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Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

2Groupe Métallurgie, MMC, EDF, Les Renardières, 77818 Moret-sur-Loing, France

The microstructural evolution of metals and alloys is governed by the diffusion of defects over
complex energy landscapes. Whenever metastability occurs in atomistic simulations, well-separated
time scales emerge making it necessary to implement event-based kinetic models at larger scales.
The crucial task then involves characterizing the important events contributing to mass transport.
We herein describe fast first-passage algorithms based on the theory of absorbing Markov chains
assuming that defects undergo reversible diffusion. We show that the absorbing transition rate
matrix can be transformed into a symmetric definite-positive matrix enabling us to implement direct
and iterative sparse solvers. The efficiency of the approach is demonstrated with direct computations
of elastodiffusion properties around a cavity in Aluminum and Monte Carlo computations of cluster
diffusivity in low alloyed Manganese steels.

I. INTRODUCTION

Kinetic Monte Carlo (KMC) simulations [1] are exten-
sively used in materials science to predict the microstruc-
tural evolution of alloy systems driven out of equilibrium
or to compute atomic transport properties, either at equi-
librium or in a nonequilibrium steady state. A KMC
method is traditionally implemented whenever the phys-
ical model system of interest is governed by a master
equation which corresponds to a high-dimensional ordi-
nary differential equation over the discrete or discretized
(meshed) space. This equation can not be solved directly
through time-stepping because of the combinatorial ex-
plosion in the number of variables to deal with. Any
KMC method consists of simulating a single kinetic tra-
jectory among the many possible ones. In materials sci-
ence, KMC methods may treat events [2–4], objects [5, 6]
or atoms [7].

The efficiency of the KMC method is drastically re-
duced whenever the transition matrix describing the evo-
lution of the system exhibits a wide spectrum. In this
situation, the system transitions a huge number of times
between configurations separated by small energy barri-
ers. These connected configurations form trapping basins
from which the average escape time is much larger than
the characteristic time for crossing the small barriers in-
side the basins. This issue is recurrent in KMC sim-
ulations. Cavities may form under irradiation and re-
main stable over a long period of time due to the low
vacancy emission rate resulting from the strong attrac-
tion between cavities and neighboring vacancies. Kinetic
trapping may also be caused by the formation of dynam-
ically stable clusters of Manganese or Copper substitu-
tional atoms and vacancies in α-iron. These solute clus-
ters migrate slowly without dissociating owing to numer-
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ous atomic rearrangements.

Several ways of improving the KMC method are cur-
rently implemented in the literature. First, the encoun-
tered events may be tabulated for later reuse [8–16],
which avoids repeatedly evaluating the same transition
rates. This way of proceeding is particularly relevant
whenever stable and saddle point energies are costly to
evaluate as in off-lattice simulations [17]. Transition rates
associated to tabulated events are then retrieved on the
fly.

To reduce the dimensionality of the original master
equation and further speedup the KMC simulations, non-
local events involving mobile defects may be tabulated
and randomly selected using the appropriate rule [18, 19].
Avoiding conflicts between defects evolving in parallel re-
quires spatial protection of defects and exact time syn-
chronization. Spatial protection serves to prevent distant
walkers from colliding or conversely to enable two neigh-
boring defects to recombine. To satisfy the time synchro-
nization requirement, the theory of absorbing Markov
chains [20] is used to draw first-passage times, and paths
to distant states located on the periphery of the protec-
tion, which acts as an absorbing sink [18, 21, 22]. Draw-
ing a first-passage time and escape from the exact prob-
ability distributions may be achieved through the direct
factorization of the absorbing transition rate matrix [22]
or through its eigenvalue decomposition [18, 21, 23–25].

The former randomization technique is based on the
probabilistic interpretation of the factorization in term
of paths [19, 26, 27]. This interpretation is implicitly
invoked in the matrix method [28–30] to compute corre-
lation factors associated with vacancy-solute exchanges
in dilute alloy models for any crystallographic structure.
These correlation factors are crucial quantities giving ac-
cess to diffusion coefficients. They are obtained by in-
verting a matrix, which amounts to summing over all
paths between two consecutive vacancy-solute exchanges.
Green functions used in atomic transport theory [31, 32]
also appear as pseudo-inverses of transition rate matrices
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and may also be interpreted as geometric sums of path
probabilities.

The latter randomization technique consists of entirely
computing the evolution operator for transient states,
a matrix exponential. The approach was extended to
Gaussian random walks in continuous three dimensional
spaces using a Green function formalism [33–35]. In this
framework, the probability that the walker is still in its
protected volume appears as a series of decaying (real)
exponential functions. At times large enough, the infinite
sum can be safely truncated retaining only a limited num-
ber of the slowest eigen-modes because the contributions
of the fastest eigen-modes rapidly decay with time. In
these studies [33–35], the spectral decomposition is ana-
lytically tractable for the considered symmetric diffusion
operators.

The symmetry property assumed in Ref. [33–35] entails
that atomic transport is mediated by defects whose diffu-
sion is reversible at equilibrium, i.e. the involved diffusion
processes obey detailed balance even though the defect
concentration may be out of equilibrium, as for instance
after a quench or an irradiation cascade. This assump-
tion is satisfied in many materials of practical interest.
Even the state-to-state evolution of far from equilibrium
glasses can be well approximated by a Markov chain that
does obey detailed balance. A noticeable exception in-
volves alloy systems subjected to steady irradiation, tem-
perature gradients or chemical potential gradients. At
the atomic scale, a consequence of reversibility is that
the discrete transition rate matrix can be symmetrized by
similarity transformation [31, 36]. For absorbing Markov
processes, reversibility of diffusion is conditional upon
the fact that the system is still located in a transient
state. This guarantees that the transition rate matrix
restricted to transient states is similar to a symmetric
definite negative and that the transient evolution opera-
tor is the sum of decaying exponential functions. In this
article, we investigate the computational implications of
the conditional reversibility of the involved diffusion pro-
cesses.

After introducing absorbing Markov chain theory for
conditionally reversible processes in Section II, we illus-
trate several features of the approach on two realistic
problems: the elasto-diffusion of vacancies in the neigh-
borhood of cavities [37] in pure Aluminum and the diffu-
sion of small vacancy-Mn clusters in α-iron. New features
involve the ability to compute transition currents over
large physical volumes and to approximate the evolution
operator through projection on reduced subspaces, two
aspects little discussed in the literature on lattice-based
Markov processes, to our knowledge.

II. THEORY AND METHODS

A. Master equation and evolution operator

The phase space is considered to be discrete and is
denoted by Ω. States describing the system correspond
to the locations of atoms and defects (such as vacancies)
on a crystalline lattice. Our knowledge about the current
state of the system is materialized by a probability vector,
i.e. a probability distribution over Ω. The time evolution
of the probability vector pt ≡ p(t) is governed by the
following master equation

ṗTt = pTt K, (1)

where K stands for the Markov matrix of transition rates,
assumed here to be time-independent: Kij is the rate of
transition from state i to state j (off-diagonal elements
only). The standard convention is used to define the diag-
onal elements as Kii = −∑i 6=`Ki`. Superscript T stands
for transpose. The evolution operator, obtained formally
from solutions of the master equation, can be expressed
as an exponential of the Markov matrix of transition rates
(t1 > t0)

P(t0, t1) = exp

[ˆ t1

t0

Kdt

]
= exp [(t1 − t0)K] . (2)

Matrix element Pij(t0, t1) is the probability to find the
system in state j at t1 given that it was in state i at time
t0. This operator fully characterizes the time evolution
of the probability vector: pT (t1) = pT (t0)P(t0, t1). As
defined, the evolution operator belongs to the class of
stochastic matrices such that

∑
` Pi` = 1 and Pij ≥ 0 for

any i, j, t and τ . This property entails conservation of
the total probability. Besides, the stationary distribution
satisfies ρTP(t1, t0) = ρT , it is a left-eigenvector of the
evolution operator associated with eigenvalue one.

If known, the evolution operator can be used to sam-
ple transitions between any two states and over arbitrary
time intervals τ = t1 − t0. In practice, the evolution op-
erator can only be solved for small subspaces delimited
by artificial absorbing boundaries. Substantial simula-
tion speed-ups can be achieved by sampling transitions
to distant states located on the absorbing perimeters of
encountered trapping basins [18, 19, 21, 22, 25]. Prior to
presenting the theory of absorbing Markov chains, which
will be used to formulate such accelerated KMC algo-
rithms, we recall the standard KMC method.

