M. Kiritani, Similarity and difference between fcc, bcc and hcp metals from the view point of point defect cluster formation, J. Nucl. Mater, vol.276, p.41, 2000.

M. Kiritani, Story of stacking fault tetrahedra, Mater. Chem. Phys, vol.50, p.133, 1997.

S. Kojima, Y. Satoh, H. Taoka, I. Ishida, T. Yoshiie et al., Confirmation of vacancy-type stacking fault tetrahedra in quenched, deformed and irradiated face-centred cubic metals, Philos. Mag. A, vol.59, p.519, 1989.

M. H. Loretto, L. M. Clarebrough, and R. L. Segall, Stackingfault tetrahedra in deformed face-centred cubic metals, Philos. Mag, vol.11, p.459, 1965.

L. M. Clarebrough, P. Humble, and M. H. Loretto, Voids in quenched copper, silver and gold, Acta Metall, vol.15, p.1007, 1967.

Y. Dai and M. Victoria, Defect structures in deformed fcc metals, Acta Mater, vol.45, p.3495, 1997.

H. Wang, D. Xu, R. Yang, and P. Veyssière, The transformation of edge dislocation dipoles in aluminium, Acta Mater, vol.56, p.4608, 2008.

H. Wang, D. S. Xu, R. Yang, and P. Veyssière, The formation of stacking fault tetrahedra in Al and Cu: I. Dipole annihilation and the nucleation stage, Acta Mater, vol.59, p.1, 2011.

H. Wang, D. S. Xu, R. Yang, and P. Veyssiere, The formation of stacking fault tetrahedra in Al and Cu: II. SFT growth by successive absorption of vacancies generated by dipole annihilation, Acta Mater, vol.59, p.10, 2011.

H. Wang, D. Rodney, D. Xu, R. Yang, and P. Veyssière, Pentavacancy as the key nucleus for vacancy clustering in aluminum, Phys. Rev. B, vol.84, p.220103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664746

H. Wang, D. S. Xu, P. Veyssière, and R. Yang, Interstitial loop strengthening upon deformation in aluminum via molecular dynamics simulations, Acta Mater, vol.61, p.3499, 2013.

S. Brinckmann, R. Sivanesapillai, and A. Hartmaier, On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper, Int. J. Fract, vol.33, p.1369, 2011.

G. Saada, Interaction de dislocations érouissage et production de défauts ponctuels dans les métaux c.f.c, Acta Metall, vol.9, p.166, 1961.

T. Hatano and H. Matsui, Molecular dynamics investigation of dislocation pinning by a nanovoid in copper, Phys. Rev. B, vol.72, p.94105, 2005.

D. J. Bacon and Y. N. Osetsky, The atomic-scale modeling of dislocation-obstacle interactions in irradiated metals, JOM, vol.59, p.40, 2007.

M. Bahramyan, R. T. Mousavian, and D. Brabazon, Molecular dynamic simulation of edge dislocation-void interaction in pure Al and Al-Mg alloy, Mater. Sci. Eng. A, vol.674, p.82, 2016.

B. D. Wirth, V. V. Bulatov, T. D. De-la, and R. , Dislocationstacking fault tetrahedron interactions in Cu, J. Eng. Mater. Technol, vol.124, p.329, 2002.

J. S. Robach, I. M. Robertson, H. Lee, and B. D. Wirth, Dynamic observations and atomistic simulations of dislocationdefect interactions in rapidly quenched copper and gold, Acta Mater, vol.54, p.1679, 2006.

K. Tougou, K. Nogiwa, A. Shikata, and K. Fukumoto, In-situ tem observation of dislocation interaction with cavity in ionirradiated pure vanadium during tensile test, Mater. Trans, vol.54, p.1095, 2013.

D. J. Bacon, Y. N. Osetsky, and D. Rodney, Dislocationobstacle interactions at the atomic level, Dislocations Solids, vol.15, p.1, 2009.

S. M. Keralavarma, T. Cagin, A. Arsenlis, and A. A. Benzerga, Power-Law Creep from Discrete Dislocation Dynamics, Phys. Rev. Lett, vol.109, p.265504, 2012.

F. Boioli, P. Carrez, P. Cordier, B. Devincre, and M. Marquille, Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations, Phys. Rev. B, vol.92, p.14115, 2015.

