T. C. Adhyapak and H. Stark, Zipping and entanglement in flagellar bundle of E. coli : Role of motile cell body, Physical Review E, vol.92, p.52701, 2015.

J. Adler, A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli, Journal of General Microbiology, vol.74, pp.77-91, 1973.

D. A. Bazylinski, T. J. Williams, C. T. Lefè-vre, R. J. Berg, C. L. Zhang et al., Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., magnetococcales ord. nov.) at the base of the alphaproteobacteria, International Journal of Systematic and Evolutionary Microbiology, vol.63, pp.801-808, 2013.

M. Bennet, A. Mccarthy, D. Fix, M. R. Edwards, F. Repp et al., Influence of magnetic fields on magneto-aerotaxis, PLOS ONE, vol.9, p.101150, 2014.

H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, vol.239, pp.500-504, 1972.

A. Brune, P. Frenzel, and H. Cypionka, Life at the oxic-anoxic interface: microbial activities and adaptations, FEMS Microbiology Reviews, vol.24, pp.691-710, 2000.

M. A. Constantino, M. Jabbarzadeh, H. C. Fu, and R. Bansil, Helical and rod-shaped Bacteria swim in helical trajectories with little additional propulsion from helical shape, Science Advances, vol.2, p.1601661, 2016.

H. Crenshaw and L. Edelstein-keshet, Orientation by helical motion-II. Changing the direction of the axis of motion, Bulletin of Mathematical Biology, vol.55, pp.80070-80079, 1993.

J. Dhont, An Introduction to Dynamics of Colloids, 1996.

O. Felfoul, M. Mohammadi, S. Taherkhani, D. De-lanauze, Z. Xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nature Nanotechnology, vol.11, pp.941-947, 2016.

T. Fenchel, Motility and chemosensory behaviour of the sulphur bacterium Thiovulum majus, Microbiology, vol.140, pp.3109-3116, 1994.

T. Fenchel and R. Thar, Candidatus Ovobacter propellens": a large conspicuous prokaryote with an unusual motility behaviour, FEMS Microbiology Ecology, vol.48, pp.231-238, 2004.

R. B. Frankel, D. A. Bazylinski, M. S. Johnson, and B. L. Taylor, Magneto-aerotaxis in marine coccoid Bacteria, Biophysical Journal, vol.73, pp.994-1000, 1997.

F. Garcia-pichel, Rapid bacterial swimming measured in swarming cells of Thiovulum majus, Journal of Bacteriology, vol.171, pp.3560-3563, 1989.

J. F. Jikeli, L. Alvarez, B. M. Friedrich, L. G. Wilson, R. Pascal et al., Sperm navigation along helical paths in 3D chemoattractant landscapes, Nature Communications, vol.6, p.7985, 2015.

C. T. Lefè-vre, M. Bennet, S. Klumpp, and D. Faivre, Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity, vol.6, p.2286, 2015.

D. Murat, M. Hé-risse, L. Espinosa, A. Bossa, A. F. Wu et al., Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic spirillum, Journal of Bacteriology, vol.197, pp.3275-3282, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452063

F. Nguyen and M. D. Graham, Buckling instabilities and complex trajectories in a simple model of uniflagellar Bacteria, Biophysical Journal, vol.112, pp.1010-1022, 2017.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 1992.

J. Ruan, T. Kato, C. L. Santini, T. Miyata, A. Kawamoto et al., Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1, PNAS, vol.109, pp.20643-20648, 2012.

A. Sengupta, F. Carrara, and R. Stocker, Phytoplankton can actively diversify their migration strategy in response to turbulent cues, Nature, vol.543, pp.555-558, 2017.

G. Sewell, The Numerical Solution of Ordinary and Partial Differential Equations, 1988.

H. Shum, Microswimmer propulsion by two steadily rotating helical flagella, vol.10, p.65, 2019.

K. Son, J. S. Guasto, and R. Stocker, Bacteria can exploit a flagellar buckling instability to change direction, Nature Physics, vol.9, pp.494-498, 2013.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, High-throughput 3D tracking of Bacteria on a standard phase contrast microscope, Nature Communications, vol.6, p.8776, 2015.

L. Turner, W. S. Ryu, and H. C. Berg, Real-Time Imaging of Fluorescent Flagellar Filaments, Journal of Bacteriology, vol.182, pp.2793-2801, 2000.

N. Waisbord, C. T. Lefè-vre, L. Bocquet, C. Ybert, and C. Cottin-bizonne, Destabilization of a flow focused suspension of magnetotactic Bacteria, Physical Review Fluids, vol.1, p.53203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01628788

L. Xie, T. Altindal, S. Chattopadhyay, and X. L. Wu, From the cover: bacterial flagellum as a propeller and as a rudder for efficient chemotaxis, PNAS, vol.108, pp.2246-2251, 2011.

C. Yang, C. Chen, Q. Ma, L. Wu, and T. Song, Dynamic model and motion mechanism of magnetotactic Bacteria with two lateral flagellar bundles, Journal of Bionic Engineering, vol.9, issue.11, p.60108, 2012.

S. D. Zhang, N. Petersen, W. J. Zhang, S. Cargou, J. Ruan et al., Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1, Environmental Microbiology Reports, vol.6, pp.14-20, 2014.