B. Standard Kinetic Monte Carlo

Standard KMC methods avoid exponentiating the
transition rate matrix. The evolution operator is in-
stead linearized to get a simple stochastic matrix and
a randomization procedure is invoked to draw the time
at which the event occurred. The simplest form of such
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matrix is

Plin = I + τK (3)

where I is the identity operator and τ is a positive time
step that must be lower or equal to −1/Kii for all states
Si ∈ Ω. Time randomization then consists in drawing
a time in the exponentially decaying distribution of rate
τ−1. Since P lin

ii ≥ 0, it is possible that no transition has
occurred after time incrementation. In practice, a differ-
ent stochastic matrix is implemented, so as to guarantee
a KMC transition at each step. Letting Diag(K) denote
the diagonal matrix composed of the diagonal elements
of K, the following stochastic matrix is rather used

Pstd = I −Diag(K)−1K. (4)

If system is currently located in state i, the exponen-
tially decaying distribution of rate −Kii must instead
be used to sample the residence time, i.e a stochastic
variable yielding the elapsed time. The mean residence
time on i is then −1/Kii, compensating for the fact
that the stationary distribution of Pstd is proportional to
−Diag(K)ρ, a left eigenvector associated with the eigen-
value equal to 1. In the following we consider the generic
stochastic matrix of the form

P(0) = I + diag
(
τ (0)

)
K (5)

where τ (0) stands for an effective residence time vector
such that τ

(0)
i ≤ −1/Kii for all i and diag

(
τ (0)

)
denotes

the diagonal matrix composed of the elements of τ (0).

C. KMC implementations

The natural way of implementing KMC algorithm does
not involve explicitly forming the transition matrices ap-
pearing in (5). At each cycle, the possible transition
events are tabulated and two random numbers r1 and
r2 are drawn uniformly in )0, 1] interval. The selected
transition ` satisfies the following double inequality

`−1∑

l=1

Ki,j(l) < −r1Kii ≤
∑̀

l=1

Ki,j(l),

where i and j(l) denote the current state and the ending
state associated with the l-th listed transition, while the
elapsed time is simulated from Kii ln r2.
An alternative algorithm consists in assigning an inde-
pendent Markov process and time clock to each diffusing
or reacting entity, while keeping a time ordered list of
events up to date. Let κdi stand for the total transi-
tion rate of the d-th diffusing entity from state i. At
each KMC cycle, the time of the master clock is incre-
mented to the time of the next event and the correspond-
ing transition is performed. After an event occurred, a
limited number of events needs being annihilated, cre-
ated or re-sampled. This way of proceeding is statisti-
cally equivalent because the distribution of the minimum

of exponential random variables is exponential with rate∑
d κ

d
i = −Kii. This alternative algorithm is easier to

implement on a parallel computer architecture [38, 39].
It is currently implemented in EKMC methods [2, 3],
wherein distant binary collisions can easily be simulated
using simplified laws assumed to be mutually indepen-
dent.

D. First-passage kinetic Monte Carlo

FPKMC is a statistically exact EKMC algorithm in
which spatial protections is introduced to ensure that bi-
nary collisions are handled rigorously [21, 25, 33–35]. Fig-
ure 1 depicts the principle of the first-passage approach
applied to the diffusion and collision of two vacancies
in presence of trapping precipitates. FPKMC computa-
tions of the mobilities of vacancy-Manganese clusters in
Iron are reported in Sec. IV. FPKMC technique requires
forming the transition rate matrices appearing in (5).

E. Absorbing Markov processes

For the ease of exposition, trapping states are labeled
from 1 to N and are called transient. Perimeter states
connected to the transient states are pooled together into
a single absorbing state labeled by index N + 1. Tran-
sitions from a transient state to any perimeter states
are thus replaced by a single transition to the absorb-
ing macro-state with an overall transition rate cumulat-
ing the transition rates towards pooled peripheral states.
Transitions from the macro-state to transient states or
any other states are no more permitted. As defined,
the absorbing Markov process coincides with the origi-
nal Markov process as long as it remains located inside
the trapping basin. As a result, the N trapping states be-
come transient and the absorbing macro-state, acting like
an artificial sink trapping the system infinitely, remains
the only recurrent state of the system. The system being
initially in a transient state, states beyond the perimeter
states can not be reached and need not being considered.
The Markov matrix for the absorbing process is thus de-
fined as

Ka =

(
−A A~1
~0T 0

)
(6)

where A is a N × N matrix such that Aij = −Kij and
~1 = (1, · · · , 1)

T
the N -dimensional column vector whose

components all equal one. Vector ~0 = (0, · · · , 0)T is sim-
ilarly defined and I will stand for the N × N identity
matrix. The associated evolution operator reads

Pa(t) = exp[Kat]. (7)

With these definitions, Ka is a proper transition rate
matrix and likewise Pa is a proper stochastic matrix.
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FIG. 1: Schematic of FPKMC method for two vacancies
evolving on a square lattice symbolizing a FeMn alloy. Fe
and Mn atoms are displayed in orange and violet. Vacancies
V 1 and V 2, represented by the two labeled squares, are ini-
tially trapped inside Mn clusters. Exit sites for the trapped
vacancies are indicated the stars. First-passage events are
represented by dotted arrows. Events occurring first and sec-
ond are colored in green and red, respectively. The sequence
of events is as follows: (a) The two V -Mn clusters are spa-
tially protected; First-passage times t1fp and t2fp are drawn

(here t2fp < t1fp); (b) V 2 dissociates from Mn cluster, diffuses

and collides with spatial protection of V 1 at time t2col (here
t2col < t1fp); A no-passage event [21, 25, 33–35], materialized by

the green solid arrow, is generated for synchronization; (c) V 2

attaches to the V 1-Mn cluster (nearest neighbor interactions
are assumed); (d) a diffusing entity composed of two vacancies
is created and spatially protected. Vacancy locations inside
the thick solid line correspond to states that are referred to
as transient in the theory of absorbing Markov processes. Ab-
sorbing states are those with the vacancy located on a starred
site, beyond the solid line and before the dashed line.

Their components in each row summing to zero and one
respectively:

Ka
(
~1
1

)
=
(
~0
0

)
and Pa

(
~1
1

)
=
(
~1
1

)
. (8)

Consequently, for any probability vector πt ≡ π(t) evolv-
ing according to the master equation π̇Tt = πTt Ka the
probability to find the walker in one of the N + 1 states
is conserved over time and we have πTt = πT0 exp [Kat].
We are now going to express the evolution operator (7)
as a function of the exponential of A. We first notice
that the powers of minus the absorbing transition rate
matrix writes for h ≥ 1

(−Ka)h =

(
A −A~1

0T 0

)h
=

(
Ah −Ah~1

0T 0

)
. (9)

This relation enables us to rearrange the matrix expo-
nential as:

exp [Kat] =

(
I 0

0T 1

)
+

+∞∑

h=1

(
Ah −Ah~1

0T 0

)
(−t)h
h!

=

(
exp [−At] (I− exp [−At])~1

0T 1

)
, (10)

where we substituted back the two matrix exponentials
for the series in the two upper blocks of Eq. (10). The
probability of being in state j ≤ N at time t starting
from state i ≤ N is

P a
ij(t) = eTi exp (−At) ej (11)

where ei denotes the ith standard basis vector.

F. Conditional reversibility

We assume here that the original Markov process obeys
detailed balance, which implies that the probability flux
from state i to state j is equal to the reverse flux. The
i-to-j probability flux is defined as the product of the
stationary probability ρi to be in state i and the rate
Kij of transitioning to state j. The equation of detailed
balance thus writes

ρiKij = ρjKji (12)

When condition (12) is satisfied, the stationary probabil-
ity vector ρ of the reference Markov process is usually as-
sociated with an equilibrium Gibbs-Boltzmann distribu-
tion. It corresponds to the left eigenvector of the Markov
rate matrix for eigenvalue 0, since we have ρTK = 0T .

The detailed balance condition (12) can be recast with
respect to the absorbing Markov process considering the
allowed transitions between the N transient states (1 ≤
i, j ≤ N):

√
ρiAij

/√
ρj =

√
ρjAji

/√
ρi. (13)

The following symmetric matrix is defined from (13),

ABij = sisj
√
ρiAij

/√
ρj = ABji, (14)

where the scaling factors si are strictly positive. They
are numerical parameters reflecting the degree of free-
dom in the construction of stochastic matrices for KMC
simulations based on (5). To specify this statement, we
cast transformation (14) into matrix form resorting to
the N ×N diagonal matrices

S =

N∑

i=1

sieie
T
i , R =

N∑

i=1

1√
ρi

eie
T
i , (15)
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which are both diagonal definite positive. Hence matrices
S, R and B = S2 commute and are invertible, enabling
one to define

AB = SR−1ARS = (SR)−1BA(SR). (16)

Scaling matrix B acts like a preconditioner. Its aim is
to decrease the condition number of AB , which will be
the main matrix in the first-passage problems investi-
gated in the following. B-scaling is introduced in the
formalism for the sake of generality. Setting B to iden-
tity amounts to disabling the explicit preconditioning, as
done in most literature studies and in Ref. [22] in par-
ticular. This setup also arises in the linearized KMC
method based on (3), up to the τ limiting factor. In
other works [19, 26, 27, 40], B is set to Diag(A)−1. This
setup arises in the standard KMC method based on (4).
Noticeably, it entails that si = 1/

√
Aii and ABii = 1 for

all i. We carry out a comparative study between the two
mentioned setups in Sec. III B.

