RF modeling of the ITER-relevant lower hybrid antenna

To cite this version:

HAL Id: cea-02459956
https://hal-cea.archives-ouvertes.fr/cea-02459956
Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RF Modeling of the ITER- Relevant Lower Hybrid Antenna

J. Hillaireta,*, S. Cuccuzzib, J. Belod, L. Marfisia, J.F. Artaudd, Y.S. Baee, G. Berger-Bya, J.M. Bernarda, Ph. Carae, A. Cardinalib, C. Castaldob, R. Cesariob, J. Beckere, L. Delpieda, A. Ekedahla, J. Garciab, P. Garibaldib, M. Genichea, D. Guilhemb, G.T. Hoengc, H. Jiac, Q.Y. Huangc, F. Imbeauxb, F. Kazarianf, S.H. Kime, Y. Lauzenaze, R. Maggiorae, R. Magneb, S. Meschinob, D. Milanesif, F. Mirizzib, W. Namkungb, L. Pajewskib, L. Panaccioneb, Y. Peyssone, A. Saillee, G. Schettinib, M. Schneidere, P.K. Sharmab,a, A.A. Tuccillob, O. Túdiscob, G. Vecchib, R. Villarib, K. Vullieza, Y. Wue, Q. Zenge

aCEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
bAssociazione Euratom-ENEA sulla Fusione, CR Frascati, Roma, Italy
cNational Fusion Research Institute, Daejeon, Korea.
dAssociazione Euratom-IST. Centro de Fusao Nuclear, Lisboa, Portugal.
eInstitute of Plasma Physics, CAS, Hefei, Anhui, China.
fITER Organization, Saint-Paul-lez-Durance, France.
gPolitecnico di Torino, Dipartimento di Elettronica, Torino, Italy
hInstitute for Plasma Research, Bhat. Gandhinagar 382 428, Gujarat, India.
iUniversita' di Roma Tre, Universita', Rome, Italy.
jPohang Accelerator Laboratory, Pohang Univ. of Science and Technology, Pohang, Korea.

Abstract

In the frame of the EFDA task HCD-08-03-01, a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER and sustain the expected high heat fluxes has been reviewed. The design and overall dimensions of the key RF elements of the launcher and its subsystem has been updated from the 2001 design in collaboration with ITER Organization. Modeling of the LH wave propagation and absorption into the plasma shows that the optimal parallel index must be chosen between 1.9 and 2.0 for the ITER Steady-State scenario. The present study has been made with \(n_{||} = 2.0 \) but can be adapted for \(n_{||} = 1.9 \). Individual components have been studied separately giving confidence on the global RF design of the whole antenna.

Keywords: Lower Hybrid, Current Drive, LHCD, PAM, ITER

1. Introduction

Following the ITER STAC recommendation, an EFDA task has been created in order to initiate the conceptual design, the R&D program, the procurement and the installation of a Lower Hybrid Current Drive (LHCD) system on ITER. The EFDA task HCD-08-03-01 has reported a revised 5 GHz LHCD system able to deliver 20 MW CW on ITER and to sustain the expected high heat fluxes coming from the plasma radiation, particles fluxes and RF losses[1]. This work has been achieved in collaboration with ITER organization under worldwide contributions from China, India, Korea and USA in addition to EFDA.

In this paper, we report the work made in this Task Force concerning the design of the key RF elements of the antenna such as the Passive-Active Multijunction (PAM), the TE\textsubscript{10} – TE\textsubscript{30} mode converter, the 3 dB splitter and the RF window. Detailed studies of the transmission lines elements can be found in [2, 3, 4]. Overall dimensions have been updated from the initial conceptual 2001 Detailed Design Description (DDD)[5]. ITER mechanical constraints, such as the port plug size or the rear flange dimensions, have been taken into account since the initial RF design. In parallel to the RF design, the coupling to the plasma of the launcher has been studied with the ALOHA, GRILL3D and TOPLHA codes and results are in good agreement[6].

*Corresponding author
Email address: julien.hillairet@cea.fr (J. Hillairet)

Preprint submitted to Fusion Engineering and Design

February 4, 2011
2. RF Components Description

2.1. Antenna General Description

The LH launcher design presently foreseen for ITER is a Passive-Active Multijunction (PAM) concept, which have been successfully validated on FTU[7] and on Tore Supra[8]. In a PAM launcher, a passive waveguide – consisting in an equivalent electric short-circuit located at a quarter wavelength from the mouth – is inserted between two active waveguides which launch the RF power to the plasma. Cooling pipes are vertically drilled behind the passive waveguides in order to actively cool the launcher front face and the waveguide walls and damp part of the neutron flux, which is a mandatory requirement for any ITER plasma facing component.

