M. Sasidharan, K. Nakashima, N. Gunawardhana, T. Yokoi, M. Inoue et al.,

. Tatsumi, Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application 324 for lithium-ion rechargeable batteries, Chem. Commun, vol.47, pp.6921-6923, 2011.

M. Q. Zhu, S. M. Li, J. H. Liu, and B. Li, Promoting polysulfide conversion by V2O3 hollow sphere for 326 enhanced lithium-sulfur battery, Appl. Surf. Sci, vol.473, pp.1002-1008, 2019.

Y. Hu, Y. Ding, D. Ding, M. Sun, L. Zhang et al., Hollow chitosan/poly (acrylic acid) 328 nanospheres as drug carriers, Biomacromolecules, vol.8, pp.1069-1076, 2007.

H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan et al., Pt hollow nanospheres: facile 330 synthesis and enhanced electrocatalysts, Angew. Chem. Int. Edit, vol.43, pp.1540-1543, 2004.

M. Tian, X. L. Cui, C. X. Dong, and Z. P. Dong, Palladium nanoparticles dispersed on the hollow, p.332

, aluminosilicate microsphere@hierarchical gamma-AlOOH as an excellent catalyst for the hydrogenation 333 of nitroarenes under ambient conditions, Appl. Surf. Sci, vol.390, pp.100-106, 2016.

F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang et al., Facile synthesis of 335 ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

, Commun, vol.6, p.7221, 2015.

W. J. Wu, W. T. Qi, Y. F. Zhao, X. Tang, Y. F. Qiu et al., Hollow CeO2 spheres 338 conformally coated with graphitic carbon for highperformance supercapacitor electrodes

. Sci, , vol.463, pp.244-252, 2019.

A. E. Awadallah, W. Ahmed, M. R. El-din, and A. A. , Aboul-Enein, Novel aluminosilicate hollow sphere 341 as a catalyst support for methane decomposition to COx-free hydrogen production, Appl. Surf. Sci, vol.287, pp.415-422, 2013.

G. Zheng, S. W. Lee, Z. Liang, H. Lee, K. Yan et al., , p.344

, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nature Nanotechnology, vol.9, pp.618-623, 2014.

Z. Zhou, J. Gu, X. Qiao, H. Wu, H. Fu et al., , p.347

, fluorescence core@shell colloidal hybrid for the selective and sensitive detection of ClO ? , Sensors

, Actuators B: Chem, vol.282, pp.437-442, 2019.

X. W. Lou, L. A. Archer, and Z. Yang, Hollow micro-/nanostructures: synthesis and applications

. Mater, , vol.20, pp.3987-4019, 2008.

B. H. Bac, Y. Song, M. H. Kim, Y. Lee, and I. M. Kang, Single-walled hollow nanospheres assembled 352 from the aluminogermanate precursors, Chem. Commun, pp.5740-5742, 2009.

M. B. Tahir, G. Nabi, N. R. Khalid, and W. S. Khan, Synthesis of Nanostructured Based WO3 Materials 354 for Photocatalytic Applications, J. Inorg. Organomet. P, vol.28, pp.777-782, 2018.

Y. Wu, H. Wang, W. Tu, Y. Liu, Y. Z. Tan et al., Quasi-polymeric construction of 356 stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved, p.357

, photocatalytic activity via solid p-n heterojunction interfacial effect, J. Hazard. Mater, vol.347, pp.412-358, 2018.

C. Levard, E. Doelsch, I. Basile-doelsch, Z. Abidin, H. Miche et al., , p.360

J. Y. Bottero, Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils, p.361
URL : https://hal.archives-ouvertes.fr/hal-01230138

, Geoderma, vol.183, pp.100-108, 2012.

P. Du, P. Yuan, A. Thill, F. Annabi-bergaya, D. Liu et al., Insights into the formation mechanism 363 of imogolite from a full-range observation of its sol-gel growth, Appl. Clay Sci, vol.150, pp.115-124, 2017.

R. Parfitt, Allophane and imogolite: role in soil biogeochemical processes, Clay Miner, vol.44, p.365, 2009.

B. Creton, D. Bougeard, K. S. Smirnov, J. Guilment, and O. Poncelet, Structural model and computer 367 modeling study of allophane, J. Phys. Chem. C, vol.112, pp.358-364, 2008.

Y. Adachi and J. Karube, Application of a scaling law to the analysis of allophane aggregates, Colloid, vol.369, p.16

, Surface A, vol.151, pp.43-47, 1999.