Matrix SR serves to make a diagonal similarity trans-
formation and to formulate a generalized symmetric
eigenvalue problem. Setting B to identity allows us to
conclude that A is similar to a symmetric matrix AI .
Similarity transformations preserving spectral properties
and the spectrum of symmetric matrices being real, we
conclude that the eigenvalues of A are real. By applying
Gershgorin circle theorem to A, we also conclude that
they are positive. Eventually none of the eigenvalues are
equal to zero, otherwise a stationary distribution over
transient states would possibly be established, which is
excluded.

G. Spectral decomposition of the evolution
operator

Matrices A and B−1AB being similar, we deduce that
the spectrum of A can be obtained by solving the gener-
alized symmetric eigenvalue problem (GSEP)

ABϕk = Bϕkλk. (17)

Sorting the eigenvalues (λ1, · · · , λN ) of (17) in ascend-
ing order and letting Φ = (ϕ1,ϕ2, · · · ,ϕN ) be a B-
orthonormal basis of eigenvectors, the GSEP can be cast
in the following matrix form

ABΦ = BΦΛ. (18)

where Λ is a diagonal matrix with diagonal elements Λii
equal to λi. Left multiplying both sides of (18) by ΦT

and then right-multiplying (18) again by ΦT yields the
two relations

ΦTABΦ = Λ, AB = BΦΛΦTB (19)

where we simplified resorting to B-orthogonality of Φ:

ΦTBΦ = I, ΦΦT = B−1. (20)

Using the generalized spectral theorem (19) and revert-
ing relation (16), the absorbing matrix may therefore be
decomposed as A = RSΦΛΦTSR−1. Expanding the
matrix exponential of A in series, substituting B for S2

and invoking B-orthogonality (20) eventually yield

exp [−At] = RSΦ exp [−Λt] ΦTSR−1. (21)

To express components of the matrix exponential, it is
practically convenient to introduce a few additional no-
tations. We denote the scaling and rescaling vectors com-
posed of the diagonal elements of S and R by s and r,
respectively. We have s = S~1 and r = R~1. Letting �
and � symbols stand for element-wise multiplication and
division, we also define two sets of rescaled basis vectors
gi = ei � s � r and dj = ej � s � r. Then, resorting
to the scalar products ghi = ϕThgi and dhj = ϕThdj , the
evolution operator (11) reads

P a
ij(t) =

N∑

h=1

ghi d
h
j exp (−λht) ,

where (i, j) ≤ N . The survival probability after duration
t given that the system was prepared in state i ≤ N at
t0 = 0 corresponds to the probability of not having been
absorbed during the elapsed time, i.e. the probability of
remaining in one of the N transient states,

ps
i(t) ,

N∑

j=1

P a
i,j(t)

= (eTi , 0) exp [Kat]
(
~1
0

)

= eTi exp [−At]~1

=

N∑

h=1

ahi exp (−λht) (22)

where the weighing coefficients read

ahi = ghi

N∑

j=1

dhj . (23)

Since matrix ΦT is B-orthogonal, the ahi coefficients sum
to one:

N∑

h=1

ahi =

N∑

j,h=1

ri
rj

Φihs
2
hΦjh =

N∑

j=1

ri
rj
Iij = 1.

This feature is consistent with the fact that initially the
survival probability of the absorbing process is one :
ps
i(0) = 1.
KMC simulations require drawing first-passage times

with the appropriate statistics. This may be achieved by
sampling a random number r2 ∝ U)0,1] (that is uniformly
distributed )0, 1] and looking for tfp satisfying ps

i(tfp) = R.
This way of proceeding requires evaluating the survival
distribution though the spectral decomposition of A. To
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avoid collision with another absorbing process interacting
with the transient states, it is sometimes necessary to
stop the simulation at a given time tcol for synchronizing
the Markov processes. This task, depicted in Fig. 1.b,
involves the ability to sample the so-called no-passage
distribution [21, 25, 33–35].

H. No-passage and quasi-stationary distributions

The no-passage distribution is the conditional proba-
bility to find the system in transient state j at time t
given that it was initially in transient state i and that
the process has not been absorbed yet. It is obtained
by dividing the probability of being in j by the survival
probability ps

i(t):

P np
ij (t) =

eTi exp [−At] ej

eTi exp [−At]~1
.

The quasi-stationary distribution over transient states
corresponds to the probability vector q that is reached
asymptotically in time by the no-passage distribu-
tion [41]. This asymptotic distribution is independent
of the initial distribution, arbitrarily set equal to state i
in the limit below

qj = lim
t→∞

P np
ij (t) =

d1
j∑N

`=1 d
1
`

The quasi-stationary distribution being proportional to
ϕ1�s�r, is also a left eigenvector of the lowest eigenvalue
of the transition rate matrix A.

I. Expected values of first-passage times, residence
times and exit probabilities

The complementary of the survival probability, pa
i (t) =

1 − ps
i(t), corresponds to the probability of having been

absorbed. Its time derivative at t is positive and equal
to the probability density of exiting at t. Since pa

i (0) = 0
and pa

i (∞) = 1, the absorbing probability pa
i (t) coincides

with the cumulative distribution of the time probability
of first passage. The mean first-passage time from i is
the time expected with respect to the first-passage prob-
ability distribution. It can be formally obtained through
integration by part:

τ
(N)
i =

ˆ ∞
0

t
d

dt
pa
i (t)dt

= [tpa
i (t)− t]∞0 −

ˆ ∞
0

{pa
i (t)− 1} dt

=

ˆ ∞
0

eTi exp (−At)~1dt = eTi A−1~1. (24)

The mean-first passage time satisfies Aτ (N) = ~1 and is
always more rapidly obtained by solving the linear system

of equations involving the definite symmetric matrix AB :

ABxB = bB . (25)

Symmetrizing the linear system entails scaling the right-
hand side vector bB and rescaling back the obtained so-
lution. This is done by resorting to relation (16) between
A and AB . Setting bB to s � r yields the mean first-
passage times as τ (N) = xB � s� r.

The mean residence time in transient state j knowing
that the system started from state i is given by the time
integral ˆ ∞

0

dtPij(t) =

ˆ ∞
0

eTi exp (−At) ejdt

= eTi A−1ej . (26)

The residence time vector associated with initial distribu-
tion π reads θ(N)T = πTA−1 or, after taking the trans-
pose, θ(N) = A−Tπ. As for the mean first-passage prob-
lem, the symmetric linear system (25) is invoked. How-
ever, it is solved using a different right-hand side vector
and with transposed scalings. Setting bB to π � s � r
eventually provides us with mean residence times via
θ(N) = xB � s� r.

The absorbing probability at state ` is the sum of the
probability flux from neighboring connected states and of
the initial source contribution, reflected by the identity
matrix Ii` below:

P
(N)
i` = Ii` +

N∑

j=1

ˆ ∞
0

dtP a
ij(t)Kj`

= Ii` +

N∑

j=1

eTi A−1ejKj` (27)

The probability P
(N)
i` is equal to 0 if state ` is transient

(` < N) or not connected to any transient state. It is
non-zero for transitions to the peripheral states pooled
in the absorbing macro-state.

The stochastic matrix P
(N)
i` yields the transition prob-

abilities used in first-passage or mean first-passage KMC
methods. The latter variant method, implemented in
Sec. IV and referred to as factorized KMC, increments
the elapsed time by the mean first-passage time. The
mean of the first-passage times can be used when a sim-
ulated walker (defect) never collides with another walker.
In this case, the Markov process needs not being inter-
rupted and synchronization is not required. Note that the
stochastic matrix and residence time vector can be ex-
tended so as to encompass transitions from non-transient
states i > N :

P
(N)
ij = P

(0)
ij +

N∑

`=1

P
(0)
i` P

(N)
`j (28)

τ
(N)
i = τ

(0)
i +

N∑

`=1

P
(0)
i` τ

(N)
` (29)

where P(0) and τ (0) are defined in (5).
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J. Rank-one update

Let us assume that we have already identified n − 1
trapping states, turned them transient by computing the
transition probabilities P(n−1) together with the mean
times τ (n−1) and θ(n−1), and eventually performed a dis-
tant move. In practice, it may happen that the selected
peripheral state is also a trapping state, in the sense that
the system will later return to this peripheral state with
a high probability. Fortunately, stochastic matrix P(n)

needs not being computed again from scratch. It is possi-
ble to perform a rank-one update of the stochastic matrix
P(n−1) by directly adding the selected peripheral state to
the list of transient state. Based on P(n−1), the proba-
bility of a transition from i to j via the new transient
state labeled n is

P
(n)
ij = P

(n−1)
ij + P

(n−1)
in

+∞∑

f=0

[
P (n−1)
nn

]f
P

(n−1)
nj , j > n,

P
(n)
ij = 0 j ≤ n,

where the sum accounts for the probabilities of all pos-
sible round-trips from n. Note that the updating rule
involves both transient and peripheral states as starting
states i. It is also possible to update the mean time vec-
tors directly to get τ (n) and θ(n). The mean first-passage
time to make a non-local transition starting from state
n to any state j > n is updated by accounting for the
mean time spent performing flickers from n

τ (n)
n =

+∞∑

f=0

[
P (n−1)
nn

]f [
1− P (n−1)

nn

]
(f + 1)τ (n−1)

n

= τ (n−1)
n

/(
1− P (n−1)

nn

)
. (31)

Concerning the mean first-passage time to make the non-
local transitions from any state i to any state j > n, one
must account for a possible transition to state n, which
eventually leads to

τ
(n)
i = τ

(n−1)
i + P

(n−1)
in τ (n)

n . (32)

The updating rule obviously covers the case i equal to n.