R. W. Balluffi and D. N. Seidman, Diffusion-limited climb rate of a dislocation: Effect of climb motion on climb rate, J. Appl. Phys, vol.36, p.2708, 1965.

R. W. Balluffi, Mechanisms of dislocation climb, Phys. Stat. Sol, vol.31, p.443, 1969.

J. Grilhe, M. Boisson, K. Seshan, and E. J. Gaboriaud, Climb model of extended dislocations in fcc metals, Philos. Mag, vol.36, p.923, 1977.

S. Sarkar, J. Li, W. T. Cox, E. Bitzek, T. J. Lenosky et al., Finding activation pathway of coupled displacive-diffusional defect processes in atomistics: Dislocation climb in fcc copper, Phys. Rev. B, vol.86, p.14115, 2012.

J. Weertman, Dislocation climb theory of steady-state creep, ASM. Trans. Quart, vol.61, p.681, 1968.

M. E. Kassner and M. Pérez-prado, Five-power-law creep in single phase metals and alloys, Prog. Mater. Sci, vol.45, p.1, 2000.

H. Mecking and Y. Estrin, The effect of vacancy generation on plastic deformation, Script. Metall, vol.14, p.815, 1980.

A. J. Foreman and M. J. Makin, Dislocation movement through random arrays of obstacles, Philos. Mag, vol.14, p.911, 1966.

J. W. Morris, J. , and D. H. Klahn, Thermally activated dislocation glide through a random array of point obstacles: Computer simulation, J. Appl. Phys, vol.45, p.2027, 1974.

K. Hanson, J. W. Morris, and J. , Limiting configuration in dislocation glide through a random array of point obstacles, J. Appl. Phys, vol.46, p.983, 1975.

A. I. Landau, Thermally activated motion of a dislocation through a random array of point obstacles, Phys. Stat. Sol. A, vol.30, p.659, 1975.

L. Proville and S. Patinet, Atomic-scale models for hardening in fcc solid solutions, Phys. Rev. B, vol.82, p.54115, 2010.

P. B. Hirsch, Extended jogs in dislocations in face-centred cubic metals, Philos. Mag, vol.7, p.67, 1962.

A. Airod, H. Vandekinderen, J. Barros, R. Colás, and Y. Houbaert, Constitutive equations for the room temperature deformation of commercial purity aluminum, J. Mater. Process. Technol, vol.134, p.398, 2003.

C. N. Ahlquist and W. D. Nix, The measurement of internal stresses during creep of Al and Al-Mg alloys, Acta Metall, vol.19, p.373, 1971.

A. J. Ardell and S. S. Lee, A dislocation network theory of Harper-Dorn creep: I Steady state creep of monocrystalline Al, Acta Metall, vol.34, p.2411, 1986.

S. V. Raj, On the grain size dependence of Harper-Dorn creep, Mater. Sci. Eng, vol.96, p.57, 1987.

S. Straub and W. Blum, Does the "natural" third power law of steady state creep hold for pure aluminium?, Script. Metall. Mater, vol.24, p.1837, 1990.

C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys, vol.21, p.437, 1950.

R. L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys, vol.34, p.1679, 1963.

B. Burton, The low stress creep of aluminium near to the melting point: The influence of oxidation and substructural changes, Philos. Mag, vol.25, p.645, 1972.

J. P. Poirier, On the symmetrical role of cross-slip of screw dislocations and climb of edge dislocations as recovery processes controlling high-temperature creep, Rev. Phys. Appl, vol.11, p.731, 1976.
URL : https://hal.archives-ouvertes.fr/jpa-00244107

J. P. Poirier, Is power-law creep diffusion-controlled?, Acta Metall, vol.26, p.629, 1978.

C. R. Barrett and W. D. Nix, A model for steady state creep based on the motion of jogged screw dislocations, Acta Metall, vol.13, p.1247, 1965.

W. Blum, Role of dislocation annihilation during steady-state deformation, Phys. Stat. Sol. B, vol.45, p.561, 1971.

W. Blum and H. Schmidt, Steady state and transient creep of al at 400 k-an analysis in terms of recovery controlled by thermally activated glide, Res Mechanica, vol.9, p.105, 1983.

H. E. Evans and G. Knowles, A model of creep in pure materials, Acta Metall, vol.25, p.963, 1977.

J. Poirier, Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, 1985.

M. E. Kassner, Fundamentals of Creep in Metals and Alloys, 2015.

B. Chen, P. E. Flewitt, A. C. Cocks, and D. J. Smith, A review of the changes of internal state related to high temperature creep of polycrystalline metals and alloys, Int. Mater. Rev, vol.60, p.1, 2015.

