J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers-single particle motion and collective behavior: a review, Reports on Progress in Physics, vol.78, issue.5, p.56601, 2015.

C. Bechinger, D. Leonardo, R. Löwen, H. Reichhardt, C. Volpe et al., Active particles in complex and crowded environments, Reviews of Modern Physics, vol.88, issue.4, p.45006, 2016.

H. C. Berg, Random Walks in Biology, Princeton Paperbacks, 1993.

V. Sourjik and N. S. Wingreen, Responding to chemical gradients: bacterial chemotaxis, Current opinion in cell biology, vol.24, issue.2, pp.262-270, 2012.

S. Klumpp, D. Faivre, and . Magnetotactic-bacteria, The European Physical Journal Special Topics, vol.225, pp.2173-2188, 2016.

R. B. Frankel, T. J. Williams, D. A. Bazylinski, and . Magneto-aerotaxis, Magnetoreception and Magnetosomes in Bacteria, pp.1-24, 2007.

S. Klumpp, T. C. Lefevre, M. Bennet, and D. Faivre, Swimming with magnets: from biological organisms to synthetic devices, Physics Reports, vol.789, pp.1-54, 2019.
URL : https://hal.archives-ouvertes.fr/cea-01930113

R. W. Carlsen and M. Sitti, Bio-Hybrid Cell-Based Actuators for Microsystems, Small, vol.10, pp.3831-3851, 2014.

R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone et al., Microscopic artificial swimmers, Nature, vol.437, pp.862-865, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015847

A. Ghosh, D. Paria, H. J. Singh, P. L. Venugopalan, and A. Ghosh, Dynamical configurations and bistability of helical nanostructures under external torque, Physical Review E, vol.86, issue.3, p.31401, 2012.

R. B. Frankel, Magnetic guidance of organisms Annual review of biophysics and bioengineering, vol.13, pp.85-103, 1984.

C. T. Lefèvre, M. Bennet, L. Landau, P. Vach, D. Pignol et al., Diversity of Magneto-Aerotactic Behaviors and Oxygen Sensing Mechanisms in Cultured Magnetotactic Bacteria, Biophysical Journal, vol.107, issue.2, pp.527-538, 2014.

M. Bennet, A. Mccarthy, D. Fix, M. R. Edwards, F. Repp et al., Influence of Magnetic Fields on Magneto-Aerotaxis, PLOS One, vol.9, pp.1-10, 2014.

M. J. Smith, P. E. Sheehan, L. L. Perry, K. O'connor, L. N. Csonka et al., Quantifying the Magnetic Advantage in Magnetotaxis, Biophysical journal, vol.91, issue.3, pp.1098-1107, 2006.

X. Mao, R. Egli, N. Petersen, M. Hanzlik, and X. Liu, Magneto-chemotaxis in sediment: First insights, PLoS One, vol.9, issue.7, p.102810, 2014.

B. Park, J. Zhuang, O. Yasa, and M. Sitti, Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery, ACS Nano, 2017.

K. Bente, A. Codutti, F. Bachmann, and D. Faivre, Biohybrid and Bioinspired Magnetic Microswimmers, Small, vol.1704374, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01927073

O. Felfoul, M. Mohammadi, S. Taherkhani, D. De-lanauze, Y. Zhong-xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nature nanotechnology, vol.11, pp.941-947, 2016.

W. Alt, Biased Random Walk Models for Chemotaxis and Related Diffusion Approximations, Journal of mathematical biology, vol.9, pp.147-177, 1980.

M. J. Schnitzer, Theory of continuum random walks and application to chemotaxis, Physical Review E, vol.48, issue.4, p.2553, 1992.

P. Romanczuk, M. Bä, W. Ebeling, B. Lindner, and L. Schimansky-geier, Active brownian particles, The European Physical Journal Special Topics, vol.202, issue.1, pp.1-162, 2012.

Y. V. Kalinin, L. Jiang, Y. Tu, and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophysical journal, vol.96, issue.6, pp.2439-2448, 2009.

M. Khatami, K. Wolff, O. Pohl, M. R. Ejtehadi, and H. Stark, Active Brownian particles and run-and-tumble particles separate inside a maze, Scientific Reports, vol.6, p.37670, 2016.

S. C. Takatori and J. F. Brady, Swim stress, motion, and deformation of active matter: effect of an external field, Soft Matter, vol.10, pp.9433-9445, 2014.

E. Perez-ipina, S. Otte, R. Pontier-bres, D. Czerucka, and F. Peruani, Bacteria display optimal transport near surfaces, Nature Physics, vol.15, issue.6, pp.610-615, 2019.

J. Saragosti, P. Silberzan, A. Buguin, and E. Modeling, coli Tumbles by Rotational Diffusion. Implications for Chemotaxis, PLoS ONE, vol.7, issue.4, 2012.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, High-throughput 3D tracking of bacteria on a standard phase contrast microscope, Nature Communications, vol.6, p.8776, 2015.

H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking, Nature, vol.239, pp.500-504, 1972.

D. A. Brown and H. C. Berg, Temporal stimulation of chemotaxis in Escherichia coli, Proceedings of the National Academy of Sciences, vol.71, issue.4, pp.1388-1392, 1974.

A. Celani and M. Vergassola, Bacterial strategies for chemotaxis response, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.1391-1396, 2010.