K. Path factorization and space-time
randomization

Path factorization [22] consists of directly construct-
ing stochastic matrix P(N) by repeatedly applying rank-
one updates starting from stochastic matrix P(0) de-
fined in (5). The factorization may involve on-the-fly
re-indexing. The mean first-passage time vector needs to

be initialized. For all relevant states i, τ
(0)
i may be set

to either τ = mini∈Ω (−1/Kii) or −1/Kii. The repeated
updates can also be performed on the mean residence

time vector θ(n−1) . The starting vector θ(0) is initially
set to τ (0) � π and the updating rule (32) becomes:

θ
(n)
j = θ

(n−1)
j + P̃

(n−1)
nj θ(n)

n , (33)

where the involved probability is defined from detailed
balance and reads

P̃
(n−1)
nj =

ρjτ
(0)
n

ρnτ
(0)
j

P
(n−1)
jn . (34)

This quantity corresponds to the canceled probability to

eliminated states j < n, otherwise it is P
(n−1)
nj , the usual

absorbing probability to the states j ≥ n that are not yet
eliminated. Hence, setting j equal to n in (33) yields

θ(n)
n = θ(n−1)

n

/(
1− P (n−1)

nn

)
. (35)

Note that updating rules (31) and (35) exhibit a similar
form.

The usefulness of path factorization is that it can be
used not only to compute the expected values of the first-
passage and residence times, but also to draw these two
random variables from their exact distributions. Such
randomization thus obviates the need to perform an
eigenvalue decomposition. Algorithm 3 described in Ap-
pendix A and illustrated in Sec. III C implements time
randomization based on the probabilistic interpretation
of the factorization.

Path factorization amounts to constructing the tri-
angular matrices involved in LU or LDLT decomposi-
tion as well as their inverses, as shown in Appendix B.
It is shown that the repeated application of updating
rules (32) and (33) to obtain τ (N) and θ(N) from τ (0)

and θ(0) amounts to directly applying the inverted tri-
angular factors on τ (0) and θ(0). Noticeably, transi-
tions to new transient states are removed within path
factorization in the same way as matrix elements are
canceled through Gaussian elimination. The latter tech-
nique is crucial ingredient for direct solvers. A direct
sparse solver is implemented in Sec. III B to investigate
the algorithmic complexity on the vacancy elastodiffusion
problem. The solver computes the solutions τ (N) and
θ(N) of (25) through forward and backward substitutions
based on the symmetric triangular factor without its ex-
plicit inversion. The advantage of programming the rank-
one updates is that the transition rate property of the
transformed matrices can be preserved, as explained by
Wales et al. in Ref. [27, 40]. Hence, the approach is more
robust, albeit much slower, than available direct solvers.
Preservation of probability fluxes is achieved by impos-

ing that the flicker probability P
(n−1)
nn from n and the

corresponding escape probability, Dnn =
∑
j>n P

(n−1)
nj ,

exactly sum to one after each elimination. Path factor-
ization is found more appropriate for studying trapping
of vacancies in small Mn clusters in iron. It is used to ac-
celerate KMC measurements of Mn-cluster diffusion co-
efficients in Sec. IV.
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III. ELASTO-DIFFUSION OF VACANCIES IN
ALUMINIUM

In the first application, we consider the diffusion of
a single vacancy around a cavity in Aluminium. The
crystalline structure is face-centered cubic. The coordi-
nation number is Z = 12. The vacancy formation energy
is Ef

V = 0.67 eV. It corresponds to the energy differ-
ence for displacing a vacancy from a free surface to the
bulk. In our model, it determines the interaction en-
ergy of two neighboring vacancies. We consider nearest-
neighbor pair interactions only and set Enn

V V = −2Ef
V /Z.

We also set Enn
V Fe = 0 and Enn

FeFe = 0. These interaction
energies entail that nearest-neighbor vacancy pairs are
energetically favored. The model describing thermally
activated jumps of Aluminum atoms into next nearest-
neighbor vacancy accounts for the elastic field created by
the cavity [37]. The dipole tensor associated with the va-
cancy has been computed using electronic structure cal-
culations. It is assumed to be independent of the induced
elastic strain, i.e., higher order terms in the fast-multiple
expansion of elastic interactions are neglected.

A. Vacancy emission flux from cavity

We focus on the emission of a single vacancy from a
cavity. In this set-up, we neglect some dynamical effects
and assume that only a single vacancy can migrate and be
emitted from a static cavity. The vacancy emission rate
could conceivably be impacted by a dynamically evolv-
ing cavity. The cavity is composed first of 2243 vacancies.
Cavity sites are located inside a sphere of radius 20.7 Å.
The mobile vacancy is considered to be initially equili-
brated at temperature T = 600 K on the sites of the first
shell of the cavity. Trapping results from the fast intra-
shell vacancy jumps and from the immediate reconnec-
tion of the vacancy after it just disconnected from it. A
total of N = 259320 transient states are used to charac-
terize the vacancy emission properties, which correspond
to the vacancy sites located inside the protective sphere
of radius 101 Å and centered on the cavity center.

We first resorted to algorithm 1 to construct matrix
AB . We next solved equation (25) by implementing
a direct solver (see Sec. III B) to obtain the mean res-
idence time vector θ(N) associated with the imposed
initial distribution π and through appropriate rescal-
ing (see Sec. II I). We next define the mean probabil-
ity currents θjKj` − θ`K`j between both transient and
absorbing states, where θ stands for an extended mean
residence time vector coinciding with θ(N) on transient
states and canceling elsewhere. Probability currents are
a practical tool serving to characterize not only nonequi-
librium steady states [36, 42], but also transient nonequi-
librium regimes as presently. Letting r̂i denote the three-
dimensional lattice coordinates of the vacancy associated
with state i, the vacancy flux at r̂i is defined as the three-
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FIG. 2: Emission of a single vacancy from the centered gray
cavity of radius 20.7 Å to the absorbing sphere of radius 101 Å:
Panels (a) and (b) display the residence times using two dis-
tinct color scales; Panels (c) and (d) display the radial and
orthoradial vacancy fluxes, respectively. Coordinates of dis-
played sites satisfy r̂j · k̂ = 0 where k̂ is the normalized basis
vector orthogonal to (001). The Euclidean norm ‖r̂j‖ corre-
sponds to the distance to the cavity center and θ (‖r̂j‖) is the
average residence time on the centered sphere of radius ‖r̂j‖
and surface area 4π‖r̂j‖2. Vector n̂j = r̂j/‖r̂j‖ is the normal-

ized radial vector. The cross product n̂j × k̂ corresponds to
the orthoradial direction of the flux at r̂j .

dimensional vacancy current density:

φ̂j =
1

2v

∑

`

(θjKj` − θ`K`j) (r̂` − r̂j) .

The site volume v is uniform and the half factor stems
from the fact that adjacent transitions are counted twice
and entails an average of the fluxes entering and leaving
lattice site r̂j . Note that reversible dynamics obeying
detailed balance, probability currents and vacancy fluxes
vanish at equilibrium. The absorbing probability to state
` > N given initial distribution π is eventually computed
by plugging the residence time vector into relation (27),
which yields

πa` =
∑

i≤N

πiP
(N)
i` =

∑

i≤N

θ
(N)
i Ki`. (36)

Residence times and vacancy fluxes are displayed in
Fig. 2 for sites j located in the (001) plane intercepting
the cavity center. Vacancy fluxes along [001] direction
inside this particular (001) plane cancel due to the re-
flective system symmetry. The absorbing probabilities
to the peripheral states are displayed in Fig. 3 for the
emission of a single vacancy from the (hidden) cavity lo-
cated at the center.
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FIG. 3: Anisotropy of peripheral site absorption for vacancies
emitted from a small Aluminum cavity. Absorbing probability
vector is paT = πTP(N). Red and blue coloration respectively
indicates larger and lower than average for the displayed site
absorbing probabilities. The inverse mean probability corre-
sponds to the number of peripheral sites. Cavity and protec-
tion radii are 20.7 Å and 101 Å, respectively.