An important parameter of the launcher is the nominal refractive parallel index $n_\| \,$ excited by the coupling structure. Integrated simulations of propagation and absorption of LH waves in ITER for several scenarios showed that an optimum $|n_\| \,|$ defined as a trade-off between maximizing the current drive efficiency and minimizing the power deposition in the H-mode pedestal, is found to be $|n_\| \,| = [1.9 - 2.0]$ with a flexibility of $[1.8 - 2.2][9]$. A new arrangement of PAM has been studied in order to allow a larger $n_\| \,$ flexibility compared to the previous design[5], i.e. increasing the peak $n_\| \,$ range from [1.9 - 2.1] to [1.8 - 2.2].

In the present design, the launcher is made of 48 identical modules, each one independently fed by one klystron: twelve in the toroidal direction and four in the poloidal direction. A module consists of four active waveguides in the toroidal direction and six lines of waveguides in the poloidal direction (Figure 1). Thus, the whole launcher contains 1152 active waveguides whose dimensions are 9.25×58 mm. The RF power is carried through a transmission line up to a RF window located inside the frame and connected to a poloidal 3 dB splitter which feeds two TE10 − TE30 mode converters. Each of these mode converters converts the incident power from the rectangular TE10 mode to the rectangular TE30 mode in order to divides the power into three poloidal rows, corresponding to the input of a 4-active waveguides multijunction. In this paper, we focus on the main RF components of the antenna which are under the machine vacuum: the RF window in Sec.2.2, the hybrid junction in Sec.2.3, the mode converter in Sec 2.4 and the PAM multijunction in Sec.2.5.

![4 active waveguides multijunction and Hybrid junction](image)

Figure 1: 3D view of one module (RF modeling): the power is coming from the right of the figure, through the RF window, the hybrid junction, the two mode converters and the six PAM multijunctions. All the elements of a module located behind the RF window are under the machine vacuum.

2.2. RF Windows

5GHz RF windows capable of sustaining 500 kW CW are one of the most challenging RF devices of this antenna, since the ceramic used to separate the tokamak vacuum from the pressurized transmission line is a safety component and the window must handle and evacuate heat coming from dielectric and conduction RF losses. Different designs have been proposed based on pill-box geometry and cooled by a water skirt around the ceramic. A promising design, based on a WR229 cross-section input and output (58.17×29.08 mm) ensures a theoretical return loss of -34 dB and a volume integrated losses of 540 W on matched load. The ceramic is a 42.8 mm radius, 8.3 mm thick beryllium oxide disk (BeO, $\varepsilon_r = 6.7$, $\tan \delta = 4 \times 10^{-4}$). The length of the circular part of this model is 48.3 mm. The peak electric field in the vacuum part is 768 kV/m while it is 430 kV/m inside the ceramic. A thermo-mechanical analysis of this design can be found in reference [10]. For comparison, the simulated integrated losses into the Tore Supra 3.7 GHz windows is 760 W while the peak electric field inside is 2.1 MV/m for an input power of 250 kW.

2.3. 3 dB Splitter

The aim of the 3 dB splitter is to equally split the power from a 500 kW klystron into two waveguides disposed in poloidal direction. This device is a 90° short-slot hybrid coupler[11]. The modeled WR229 device has a predicted return loss of −53 dB with an isolation of −57 dB. Its coupling factor of -3.01 ± 0.02 dB indicates that the power is well divided into the two outputs. The phase

1. The actual $n_\|$ spectrum may vary slightly from the nominal value, depending upon plasma conditions in front of the antenna.
2.4 $TE_{10}-TE_{30}$ mode converter

The input width a_0 must be set sufficiently large in order to permit the TE_{10} mode to propagate (i.e. $a_0 \geq 90 \text{ mm}$). In order to make the transition between this width and the input WR229 waveguide width, which is 58.17 mm, an extra taper must be added. Because of the symmetry of the device, the TE_{40} mode is not excited by the input TE_{10} and the output width a_1 is set to ensure the TE_{50} mode to cut-off (i.e. $a_1 \leq 150 \text{ mm}$). The mode evolution along the mode converter is obtained by solving the generalized telegraphist's equations for a 3.5 periods deformed waveguide of wavelength λ_w defined by the following cosinusoidal perturbation\cite{12}(Figure 4):

$$a(z) = a_0 + \varepsilon \left[1 - \cos \left(\frac{2\pi z}{\lambda_w} \right) \right] \quad (1)$$