S. Filimonova, S. Kaufhold, F. E. Wagner, and W. , Hä usler, I. Kö gel-Knabner, The role of allophane nano-371 structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol

, Cosmochim. Ac, vol.180, pp.284-302, 2016.

T. Woignier, J. Primera, L. Duffours, P. Dieudonné, and A. Raada, Preservation of the allophanic soils 374 structure by supercritical drying, Micropor. Mesopor. Mater, vol.109, pp.370-375, 2008.

F. Ohashi, S. Wada, M. Suzuki, M. Maeda, and S. Tomura, Synthetic allophane from high-376 concentration solutions: nanoengineering of the porous solid, Clay Miner, vol.37, pp.451-456, 2002.

J. Castello, J. J. Gaumet, J. F. Muller, S. Derousseaux, J. Guilment et al., Laser ablation of 378 aluminosilicates: Comparison between allophane and mixed alumina/silicas by Fourier Transform, p.379

, Appl. Surf. Sci, vol.253, pp.7773-7778, 2007.

W. J. Likos and N. Lu, Hysteresis of capillary stress in unsaturated granular soil, J Eng Mech-Asce, vol.130, pp.646-655, 2004.

D. Wang and A. Fernandez-martinez, Order from disorder, pp.812-813, 2012.

P. Du, P. Yuan, D. Liu, S. Wang, H. Song et al., Calcination-induced changes in structure, 384 morphology, and porosity of allophane, Appl. Clay Sci, vol.158, pp.211-218, 2018.

V. Farmer, A. Fraser, and J. Tait, Synthesis of imogolite: a tubular aluminum silicate polymer, J. Chem

. Soc, Chem. Commun, pp.462-463, 1977.

G. I. Yucelen, R. P. Choudhury, A. Vyalikh, U. Scheler, H. W. Beckham et al., Formation of single-388 walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates, J. Am

, Chem. Soc, vol.133, pp.5397-5412, 2011.

A. Thill, P. Picot, and L. Belloni, A mechanism for the sphere/tube shape transition of nanoparticles with 391 an imogolite local structure (imogolite and allophane), Appl. Clay Sci, vol.141, pp.308-315, 2017.

Y. Liao, P. Picot, J. Brubach, P. Roy, S. L. Caë-r et al., Self-supporting thin films of imogolite 393 and imogolite-like nanotubes for infrared spectroscopy, Appl. Clay Sci, vol.164, pp.58-67, 2017.

P. Lindner, T. Zemb, . Neutrons, and . Light, Scattering Methods Applied to Soft Condensed, vol.395

. Matter, , 2002.

M. Boyer, E. Paineau, M. Bacia-verloop, and A. Thill, Aqueous dispersion state of amphiphilic hybrid 397 aluminosilicate nanotubes, Appl. Clay Sci, vol.96, pp.45-49, 2014.

D. Kang, N. A. Brunelli, G. I. Yucelen, A. Venkatasubramanian, J. Zang et al., , p.399

C. W. Jones and S. Nair, Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced 400 molecular adsorption selectivity, Nat. Commun, vol.5, p.3342, 2014.

P. F. Barron, M. A. Wilson, A. S. Campbell, and R. L. Frost, Detection of imogolite in soils using solid, p.402

, state Si-29 NMR, Nature, pp.616-618, 1982.

I. Bottero, B. Bonelli, S. E. Ashbrook, P. A. Wright, W. Z. Zhou et al.,

. Garrone, Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and 405 their behaviour towards methane adsorption, Phys. Chem. Chem. Phys, vol.13, pp.744-750, 2011.

M. S. Amara, S. Rouziè-re, E. Paineau, M. Bacia-verloop, A. Thill et al., , p.407

, aluminogermanate imogolite nanotubes organized into closed-packed bundles, J. Phys. Chem. C, vol.118, pp.9299-9306, 2014.

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-reinoso et al.,

, Physisorption of gases, with special reference to the evaluation of surface area and pore size 411 distribution, Pure Appl. Chem, vol.87, pp.1051-1069, 2015.

H. Shimizu, T. Watanabe, T. Henmi, A. Masuda, and H. Saito, Studies on allophane and imogolite by 413 17 high-resolution solid-state 29 Si-and 27 Al-NMR and ESR, Geochem. J, vol.22, pp.23-31, 1988.

B. Goodman, J. Russell, B. Montez, E. Oldfield, and R. Kirkpatrick, Structural studies of imogolite and 415 allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy, Phys. Chem