In Fig 2.a, we have scaled the residence times with re-
spect to the corresponding equilibrium distribution for
comparison. We observe that residence time distribu-
tion coincides with the equilibrium distribution on trap-
ping sites located on the first two shells of the cavity.
However, the former distribution become considerably
smaller than the latter one as the vacancy moves away
from the cavity. The emission anisotropy is clearly evi-
denced in Fig 2.b wherein the residence times have been
rescaled with respect to their spherical averages. The
vacancy preferentially resides along 〈100〉 crystalline di-
rections. This trend induces an identical anisotropy of
the radial flux observed in Fig. 2.c. Preferential emission
paths along 〈100〉 crystalline directions may result from
the orthoradial components of the flux that move the va-
cancy away from 〈100〉 directions beyond the first outer
shells as evidenced in Fig. 2.d. The emission anisotropy
is not due to the nearest-neighbor chemical interactions
between the vacancy and the cavity but to the elastic
interactions. This property is confirmed by the fact that
isotropic fluxes are obtained when elastic interactions are
switched off.

The strong local heterogeneity observed in Fig. 3 for
the absorbing probabilities is attributed to the vary-
ing numbers of interconnections between transient and
absorbing states. However, smaller modulations are
clearly visible at larger scale indicating that absorption is
more important along 〈100〉 directions and smaller along
〈110〉 directions, in agreement with the measured vacancy
fluxes.

Further, we discuss about the computational aspects of
the sparse linear solvers tested in the vacancy emission
problem.
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FIG. 4: Comparative cost of direct and iterative linear solvers.
See text for details on the solvers. Simulations are performed
on an Intel 4-Cores i5-4310U processor running at 2.00GHz
with 8GB memory. OpenMP shared-memory parallelism is
enabled for LDLT factorization.

B. Computational complexity and stability

For problems involving the hopping of a defect on a
lattice, the absorbing transition rate matrix is sparse and
contains a maximum of Z + 1 nonzero elements per rows
(Z = 12), while its size may exceed several millions in
practice. Such linear systems are efficiently solved using
either a multi-frontal sparse direct solver based on LDLT

decomposition [43, 44] or sparse iterative solvers based on
Krylov subspace projection (KSP) methods [45] based
on PETSc software [46]. We first compare the costs of
solving the linear system using iterative solvers to those
of using direct solvers.

As for sparse iterative solvers, conjugate gradient (CG)
is the appropriate method when the matrix is symmetric
definite positive, however we also tested the minimum
residual (MinRes) method that is adapted to general
symmetric matrices. Three preconditioners were tested:
the additive Schwarz method (ASM) and the Jacobi and
Block-Jacobi methods (B and BJ, respectively).

As for the multi-frontal sparse LDLT factorization,
we installed Version 5.2 of MUMPS [43, 44], which en-
ables OpenMP threading and implements several order-
ing packages to construct the elimination tree. Among
them, we selected METIS for its efficiency. The block-low
rank (BLR) compression of the factors was also tested.
Enabling this option reduces both storage and number
of operations by an amount inversely proportional to the
tolerance on the solution. The tolerance control param-
eter was set to 10−5 which yielded a good trade-off be-
tween performance and accuracy. Simulations are per-
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formed for the emission problem in which the emitted
vacancy reaches a protective sphere of increasing radii.
The largest matrix size is nearly 2.106 (number of tran-
sient states). Results are displayed in Fig. 4. Scaling
matrix B is first set to identity.

We observe that the iterative solver performs better
than the direct solver, by a factor of 10-20. We ob-
tain a square complexity for the standard direct solver,
as expected for a sparse matrix describing transitions or
connections within a 3-dimensional space. BLR becomes
more beneficial the larger the matrices. For 106 transient
states, BLR is 2.5 times faster and requires 15 times less
operations than the standard factorization. The observed
complexity of the iterative solvers is between square and
linear with the combination of conjugate gradient and
Jacobi preconditioning being the most efficient.

CPU costs for computing the transition rates and as-
sembling AB matrix are also reported in Fig. 4. They
are represented by the dotted line referred to as “Assem-
bly”. Asymptotically, the overhead cost grows linearly
with system size. It however remains larger than the
one taken by any iterative solver for all simulated sizes.
The preliminary calculation of transition rates is in fact
substantial and should certainly be optimized in future
KMC applications.

KSP methods for sparse symmetric linear system [45]
allow to solve first-passage problems over large volume,
with matrix sizes that could not be investigated before.
Note that implementing iterative KSP methods with the
original non symmetric matrix, for instance resorting to
generalized minimal residual method, increases the com-
putational cost by one-to-two orders of magnitude and re-
quires more memory by the same amount. The deteriora-
tion of efficiency results from the orthogonalization pro-
cedure that must be performed with respect to all Krylov
basis vectors. At variance, with symmetric matrices or-
thogonalization is performed with respect to the two last
vectors, omitting occasional re-orthogonalizations aiming
at preserving accuracy.

Further, we investigate the effect of scaling matrix B
on the condition number of AB , denoted by κ

(
AB
)
, and

on the accuracy of the direct solver (LDLT factorization
with MUMPS). The 1-norm of the obtained residual vec-
tors with respect to the absorbing rate matrix serves as
a measure of accuracy. The 1-norms and condition num-
bers are evaluated for a series of temperatures ranging
from 160 K to 600 K and are displayed in Fig. 5 wherein
∆ stands for Diag(A)−1 and B is set to I or ∆. We no-
tice that the latter scaling variant improves mainly the
numerical accuracy for mean first-passage time calcula-
tions. Besides, it systematically yields the lowest condi-
tion numbers κ

(
AB
)
. Note that the direct solver fails

below 180 K, compared to 250 K for the best iterative
solver (conjugate gradient). When the solvers fail to con-
verge, the probability flux is not preserved and negative
times may even be returned. As Wales et al. [27, 40], we
believe that this issue is due to round-off errors and too
large differences between the diagonal and non-diagonal
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FIG. 5: Effect of scaling matrix B on accuracy of residence
and first-passage time calculations. The residual norms and
condition numbers are displayed for two setups: B equal to
I and ∆ = Diag(A)−1. The corresponding mean-first pas-

sage times, evaluated from πT τ (N) and θT~1, are displayed
for comparison. Note that ‖~1‖1 = N and ‖π‖1 = 1.

elements. For stiff problems, like the one involving the
diffusivity of Mn-clusters in IV, path factorization is to
be implemented to guarantee that the special structure
of the transition matrix is preserved during eliminations.

Another advantage of performing the factorization is
that additional solutions can be obtained at a much
smaller cost using forward/backward substitution. The
factorization can be reused to compute mean residence
times over each site given any new initial conditions or to
generate first-passage times directly from the exact dis-
tribution through randomization. To validate the latter
time randomization procedure, we show that it is pos-
sible to reconstruct the survival probability distribution
from a sample of first-passage times.

C. Survival probabilities and spectral truncation

Equation (22) yields the survival probabilities at time
t with respect to the set of initial distributions {ei}i≤N .
For the particular initial distribution π, the probabil-
ity becomes S(t) = πTps(t). Defining and plugging the
scalar product αh =

∑
i≤N πia

h
i into the survival proba-

bility yields

S(t) =

N∑

h=1

αh exp [−λht] . (37)
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Considering the vacancy emission problem again, we
entirely solved the eigenvalue problem for a small system
containing 236 transient states and 13 immobile vacan-
cies in the central cavity of radius 4.04 Å. The protective
sphere radius is 10.1 Å. The default dense solver from
Lapack library was used. The survival probability and
the distribution of first-passage log-times are reported in
Fig. 6 for reference. We next run Algorithm 1 and 2 of
Appendix A to make the factorization of BA and Algo-
rithm 3 to generate a sample of 105 first-passage time
to the protective sphere. The survival probability distri-
bution reconstructed from the generated sample of first-
passage times is reported in Fig. 6. It perfectly matches
with the reference distribution obtained from (37), which
validates the time randomization approach.

Interestingly, a perfect agreement is also observed
when the survival probability is evaluated retaining
only the lowest eigenvalue associated with the quasi-
stationary distribution. This suggests that it is possible
to truncate the spectral decomposition above a certain
threshold and approximate the survival probability re-
taining the k first terms:

Sk(t) =
k∑

h=1

αh exp [−λht] . (38)

The truncation error can be directly quantified at time
t = 0 since we know that S(0) = 1. The time-integral of
the error can also be quantified from the ratio

Tk =

∑k
h=1 αh/λh∑N
h=1 αh/λh

, (39)

where the denominator formally corresponds to the mean
first-passage time πT τ (N) and is thus rather computed
from a linear solve.

