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ABSTRACT 
A dynamic model of a rotating shaft on two textured hydrodynamic bearings is 

presented. The hydrodynamic mean pressure is computed using multi-scale 
periodic homogenization and is projected on a flexible shaft with internal damping. 
The steady state solutions of an unbalance response are analysed with two 
sinusoidal texturing patterns. The stability zone and the amplitude of limit cycle are 
presented. The harmonic balance method applied to the monolithic resolution of the 
fluid structure coupling is efficient and allows parametric studies of stability. 
 
Keywords: Textured bearings, Multi-scale homogenization, Non-linear rotor 
dynamics 

1 INTRODUCTION 

Advanced rotating machineries, using small rotors or working at high rotating 
speeds, require a complete control of the vibration components. Lubrication 
systems, such as hydrodynamic journal bearings play a crucial role in the 
dynamical behaviour of the whole machinery and have a significant influence on 
structures vibrations. Predictions of the shaft vibrations are complex due to the 
nonlinear behaviour of the hydrodynamic bearing. Dynamic coefficients of bearings 
([1]) are widely used for computing the stability of equilibrium points. 
Nevertheless, they do not take into account non-linear effects of the bearings, that 
may lead to unstable motion ([2], [3], [4]). 
Furthermore, cavitation in the lubricant appears and changes drastically the 
pressure distribution. Several cavitation models could be retained leading in most 
cases to different behaviours. The recent adaptation of the Reynolds cavitation 
model ([4]) and the Jacobson-Floberg-Olsson ([5]) to a linear complementary 
problem is straightforward and efficient. 
Besides, recent improvements in surface texturing have shown several 
enhancements in hydrodynamic lubrication such as friction reduction or 
improvement of drag force ([6]). One of the first study suggesting that micro 
irregularities could improve the lubrication has been made almost 50 years ago by 
Hamilton ([7]). Several studies have been following in order to model the surface 
state influence with its statistical properties ([8], [9]). Among them Patir and 
Cheng introduced the idea of averaging the Reynolds equation by introducing the 
flow factors method. Elrod has been one of the first to apply the perturbation 
method with multiple-scale  analysis to Reynolds equation ([10]). The 
homogenization of Reynolds equation has been mathematically formalized by 
Bayada et al. with mass conservation model of cavitation ([11], [12]) and has also 
been developed recently in a transient form and a compressible form by Almqvist 
et al. ([13], [14]). In these models the assumptions of Reynolds equation need to 



be verified at the two different scales. Many works have been devoted to analyse 
the validity of the Reynolds equation in presence of surface texturing as reported 
De Kraker et al. in [15]. In their article they adapted the flow factor method with a 
local CFD computation. The improvement of the computing power also allowed 
several deterministic static study of the bearing ([16], [17]). However, to consider 
the surface effects in a numerical analysis a very fine mesh is needed leading to 
prohibitive computational time in a dynamic analysis. Homogenization techniques 
provide a rigorous way of averaging the influence of a periodic texturing pattern. 
One can study the influence of a micro scale texturing pattern on the macro scale 
with a relatively coarse mesh, and take into account the average pressure 
distribution and cavitation zone. Eventually, the mean pressure profile can be 
projected on the structure at each time step to study the dynamics of the shaft 
lubricated by two textured bearings. 
Effects of the texturing pattern on the dynamic behaviour of the system are not 
well known and need to be properly analysed. So far, few works have been devoted 
on the stability and transient analysis of the journal bearing with roughness effect 
([18],[19],[20]). The resulting dynamic system is complex and efficient motion 
studies must be used to allow parametric analysis of surface texturing influence. 
The Harmonic Balance Method (HBM) is an efficient tool for periodic solution 
research. To convert in the frequency domain complex nonlinearities such as 
hydrodynamic bearing resultant force the Alternate Frequency/Time domain 
method (AFT) is efficient and widely used in rotor dynamic systems ([21], [22], 
[23]). Moreover, the algebraic expression of the motion equation in the frequency 
domain allows substantial reduction of the problem to nonlinear degrees of freedom 
([24]).  
In this study we present a homogenized model taking into account a periodic 
texturing pattern on a rotating flexible shaft. A monolithic system is presented 

where mass conserving cavitation and surface texturing are taken into account in 
the finite hydrodynamic bearing model. The HBM/AFT method with interface 
reduction is used to study the vibration amplitude of the unbalance response and 
the stability of limit cycles. The particular cases of longitudinal and transverse 
sinusoidal texturing will be studied. 

