 2005.

M. Belli, O. Sapora, and M. A. Tabocchini, Molecular targets in cellular response to ionizing radiation and implications in space radiation protection, J Radiat Res, vol.43, pp.13-19, 2002.

M. Y. Chang, A. L. Shiau, Y. H. Chen, C. J. Chang, H. H. Chen et al., Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice, Cancer Sci, vol.99, pp.1479-1484, 2008.

X. Zhang, J. Z. Xing, and J. Chen, Enhanced radiation sensitivity in prostate cancer by goldnanoparticles, Clin Invest Med, vol.31, pp.160-167, 2008.

E. Porcel, O. Tillement, and F. Lux, Gadolinium-based nanoparticles to improve the hadrontherapy performances, Nanomedicine, vol.10, pp.1601-1608, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115636

W. Rima, L. Sancey, and M. T. Aloy, Internalization pathways into cancer cells of gadoliniumbased radiosensitizing nanoparticles, Biomaterials, vol.34, pp.181-195, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00757773

N. Usami, Y. Furusawa, and K. Kobayashi, Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions, Int J Radiat Biol, vol.84, pp.603-611, 2008.

T. Kong, J. Zeng, and X. Wang, Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles, Small, vol.4, pp.1537-1543, 2008.

M. K. Leung, J. C. Chow, B. D. Chithrani, M. J. Lee, B. Oms et al., Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production, Med Phys, vol.38, pp.624-631, 2011.

S. A. Graves, P. A. Ellison, and T. E. Barnhart, Nuclear excitation functions of proton-induced reactions (Ep = 35 -90 MeV) from Fe, Cu, and Al, Nucl Instrum Methods Phys Res B, vol.386, pp.44-53, 2016.