For the large considered systems, the k lowest eigen-
values and their associated eigenvectors are efficiently
extracted by performing reverse iterations using the
KrylovSchur method [47, 48] and the factored matrix.
This amounts to extracting the largest eigenvalues of the
inverse matrix. Calculations are performed using SLEPc
software [49, 50]. We investigate the effect of truncating
the spectral decomposition on two computational setups:
(i) the emission of a single vacancy from a cavity of ra-
dius 20.7 Å to a protective sphere of radius 101 Å (same
conditions as in Fig. 2 and 3) and (ii) the absorption by
the cavity of a single vacancy initially located at a dis-
tance of 57.13 Å from cavity center in [110] direction. In
setup (ii), there is no protective sphere and the cell is pe-
riodically replicated along 〈100〉 directions with periodic-
ity length 80.8 Å. The absorbing macro-state is reached
whenever the hopping vacancy becomes connected to the
cavity. Setup (ii) entails 34801 transient states compared
to 259320 for setup (i).

The survival probabilities and first-passage distribu-
tions are reported for various truncation threshold in
Figs. 7 and 8. We observe that the trapping kinetics is
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FIG. 6: Emission of a single vacancy from cavity (4.04 Å ra-
dius) to protective sphere (10.1 Å radius). The survival prob-
abilities (left axis) and first-passage distributions (right axis)
are evaluated from the quasi-stationary distribution (Lowest
Eigenvalue), the exact distribution (Full Spectrum) and ran-
domization (Factorization). Time is given in unit of mean
first-passage time (mfpt).

governed by the quasi-stationary distribution [41] for the
vacancy emission process, and for the vacancy absorp-
tion at times larger than the mean first-passage time. At
short times, a substantial portion of 10% of the decaying
exponentials needs to be included to faithfully reproduce
the early stages of the absorption kinetics.

To rationalize this trend, the convergence of the trun-
cated and reduced quantities Tk and Sk(0) are displayed
in panel (a) and (b) of Fig. 9, respectively. We observe
that truncation errors are lower in the estimation of the
mean first-passage time than of the initial survival prob-
ability. Convergence is non monotonous and proceeds by
plateaus, suggesting the predominance of specific modes.
To evidence them, scatter plots of computed eigenval-
ues and associated αk factors are shown in Fig. 10. We
indeed observe that many more modes with large eigen-
values contribute in the absorption problem compared to
the emission one. Furthermore, the large spectral gap be-
tween λ1 and λ2 explains the fast time-decay of the trun-
cation error on the survival probability. At times larger
than the mean-first passage time, the quasi-stationary
distribution is reached. The early stage absorption ki-
netics is the most problematic to compute from spectral
decomposition because many modes contribute. In this
situation, we observe that it is far more efficient to com-
pute the probability vector πTt = πT0 exp[−At] at a given
time t using a krylov subspace method [51] for evaluating
the application of a vector on a matrix function. Here, we
applied the scaled initial probability to the exponential
of −tAI and then reverted the scaling as follows:

πt =
{

exp
[
−tAI

]
(π0 � r)

}
� r (40)

This method however becomes less efficient than the
truncated eigenvalue decomposition method as time in-
creases. At half the mean first-passage time of the ab-
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FIG. 8: Absorption of a single vacancy by the cavity (20.5
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FIG. 9: Effect of retaining the k lowest modes for approxi-
mating the reduced mean first-passage time Tk [panel (a)] and
the initial survival probability [panel (b)].

sorption kinetics, the QSD already yields an excellent ap-
proximation. This one is less efficiently extracted using
the forward iterations of Ref. [51] than reverse iterations
within Krylov-Schur method. The open question to ad-
dress is how to combine both approaches optimally.

Note that the absorption kinetics is paradoxically eas-
ier to simulate using KMC simulations because the ener-
getic basin of attraction is precisely the absorbing sink.
Extensive KMC simulations have been performed for the
present absorption problem in Ref [37] for calculating
sink strengths of various cavities and dislocations.

IV. DIFFUSION OF MN-V CLUSTERS IN
α-IRON

In this second application, we illustrate how path fac-
torization can be implemented in kinetic Monte Carlo
simulations to compute diffusion coefficients in FeMn sys-
tem and how additional simulation speedups can be ob-
tained by storing and efficiently retrieving the factoriza-
tions in hash tables. Simulation aims at computing the
diffusivity of small Mn clusters. The enhanced mobility
of solute clusters impacts the early stage of phase separa-
tion kinetics in quenched alloys [52], and is also suspected
to be responsible for the anomalous incubation times ob-
served in some Aluminium commercial alloys [53].

The simulation box contains 103 unit cells with two
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FIG. 10: Absolute values of αk contributing coefficients dis-
played as a function of the eigenvalues scaled relatively to the
lowest eigenvalue λ1.

nodes per cell. The crystalline structure is body centered
cubic and periodic boundary conditions are used. Inter-
action energies of Fe and Mn atoms and vacancies have
been deduced from electronic structure calculations and
are given in Ref. [54, 55]. Below 700 K, Mn atoms tend
to form a single cluster that rarely dissociates during the
simulations. This is due to their thermodynamic stabil-
ity and to the high emission barriers. The two following
algorithms are implemented and tested:

• The standard kinetic Monte Carlo algorithm de-
noted by KMC: At each cycle, a single vacancy
transitions to one of its nearest neighbour sites, i.e.
exchanges with a nearest neighbour atom. Time
is incremented by the mean residence time on the
previously occupied site;

• The factorized KMC algorithm denoted by F-
KMC: The vacancy makes a non-local transition
and escapes the trapping basin based on the path
factorization algorithm. The set of transient states
(the trap) encompasses the initial vacancy state
and all states that can be reached via vacancy-
Mn exchanges exclusively. The physical time is in-
creased by the mean first passage time associated
with the non-local escaping transition. It corre-

sponds to the kinetic path sampling algorithm of
Ref. [22].

Because a single vacancy is used in simulations, the time
for performing a transition does not need to be drawn
in its first-passage distribution and its expected value
is used. This amounts to performing conditioning over
time [56] and aims at reducing the statistical variance of
the estimated diffusion coefficients. We consider here the
diffusion coefficient of solute Mn atoms, defined as the
three-dimensional average of half the time derivative of
the mean square displacement (MSD)

D(X,T ) =
1

6
lim
t→∞

d

dt
〈‖x̂(t)− x̂(0)‖2〉 (41)

where X is the number of Mn atoms, T is temperature
and x̂(t) is the solute displacement vector at time t. With
non-local events and conditioning performed over time,
the time variable is replaced by the product of `, the

number of involved jumps, and τ̂L = 1
L

∑L
h=1 τh, the

mean first-passage time averaged over a sample of size
L generated using KMC or F-KMC. The solute diffusion
coefficient is then estimated resorting to the following
estimator

D̂L
` =

1
L−`

∑L−`
h=1 ‖x̂h+` − x̂h‖2

6`τ̂L
(42)

where x̂`+h is the solute displacement vector after `+ h
jumps.

Simulations are carried out for temperatures T rang-
ing from 300 K to 1200 K and numbers X of Mn atoms
increasing from 1 to 60. For each (X,T ) pair, a series of
ten runs of eight hours are performed using a Gold-6140
Intel Xeon processor running at 2.30 GHz. The com-
puted diffusion coefficients and their average over the 10
runs are displayed in Fig. 11. For better visualization,
a rescaling has been done using the high temperature
activation energy for Mn monomer diffusion (X = 1)
at 600 K. The diffusivity of V-MnX clusters increases
with increasing X before tapering off for all temperatures
lower than 800 K. Furthermore, the diffusivity maximum
increases with temperature, suggesting the presence of a
maximum at Mn content that could not be simulated. A
similar increase trend has been reported in FeCu system
using standard KMC simulations (see Fig.9 in Ref. [57]),
although the temperature dependence of the maximum
could not be investigated due to a severe vacancy trap-
ping in Cu clusters.

With increasing Mn content, F-KMC simulations
failed to converge. This is because path factorization
becomes too costly. Besides, at the lower temperatures,
the system gets trapped in super-basins containing sev-
eral vacancy-cluster shapes. To understand the limita-
tions of the current F-KMC algorithm and quantify the
potential speedups of future developments, we tested two
additional features in F-KMC algorithm, namely

• A dictionary-enhanced version denoted by FD-
KMC: Hash tables are used to store computed data
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about cluster shapes and factorizations. The goal
is to retrieve the stored information when needed
to avoid performing the same factorizations many
times. This algorithm is described in chapters 5
and 6 of Ref. [58].

• A graph-enhanced version denoted by FDG-KMC:
The nodes of the graph correspond to the clus-
ter keys that have been added to the dictionary.
The edges of the graph correspond to the previ-
ously encountered non-local transitions. The goal
is to save computational resources by making tran-
sitions from one cluster shape to another one in the
graph without recalculating the cluster key. This
algorithm is described in chapter 7 of Ref. [58].

