J. W. Lund, Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings, J. Tribol, vol.109, issue.1, pp.37-41, 1987.

C. J. Myers, Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings, J. Appl. Mech, vol.51, issue.2, pp.244-250, 1984.

E. L. Vorst, R. H. Fey, A. D. Kraker, and D. H. Campen, Steady-state behaviour of flexible rotordynamic systems with oil journal bearings, Nonlinear Dyn, vol.11, issue.3, pp.295-313, 1996.

T. Zheng and N. Hasebe, Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System, J. Appl. Mech, vol.67, issue.3, pp.485-495, 1999.

M. Giacopini, M. T. Fowell, D. Dini, and A. Strozzi, A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation, J. Tribol, vol.132, issue.4, pp.41702-041702, 2010.

I. Etsion, State of the Art in Laser Surface Texturing, J. Tribol, vol.127, issue.1, p.248, 2005.

D. B. Hamilton, J. A. Walowit, and C. M. Allen, A Theory of Lubrication by Microirregularities, J. Basic Eng, vol.88, issue.1, pp.177-185, 1966.

S. T. Tzeng and E. Saibel, Surface Roughness Effect on Slider Bearing Lubrication, E Trans, vol.10, issue.3, pp.334-348, 1967.

N. Patir and H. S. Cheng, An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication, J. Tribol, vol.100, issue.1, pp.12-17, 1978.

H. G. Elrod, A General Theory for Laminar Lubrication With Reynolds Roughness, J. Tribol, vol.101, issue.1, pp.8-14, 1979.

G. Bayada and J. B. Faure, A Double Scale Analysis Approach of the Reynolds Roughness Comments and Application to the Journal Bearing, J. Tribol, vol.111, issue.2, pp.323-330, 1989.

G. Bayada, S. Martin, and C. Vázquez, An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model, J. Tribol, vol.127, issue.4, pp.793-802, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00008082

A. Almqvist, E. K. Essel, L. Persson, and P. Wall, Homogenization of the unstationary incompressible Reynolds equation, Tribol. Int, vol.40, issue.9, pp.1344-1350, 2007.

A. Almqvist, J. Fabricius, and P. Wall, Homogenization of a Reynolds equation describing compressible flow, J. Math. Anal. Appl, vol.390, issue.2, pp.456-471, 2012.

A. De-kraker, R. A. Van-ostayen, and D. J. Rixen, Development of a texture averaged Reynolds equation, Tribol. Int, vol.43, issue.11, pp.2100-2109, 2010.

N. Tala-ighil, M. Fillon, and P. Maspeyrot, Effect of textured area on the performances of a hydrodynamic journal bearing, Tribol. Int, vol.44, issue.3, pp.211-219, 2011.

V. Brizmer and Y. Kligerman, A Laser Surface Textured Journal Bearing, J. Tribol, vol.134, issue.3, pp.31702-031702, 2012.

J. Ramesh and B. C. Majumdar, Stability of Rough Journal Bearings Using Nonlinear Transient Method, J. Tribol, vol.117, issue.4, pp.691-695, 1995.

R. Turaga, A. S. Sekhar, and B. C. Majumdar, Non-Linear Transient Stability Analysis of a Rigid Rotor Supported on Hydrodynamic Journal Bearings with Rough Surfaces, Tribol. Trans, vol.43, issue.3, pp.447-452, 2000.

J. Lin, Application of the Hopf bifurcation theory to limit cycle prediction of short journal bearings with isotropic roughness effects, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol, vol.221, issue.8, pp.869-879, 2007.

T. M. Cameron and J. H. Griffin, An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems, J. Appl. Mech, vol.56, issue.1, pp.149-154, 1989.
URL : https://hal.archives-ouvertes.fr/hal-01333697

E. Sarrouy and F. Thouverez, Global search of non-linear systems periodic solutions: A rotordynamics application, Mech. Syst. Signal Process, vol.24, issue.6, pp.1799-1813, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00623621

A. Grolet and F. Thouverez, Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases, Mech. Syst. Signal Process, pp.529-547, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02121532

S. Nacivet, C. Pierre, F. Thouverez, and L. Jezequel, A dynamic Lagrangian frequencytime method for the vibration of dry-friction-damped systems, J. Sound Vib, vol.265, issue.1, pp.201-219, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01635272

H. G. Elrod, A Cavitation Algorithm, J. Tribol, vol.103, issue.3, pp.350-354, 1981.

D. Childs, H. Moes, and H. Van-leeuwen, Journal Bearing Impedance Descriptions for Rotordynamic Applications, J. Lubr. Technol, vol.99, issue.2, pp.198-210, 1977.

E. S. Zorzi and H. D. Nelson, Finite Element Simulation of Rotor-Bearing Systems With Internal Damping, J. Eng. Power, vol.99, issue.1, pp.71-76, 1977.

L. Peletan, S. Baguet, M. Torkhani, and G. Jacquet-richardet, A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics, Nonlinear Dyn, vol.72, issue.3, pp.671-682, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00813265

A. H. Nayfeh, Applied nonlinear dynamics: analytical, computational, and experimental methods, 1995.