B. L. Taylor and D. E. Koshland, Reversal of Flagellar Rotation in Monotrichous and Peritrichous Bacteria: Generation of Changes in Direction, Journal of bacteriology, vol.119, issue.2, pp.640-642, 1974.

F. Popp, J. P. Armitage, and D. Schü, Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway, Nature communications, vol.5, p.5398, 2014.

M. Reichert, Hydrodynamic Interactions in Colloidal and Biological Systems. Dr. Rer. Nat. Dissertation at Konstanz University, 2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, The Art of Scientific Computing, 1992.

H. Risken, The Fokker-Planck Equation, 1989.

R. Yazdi, S. Nosrati, R. Stevens, C. A. Vogel, D. Escobedo et al., Migration of magnetotactic bacteria in porous media, Biomicrofluidics, vol.12, issue.1, p.11101, 2018.

U. Heyen and D. Schü, Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor, Applied Microbiology and Biotechnology, vol.61, p.12764570, 2003.

P. S. Lovely and F. W. Dahlquist, Statistical measures of bacterial motility and chemotaxis, Journal of theoretical biology, vol.50, issue.2, pp.90094-90100, 1975.

C. Zahn, S. Keller, M. Toro-nahuelpan, P. Dorscht, W. Gross et al., Measurement of the magnetic moment of single Magnetospirillum gryphiswaldense cells by magnetic tweezers, Scientific Reports, vol.7, 2018.

J. Long, S. W. Zucker, and T. Emonet, Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation, PLoS Comput Biol, vol.2017, issue.3

D. Barros, E. L. Acosta-avalos, and D. , A simple method to estimate the magnetic moment of magnetic micro-particles, Journal of Magnetism and Magnetic Materials, vol.320, 2008.

R. B. Frankel and R. P. Blakemore, Navigational compass in magnetotactic bacteria, Journal of Magnetism and Magnetic Materials, 1980.

R. Nadkarni, S. Barkley, and C. Fradin, A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields, PLOS One, vol.8, issue.12, 2013.

J. Rupprecht, N. Waisbord, C. Ybert, C. Cottin-bizonne, and L. Bocquet, Velocity Condensation for Magnetotactic Bacteria, Physical review letters, vol.116, issue.16, pp.168101-168106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01628787

D. Murat, M. Hé-risse, L. Espinosa, A. Bossa, F. Alberto et al., Opposite and Coordinated Rotation of Amphitrichous Flagella Governs Oriented Swimming and Reversals in a Magnetotactic Spirillum, Journal of bacteriology, vol.197, issue.20, pp.3275-3282, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452063

L. Jiang, Q. Ouyang, and Y. Tu, Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time, PLoS Comput. Bio, vol.6, issue.4, 2010.

Y. S. Dufour, X. Fu, L. Hernandez-nunez, and T. Emonet, Limits of feedback control in bacterial chemotaxis, PLoS Comput. Bio, vol.10, issue.6, 2014.

S. Zhou, O. Tovkach, D. Golovaty, A. Sokolov, I. S. Aranson et al., Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment, New J. Phys, vol.19, p.55006, 2017.

B. C. Mazzag, I. B. Zhulin, and A. Mogilner, Model of bacterial band formation in aerotaxis, Biophysical journal, vol.85, issue.6, pp.3558-3574, 2003.

R. B. Frankel, R. P. Blakemore, F. F. De-araujo, D. M. Esquivel, and J. Danon, Magnetotactic bacteria at the geomagnetic equator, Science, vol.212, issue.4500, pp.1269-70, 1981.

R. Yazdi, S. Nosrati, R. Stevens, C. A. Vogel, D. Davies et al., Magnetotaxis Enables Magnetotactic Bacteria to Navigate in Flow, Small, vol.14, issue.5, p.1702982, 2017.

K. Bente, S. Mohammadinejad, F. Bachmann, A. Codutti, C. T. Lefèvre et al., Highspeed Helical Microswimming and Rapid Reorientations of Bacteria

M. M. Stanton, B. W. Park, D. Vilela, K. Bente, F. Faivre et al., Magnetotactic bacteria powered biohybrids target E. coli biofilms, vol.11, p.9968, 2017.

A. J. Waite, N. W. Frankel, Y. S. Dufour, J. F. Johnston, J. Long et al., Non-genetic diversity modulates population performance Mol, Sys. Biol, vol.12, p.895, 2016.

G. Nava, L. Großmann, R. , and P. F. , Markovian robots: Minimal navigation strategies for active particles, Phys. Rev. E, vol.97, p.42604, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01742399

S. Klumpp, B. Kiani, P. Vach, and D. Faivre, Navigation with magnetic nanoparticles: magnetotactic bacteria and magnetic micro-robots, Physica Scripta, vol.165, p.14044, 2015.

B. Devouard, M. Posfai, X. Hua, D. A. Bazylinski, R. B. Frankel et al., Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral, vol.83, pp.1387-1398, 1998.

D. Faivre, N. Menguy, M. Posfai, and D. Schüler, Environmental parameters affect the physical properties of fast-growing magnetosomes, Am. Mineral, vol.93, pp.463-469, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00646195

R. Thar and T. Fenchel, Survey of motile microaerophilic bacterial morphotypes in the oxygen gradient above a marine sulfidic sediment, Appl. and Environ. Microbiol, vol.71, pp.3682-3691, 2005.