Simulations at 600 K with increasing Mn cluster sizes
have been performed using the four algorithms and their
relative efficiencies are displayed in Fig. 12. The effi-
ciency of KMC algorithm relative to F-KMC is observed
to decrease with increasing Mn content. This trend al-
ready reported in [22] for FeCu is attributed to the in-
crease of vacancy trapping with cluster size. The ob-
served increase of FD-KMC efficiency with increasing Mn
content is explained by the concomitant increase in fac-
torization costs: it is more and more advantageous to
store and retrieve the factored matrices, as their sizes
and computational costs increase. When cluster sizes
exceed 40, it is also beneficial to connect the various
clusters resorting to a graph using FGD-KMC algorithm.
This trend results from the fact that the kinetics repeat-
edly visit a few cluster shapes, as observed in FeCu sys-
tem [22]. These simulations show that the use of hash
tables and graphs are also beneficial for KMC simula-
tions on a rigid lattices. A point left for future develop-
ments involves the optimal deallocation of entries rarely
looked up whenever the dictionary memory reaches a
given threshold.

V. DISCUSSION AND CONCLUSION

To summarize, the theory of absorbing Markov chains
is applied to characterize rare events occurring when the
diffusion process is trapped within a finite set of states.
The initial probability distribution corresponding to the
trapped system acts as an emitting source while the pe-
ripheral states of the trap become an artificial absorbing
sink. In this framework, the theory yields formal expres-
sions for the transient evolution operator, the source-to-
sink probability fluxes and the mean residence times on
transient states. Whenever the original non-absorbing
diffusion process is reversible, we show that the associ-
ated first-passage problem can be greatly simplified. The
absorbing process then inherits a reversibility property
that is conditional on that the dynamics has not reached
the absorbing state. It transiently satisfies Kolmogorov’s
criterion: the probability of any circular sequence of tran-
sient states is equal to that of the time-reversed sequence,
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even though probability currents are nonzero. This con-
ditional reversibility entails in particular that the absorb-
ing transition rate matrix is similar to a symmetric defi-
nite negative matrix and that the transformation matrix
exhibits a simple diagonal form.

To compute mean first-passage times, exit probabilities
and source-to-sink probability fluxes in relatively small
problems, with less than 103 transient states, we imple-
mented the path factorization technique. This technique
corresponds to a direct and robust method for solving lin-
ear problems based on Gaussian elimination. Its robust-
ness stems from the preservation of the transition rate
property during the graph transformation [27, 40], i.e.
the rank-one updates. Besides, by interpreting the fac-
torization in terms of paths, a randomization procedure
is formulated enabling first-passage times and exits to be
drawn directly from the exact distributions. The acceler-
ation in KMC simulations employing path factorization
is substantial and makes it possible to compute the mo-
bility of kinetically stable Mn clusters in iron down to the
operating temperatures of pressurized reactors/vessels.

Characterizing the transient distribution associated
with any absorbing processes is also an important prob-
lem to solve, as no-passage distributions serve to syn-
chronize defects evolving in parallel within first-passage
KMC simulations [33–35]. Evaluating the distribution
requires the knowledge of both eigenvalues and eigenvec-
tors of a symmetric positive definite matrix. In practical
applications, we observe that the evolution on transient
state is governed only by a fraction of the eigenspec-
trum. The most contributing mode is the one possessing
the lowest eigenvalue, and its eigvenvector corresponds to
the quasi-stationary distribution. For the studied emis-
sion problem, which exhibits a strong energetic trap-
ping, the quasi-stationary distribution overwhelmingly
predominates and correctly describes the transient evo-
lution. For the absorption problem where trapping is es-
sentially entropic, a small but substantial fraction of the
slow modes are observed to contribute to the no-passage
distribution and to govern the slow decay of the survival

probability. For problems with more than 104 transient
states, the transition rate matrix becomes sparse and it-
erative solvers are to be used to evaluate the eigenval-
ues and their contributions to no-passage distributions
on the fly. We advocate to perform reverse iterations
for extracting eigenvalues in ascending order. This can
be achieved by iteratively applying the inverted matrix
resorting to the LDLT factorization, which amounts to
extracting the largest eigenvalues of the inverted matrix.
For very large trap sizes, we show that resorting to a di-
rect multi-frontal LDLT solver (possibly combined with
block low-rank compression) makes it possible to perform
sink strength calculations for the absorption of a vacancy
from a cavity and also to compute vacancy emission rates
from the cavity. Computations can be done using mil-
lions of transient states per processor, allowing us to in-
vestigate realistic cavity concentrations in irradiated or
quenched Aluminum.

To conclude, symmetrizing the transition rate ma-
trix associated with reversible diffusion processes en-
ables one to apply efficient linear and eigenvalue solvers
and to characterize the important rare events govern-
ing the long-term microstructural evolution of alloys,
such as cluster mobilities, sink strengths and associated
first-passage distributions. All these physical quantities
are crucial input parameters for larger-scale simulations
employing object/event KMC methods or rate equation
cluster dynamics. The dependence of cluster mobilities
on their size and temperature can possibly be included
in larger scale models.
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Appendix A: Algorithmic implementation

1. Path factorization

Algorithm 1 is used to compute transition rates, to
discriminate transient and absorbing states and to as-
semble the associated transition sub-matrices. Then, al-
gorithm 2 is used to make the path factorization. Note
that the characterization of transition rates and tran-
sient states can be done on the fly in algorithm 2. This
requires a selection rule for next transient state based
on the transformed transition probabilities, as done in
Ref. [22] for simulating the anomalous diffusion of a de-
fect on a disordered substrate.

Algorithm 1 Assembly of transition sub-matrices.

1: N ← 1; N tot ← 1;
2: initial transient state is indexed 1; i← N ;
3: while i ≤ N do
4: list the Zi possible transitions of Si;
5: for ` = 1, · · · , Zi do
6: evaluate key for final state associated with `-th

transition;
7: if new key then
8: N tot ← N tot + 1; j ← N tot;
9: add key and its state index j to dictionary;

10: if state transient then
11: N ← N + 1 ;
12: end if
13: else . key exists
14: retrieve state index j of existing key;
15: end if
16: evaluate Kij , transition rate from Si to Sj ; . for

`-th listed transition
17: end for
18: i← i+ 1
19: end while
20: re-order transient states from 1 to N and absorbing states

from N + 1 to N tot;
21: construct τ (0), P(0) and absorbing transient rate matrix

AB from K;

2. Spacetime randomization

At the Nth rank-one update, stochastic probability
matrix P(N) subsumes all possible transitions involving
the deleted states in the trapping basin E = {1, · · · , N}.
Although any intermediate matrix P(n) with n ∈ E can
be used to randomly generate escapes from any state
i ∈ E, a trajectory generated using P(N) is the sim-
plest containing a single transition. On the other end,
reverting back to a standard KMC simulation based on
P(0), a detailed escape trajectory that accounts for all
transitions within E can be generated. Remarkably, it

https://epubs.siam.org/doi/abs/10.1137/1.9780898718003.ch6
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003.ch6
https://epubs.siam.org/doi/abs/10.1137/1.9781611970739.ch6
https://epubs.siam.org/doi/abs/10.1137/1.9781611970739.ch6
https://hal-cea.archives-ouvertes.fr/tel-01851686
https://hal-cea.archives-ouvertes.fr/tel-01851686
oai:DiVA.org:kth-239920
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Algorithm 2 path factorization [22] adapted from
graph transformation [27] and an early version [19].

1: construct P(0) and τ (0);
2: if flux enabled then
3: θ(0) = τ (0) � π;
4: end if
5: for n from 1 to N do
6: if adaptation enabled then
7: select new transient state and label it n
8: re-order P(n), τ (n) and possibly θ(n) ;
9: end if

10: compute P(n) by performing rank-one update of
P(n−1);

11: compute τ (n) by performing rank-one update of
τ (n−1);

12: if flux enable then
13: compute θ(n) by performing rank-one update of

θ(n−1);
14: end if
15: end for
16: if flux calculation enabled then
17: compute fluxes from θ(n)

18: end if

is possible to efficiently construct statistically correct es-
cape trajectories without ever performing any detailed
(and inefficient) KMC simulation. Space-time random-
ization is based from the set of conditional probabilities
defined for all i and for j > n

R
(n)
ij = P

(n−1)
ij /P

(n)
ij . (A1)

A particular R
(n)
ij yields the probability that an nth order

transition from i to j > n avoids site n when decomposed
in term of (n−1)th order transitions. Prior to describing
space-time randomization, the following preliminary def-
initions are required. The binomial law of trial number
h ∈ N and success probability r is denoted by B(h, r).

The probability of s successes is
(
h
s

)
rs(1 − r)h−s. The

negative binomial law of success number h and success
(escape) probability 1 − p is denoted by NB (h, 1− p).
The probability of f failures before the h-th success is(
f+h−1
f

)
pf (1− p)h where p is the failure or flicker proba-

bility (flickers will correspond to round-trips from a given
state). The gamma law of shape parameter h and time-
scale τ is denoted by j(h, τ). Cα denotes the categorical
laws whose probability vector is the α-th row of P(N) if
α ≤ N or of the stochastic matrix obtained from P(0).
The symbol ∼ means “is a random variate distributed
according to the law that follows”. Let A denote the set
of absorbing peripheral states. The set of states beyond
the peripheral states (that are non transient and non ab-
sorbing) is A ∪ E, the complementary of the union of A
and E. State α denote the current state of the system.