M. Sauzay, Effet de l'anisotropie élastique cristalline sur la distribution des facteurs de schmid à la surface des polycristaux, Comptes Rendus Mecanique, vol.334, p.353, 2006.

L. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow, 2013.

T. Hochrainer, M. Zaiser, and P. Gumbsch, A three-dimensional continuum theory of dislocation systems: Kinematics and meanfield formulation, Philos. Mag, vol.87, p.1261, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00513758

D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater, vol.124, p.633, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02317567

X. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, and R. W. Hyland, Anisotropic surface segregation in Al Mg alloys, Surf. Sci, vol.373, p.357, 1997.

F. Ercolessi and J. B. Adams, Interatomic potentials from firstprinciples calculations: the force-matching method, EPL, vol.26, p.583, 1994.

E. Clouet, The vacancy-edge dislocation interaction in fcc metals: A comparison between atomic simulations and elasticity theory, Acta Mater, vol.54, p.3543, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084518

M. Reis, A. Choudhury, and L. Proville, Ubiquity of quantum zero-point fluctuations in dislocation glide, Phys. Rev. B, vol.95, p.94103, 2017.

J. Dérès, L. Proville, and M. Marinica, Dislocation depinning from nano-sized irradiation defects in a bcc iron model, Acta Mater, vol.99, p.99, 2015.

. Yu, M. J. Mishin, D. A. Mehl, A. F. Papaconstantopoulos, J. D. Voter et al., Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, vol.63, p.224106, 2001.

D. J. Bacon, U. F. Kocks, and R. O. Scattergood, The effect of dislocation self-interaction on the Orowan stress, Philos. Mag, vol.28, p.1241, 1973.

R. O. Scattergood and D. J. Bacon, The Orowan mechanism in anisotropic crystals, Philos. Mag, vol.31, p.179, 1975.

H. J. Frost and M. F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1982.

G. Henkelman, G. Jóhannesson, and H. Jónsson, Progress on Theoretical Chemistry and Physics, pp.269-300, 2000.

G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for finding saddle points and minimum energy paths: Theoretical methods in condensed phase chemistry, Progress in Theoretical Chemistry and Physics, vol.5, pp.269-302, 2000.

M. Kabir, T. T. Lau, D. Rodney, S. Yip, and K. J. Van-vliet, Predicting Dislocation Climb and Creep from Explicit Atomistic Details, Phys. Rev. Lett, vol.105, p.95501, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00581449

T. T. Lau, X. Lin, S. Yip, and K. J. Van-vliet, Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb, Script. Mater, vol.60, p.399, 2009.

J. P. Hirth and J. Lothe, Theory of Dislocations, p.555, 1982.

J. P. Hirth and J. Lothe, Theory of Dislocations, p.180, 1982.

E. Orowan, Problems of plastic gliding, Proc. Phys. Soc, vol.52, 1940.

M. E. Kassner and M. E. Mcmahon, The dislocation microstructure of aluminium, Metall. Trans, vol.18, p.835, 1987.

M. E. Kassner, Taylor hardening in five-power-law creep of metals and class M alloys, vol.52, p.1, 2004.

M. E. Kassner, P. Kumar, and W. Blum, Harper-dorn creep, Int. J. Plast, vol.23, p.980, 2007.

T. S. Lundy and J. F. Murdock, Diffusion of Al 26 and Mn 54 in aluminum, J. Appl. Phys, vol.33, p.1671, 1962.

F. Y. Fradin and T. J. Rowland, NMR measurement of the diffusion coefficient of pure aluminum, Appl. Phys. Lett, vol.11, p.207, 1967.

T. E. Volin and R. W. Balluffi, Annealing kinetics of voids and the self-diffusion coefficient in aluminum, Phys. Stat. Sol. B, vol.25, p.163, 1968.

J. Burke and T. R. Ramachandran, Self-diffusion in aluminum at low temperatures, Metall. Trans, vol.3, p.147, 1972.

E. Clouet, Predicting dislocation climb: Classical modeling versus atomistic simulations, Phys. Rev. B, vol.84, p.92106, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00625865

J. P. Hirth and J. Lothe, Theory of Dislocations, p.315, 1982.