The aim of this mode converter section is to equally split the input RF power in three in the poloidal direction using a mode conversion. Such splitting scheme is achieved by perturbation of the waveguide geometry leading to mode coupling. The fundamental TE_{10} input mode can thus be almost totally converted to the TE_{30} mode, which ideally distributes the power into three rows in the H-plane. Keeping the waveguide height to 29.08 mm, the input width a_0 must be set sufficiently large in order to permit the TE_{10} mode to propagate (i.e. $a_0 \geq 90 \text{ mm}$). In order to make the transition between this width and the input WR229 waveguide width, which is 58.17 mm, an extra taper must be added. Because of the symmetry of the device, the TE_{40} mode is not excited by the input TE_{10} and the output width a_1 is set to ensure the TE_{50} mode to cut-off (i.e. $a_1 \leq 150 \text{ mm}$). The mode evolution along the mode converter is obtained by solving the generalized telegraphist's equations for a 3.5 periods deformed waveguide of wavelength λ_w defined by the following cosinusoidal perturbation\cite{12}(Figure 4):

$$a(z) = a_0 + \varepsilon \left[1 - \cos \left(\frac{2\pi z}{\lambda_w} \right) \right] \quad (1)$$

In order to reach the highest mode conversion efficiency to the TE_{30} mode, a numerical optimization of parameters a_0, ε and λ_w has been made with Matlab. Further optimization of these parameters has been made with ANSOFT HFSS, taking into account conduction RF losses on walls and led to the following dimensions: $a_0 = 98 \text{ mm}$, $\varepsilon = 22.37 \text{ mm}$, $\lambda_w = 173.1 \text{ mm}$ and $a_1 = 142.8 \text{ mm}$. The theoretical mode conversion efficiency is close to 98.65% with a return loss of -20.5 dB. Propagation losses for copper walls are 0.45%. The bandwidth of the device, defined as the range of frequencies for which at least 95% of the TE_{10} mode is converted to TE_{30}, is 115 MHz. The maximum electric field on matched ports into the mode converter is 700 kV/m as illustrated in Figure5. The total length of the mode converter with input taper is 765.7 mm. For comparison, the simulated peak electric field inside the Tore Supra 3.7 GHz mode converter is 515 kV/m for a frequently reached input power of 200 kW. A low power mock-up of this 5 GHz mode converter has been manufactured at CEA/IRFM.
2.5. Passive-Active Multijunction

An illustration of the present multijunction design, with four active waveguides per toroidal line, is shown in Figure 6. The passive waveguides, not illustrated in the Figure, are inserted between each active waveguide. In this design, the active waveguides \(b_a = 9.25 \text{mm} \) are wider than passive waveguides \(b_p = 7.25 \text{mm} \). The waveguides height \(a = 58 \text{mm} \) avoids the higher mode TE_{20} to propagate and is close to the WR229 standard \((58.17 \times 29.08 \text{mm})\). The structure has been optimized in order to reach the following goals: i) minimize the reflected power, ii) insure a 270° phase shift between adjacent active waveguides. The estimated return loss of the optimized structure is −34 dB while the phase difference between adjacent output waveguides is 270°±0.7°. The transmitted power \(|S_{21}|^2 \) (with \(n = \{2, 3, 4, 5\} \)) is \(1/4 \times 7 \times 10^{-3} \) which means that the input power is well divided into the 4 output of the multijunction. The maximum electric field on matched ports is 346 KV/m for a power input of 250 kW, the propagation loss \(1 - \sum_a |S_{21}|^2 \) for copper walls is 1.2% and the total length of the multijunction illustrated in Figure6 is 1.170 m.

3. Conclusion

In the frame of an EFDA Topical Group, the RF design of the foreseen ITER Lower Hybrid Current Drive antenna has been updated. A new arrangement of multijunctions and power feeding has allowed an increase of the flexibility of the launched peak parallel index in comparison to the previous design. The main RF components of the launcher subsystem such as the RF windows, the hybrid junction, the mode converter and the multijunction, have been studied and optimized separately and a mode-converter mock-up has been manufactured at CEA/IRFM. The good theoretical results obtained give confidence on the global RF design of the LH launcher. Further work will concentrate on thermo-mechanical analysis of the different parts, neutron shielding and total length reduction of the antenna in order to satisfy the ITER constraints.

Acknowledgments

This work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the EFDA task HCD-08-03-01. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References

REFERENCES