After implementation of Algorithm 3, the system has
moved beyond the peripheral set and is disconnected to
the trapping basin reached: the current state α belongs

to E ∪ A in item (6). The gamma law j
(
Tn, τ

(0)
n

)
in (23)

Algorithm 3 Kinetic path sampling [22]: subset
E = {1, · · · , N} encompasses the transient states and

subset A = {N + 1, · · · , Ntot} includes absorbing
peripheral states; system is initially in state α ∈ E ∪ A
1: define Nc ×Nc hoping matrix H(N) and set its entries to

zero;
2: while α ∈ A ∪ E do
3: draw j ∝ Cα;

4: increment H
(N)
α,j by one;

5: α← j; . move current state α to j
6: end while . α ∈ A ∪ E
7: for n = N to 1: do
8: evaluate P(n−1) ;
9: deallocate P(n) ;

10: for i ∈ {E ∪ A} \ {n} and j ∈ {n+ 1, ..., Nc} do

11: evaluate R
(n)
ij = P

(n−1)
ij /P

(n)
ij

12: draw H
(n−1)
ij ∼ B

(
H

(n)
ij , R

(n)
ij

)
13: end for
14: for i ∈ {E ∪ A} \ {n} do . count new hops from i to

n:
15: H

(n−1)
in =

∑
j∈{n+1,...,Nc}H

(n)
ij −H

(n−1)
ij

16: end for
17: for j ∈ {n+ 1, ..., Nc} do . count hops from n to j

18: H
(n−1)
nj = H

(n)
nj +

∑
i∈E\{n}H

(n)
ij −H

(n−1)
ij

19: end for
20: hn =

∑
j∈{n+1,...,Nc}H

(n−1)
nj . count hop number

from n,

21: H
(n−1)
nn ∼ NB

(
hn, 1− P (n−1)

nn

)
. draw flicker number

22: Tn = hn +H
(n−1)
nn . evaluate hop number from n,

23: θ̃n ∼ j
(
Tn, τ

(0)
n

)
. convert to residence time in n,

24: deallocate H(n) and R(n);
25: end for
26: evaluate first-passage time τ̃ (N) =

∑
`∈E∪A θ̃` associated

with the path generated in (2);

27: increment the physical time t by τ̃ (N).

simulates the time elapsed after performing Tn consecu-

tive Poisson processes of rate 1/τ
(0)
n . Indeed, after any

hop or flicker performed with P(0), the physical time
must be incremented by a residence time drawn in the

exponential distribution of time-scale τ
(0)
n . Note that al-

gorithm (3) generalizes of the time randomization pro-
cedure proposed by Mason and coworkers [59] for the
second-order residence time algorithm [19].

In practice, several transitions exiting E are typically
recorded in the hopping matrix. As a result, the elapsed
physical time is generated for several escaping trajecto-
ries simultaneously. The generated path may also return
to the same trap several times prior to reaching another
trap. In practice, the current path factorization is re-used
as many times as necessary.
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Appendix B: Reformulation of path factorization

1. LU decomposition

We herein establish the connection between rank-one
updates of Sec. II J and the Gauss-Jordan elimination
method on the scaled transition rate matrix BA. Scaling
matrix B is set to τI or Diag(A)−1 where τ = min(1/Aii :
1 ≤ i ≤ N).

More precisely, we show that path factorization entails
decomposition BA = L+DU+ when the initial stochas-
tic matrix P(0) is set to I−BA. Matrix D is diagonal and

its diagonal elements Dnn are equal to 1 − P (n−1)
nn , the

escape probability from state n. The quantity P
(n−1)
nn is

the probability of a round-trip from the same state. We
next define three matrices L+

ij , U
−
ij and U+

ij whose en-
tries are initially set to zero. At the nth update, the nth
columns L+

in and U−in are filled by setting

L+
in =





P
(n−1)
in − Iin
P

(n−1)
nn − 1

if i ≥ n

0, if i < n

, (B1)

U−in =

{
Iin if i ≥ n
P

(n−1)
in if i < n

(B2)

The nth row U+
nj is filled as

U+
nj =

P
(n−1)
nj − Inj
P

(n−1)
nn − 1

. (B3)

We have

L+
in − U−inD−1

nn = − P
(n−1)
in

1− P (n−1)
nn

, (B4)

DnnU
+
nj = P

(n−1)
nj − Inj . (B5)

Since P
(n−1)
ij = 0 for j ≤ n−1, matrix U+ remains upper

triangular after the nth row addition. The nth rank-
one update of Sec. II J amounts to constructing P(n) as
follows:

P
(n)
ij = P

(n−1)
ij +

(
L+
in − U−inD−1

nn

)
DnnU

+
nj , (B6)

where P
(n)
ij = 0 for j ≤ n, as required. This property

holds by induction up to n = N . Recall that the prob-
abilities of transitions from i to j (j > n) subsume the
canceled probability of all possible transitions from i to n.
This ensures that the transformed matrices P(n) remain
stochastic.

Summing relation (B6) from n = i to n = N when
i ≤ N yields the relation

P
(N)
ij = P

(i−1)
ij + L+

iiDiiU
+
ij −

N∑

n=i

U−inU
+
nj , (B7)

= Iij −
N∑

n=i

U−inU
+
nj , (B8)

where we substituted Iij for P
(i−1)
ij +L+

iiDiiU
+
ij . Let U+

and U− denote the N ×N upper triangular submatrices
obtained by restricting U+

ij and U−ij to the trapping states

i, j ≤ N . Since P
(N)
ij = 0 for i, j ≤ N , we obtain

I = U−U+, (B9)

recalling that I is the N × N identity matrix. Rela-
tion (B9) entails that U− is the inverse of U+. Summing
relation (B6) from ` = 1 to ` = i− 1 yields the relation

P
(i)
ij = P

(0)
ij +

i∑

n=1

L+
inDnnU

+
nj − U−ii U+

ij .

Since P
(i)
ij = Iij −U−ii U+

ij , we obtain the following factor-
ization

i∑

n=1

L+
inDnnU

+
nj = Iij − P (0)

ij = BiiAij .

We eventually obtain the decomposition of the N ×
N scaled rate matrix BA into the product of a
lower triangular matrix, a diagonal matrix D =
diag(D11, D22, · · · , DNN ) and an upper triangular ma-
trix:

BA = L+DU+. (B10)

Matrix U− being the inverse of U+, inverting A from the
factorization still requires inverting the lower triangular
matrix L+. Let L− denote the inverse of L+. D being
diagonal and positive definite, its inverse, denoted below
by D−1, exists. Matrices L± can be written as products
involving the following elementary matrices

L±n = I±
∑

i 6=n

eiLinen. (B11)

We have in particular L+ = L+
1 L+

2 · · ·L+
N and L− =

L−NL−N−1 · · ·L−1 . From the matrix products above and

property L+
nL−n = I, we deduce that L+L− = I, hence

L− corresponds to the inverse of L+. The decomposition
of L− and U− into product of triangular elemental matri-
ces are used in the updating rule (32) to compute ~τ (N),
the vector of mean first-passage times. The sequential
procedure (32) amounts to applying vector b = B~1 on
matrices L−, D−1 and U−, successively:

b =
(
τ

(0)
1 , τ

(0)
2 · · · , τ (0)

N

)T

L−b =
(
τ

(0)
1 , τ

(1)
2 · · · , τ (N−1)

N

)T

D−1L−b =
(
τ

(1)
1 , τ

(2)
2 · · · , τ (N)

N

)T

U−D−1L−b =
(
τ

(N)
1 , τ

(N)
2 · · · , τ (N)

N

)T
.
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Replacing the product U−D−1L− by A−1B−1 in the
last equation yields the expected expression for the mean
first-passage time:

A−1~1 = τ (N).

As for time randomization (algorithm 3 of Ap-
pendix A), the information processed to evaluate the con-

ditional probabilities R
(n)
ij defined in (A1) can easily be

retrieved by resorting to (B6) and the stored entries of
L+, D, U+ and U−.

2. Cholesky decomposition

Whenever the underlying Markov process is reversible,
the symmetric positive definite matrix AB = SR−1ARS
can be defined, where diagonal matrix R is defined in (15)
from the equilibrium distribution ρ. Cholesky decompo-

sition can then be applied, yielding

AB = LBDLBT (B12)

where LB is a N×N lower triangular matrix with ones on
the diagonal. Since D, R and S commute, the absorbing
transition rate matrix writes

BA = (SR)LB(SR)−1D(SR)LBT (SR)−1 (B13)

Comparing to L+DU+ decomposition enables one to
identify the following relations

L+ = (SR)LB(SR)−1

U+ = (SR)LBT (SR)−1

We deduce that U+ = (SR)2L+T (SR)−2 and that the
inverse of L+ is L− = (SR)2U−T (SR)−2.
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