G. R. Keepin, Physics of Nuclear Kinetics, 1965.

A. Gandini, A generalized perturbation method for bilinear functional of the real and adjoint neutron fluxes, Journal of Nuclear Energy, vol.21, pp.755-765, 1967.

G. Rimpault, The ERANOS Code and Data System for Fast Reactor Neutronic Analyses, 2002.

C. Jean, Estimation of multi-group cross section covariance for 235 U, 238 U, p.239

. Pu, 241 Am, 56 Fe, 23 Na and 27 Al, 2012.

S. Okajima, T. Sakura, J. F. Lebrat, V. Z. Averlant, and M. Martini, « Summary on International Benchmark Experiments For Effective Delayed Neutron Fraction (? eff ), Progress in Nuclear Energy, vol.41, issue.1-4, pp.285-301, 2002.

A. Santamarina, The JEFF3.1.1 nuclear data library, JEFF Report, vol.22, 2009.
URL : https://hal.archives-ouvertes.fr/cea-02386210

. Zhong, Monte Carlo and deterministic computational methods for the calculation of the effective delayed neutron fraction, Computer Physics Communications, vol.184, 2013.

Y. K. Lee and F. X. Hugot, Calculation of the effective delayed neutron fraction by TRIPO-LI-4 code for IPEN/MB-01 Research reaction, 2011.

Y. Nauchi and T. Kameyama, Proposal of direct calculation of kinetic parameters ?eff and ? based on continuous energy Monte Carlo method, Journal of Nuclear Science and Technology, vol.42, pp.503-514, 2005.

B. C. Kiedrowsky, Adjoint Weighting for Continuous-Energy Monte Carlo radiation Transport, 2009.

G. Truchet, Continuous-Energy Adjoint Flux and Perturbation Calculation using the Iterated Fission Probability Method in Monte Carlo Code TRIPOLI-4 and Underlying Applications, SNA + MC 2013, p.3504, 2014.

G. Truchet, Computing adjoint weighted kinetics parameters in TRIPOLI-4 by the Iterated Fission Probability method, Annals of Nuclear Energy, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02387020