2 FLUID FILM FORCE COMPUTATION WITH HOMOGENIZATION 
TECHNIQUE 

 
The Reynolds equation with mass conservation algorithm is often used in 
hydrodynamic lubrication in its isoviscous and unstationary form ([13], [14]): 
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In this equation 𝑝  is the pressure relative to the cavitation pressure, usually 

different from the ambient pressure, ℎ describes the film height, 𝜇  the lubricant 
viscosity, 𝑅  the shaft radius, 𝛺  the shaft rotating velocity. Like in the Elrod 

algorithm ([25]) the film is viewed as a mixture and 𝜃  represents the relative 

mixture density. The relative motion of the shaft is in the 𝑥  direction, and 𝑦 

represents the transverse direction to the flow.  
In order to take into account a small variation of amplitude, one can decompose 
the film height with the plain bearing height ℎ0 and the periodic local height due to 

the texturing pattern ℎ𝜉𝜁 

 
 ℎ(𝑥, 𝑦, 𝜉, 𝜁) = ℎ0(𝑥, 𝑦) + ℎ𝜉𝜁(𝜉, 𝜁) (1) 

 



Coming from the idea of separating the two different scales, the film height can be 
expressed 
 ℎ𝜖(𝑥, 𝑦) = ℎ (𝑥, 𝑦,

𝑥

𝜖
,
𝑦

𝜖
) (2) 

 
The main idea of multiple scales method relies on the asymptotic expansion of the 
solution 
 𝑝 = 𝑝0 + 𝜖𝑝1 + 𝜖2𝑝2 + ⋯  (3) 
   
With these assumptions the homogenized problem is to find the pressure 𝑝0 

solution to the homogenized problem. The expressions of the coefficients 𝐴𝑖𝑗 and 𝐵𝑖 

are available in the general case in several articles ([12], [13]). In this paper we 

make the assumptions that the film height can be decomposed in the following 
form: 
 
 ℎ(𝑥, 𝑦 , 𝑥𝜖, 𝑦𝜖) = ℎ1(𝜃, 𝑦, 𝜃𝜖) ℎ2(𝜃, 𝑦, 𝑦𝜖) (4) 
 
With these assumptions the coefficient expressions are available in [12] : 
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Where  ⋅ ̃ represents the average operator. The homogenized Reynolds equation in 

that case is 
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Table 1 – Homogenized factors for transverse and longitudinal sinusoidal 
texturing 

 Transverse Longitudinal 

ℎ_𝜖(𝑥, 𝑦, 𝑥𝜖, 𝑦𝜖) ℎ(𝑥, 𝑦) + ℎ𝑟 sin(𝑥𝜖) ℎ(𝑥, 𝑦) + ℎ𝑟 sin(𝑦𝜖) 
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In the case when only one surface is textured it is possible to simplify the problem 
to a stationary problem ([13]). The film height is also independent of which side is 
textured due to Reynolds hypothesis. In order to compute the mean pressure 
distribution the finite element method can be used ([5]). Moreover the problem can 
be written as a linear complementary problem ([4], [5]). The discretized problem 
can be written then 
 
 

{
ℍ(𝐱) �̅�    +  ℚ �̅� = 𝐟f(𝐱)

�̅�T �̅� = 0   ,    �̅� ≥ 0   ,       �̅� ≥ 0
 

(6) 

 
where  �̅�  represents the dimensionless discrete pressure vector and 𝐱  the shaft 

displacements vector.  



The dimensionless pressure is obtained with the following formula:  �̅� =
𝑝

12𝜇Ω (
𝑅

𝐶
)

2  

The boundary conditions in this study are only the atmospheric value of pressure at 
the bearing edge. As there is no supply groove, the rotating frame is even easier to 
program for the bearing pressure computation because the fluid grid is moving. 
Depending of the choice of the cavitation model (Reynolds or JFO), the matrix ℚ 

can be either the identity matrix ([4]) or the mass conservation matrix ([5]). 
The matrix ℍ and the vector ff are expressed: 
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𝑊𝑖  and 𝑁𝑓𝑗

 state for the test function and the interpolation function of the finite 

element method, respectively. However, the ℍ matrix and 𝐟f vector are non-linearly 

dependent of the shaft position. For each new position of the journal the matrix 
coefficient must be computed with the integration of the flow factors. In order to 
compute efficiently the matrix ℍ(𝐱) and the vector ff(𝐱) for each time step of the 

solver method, a polynomial development of the homogenized factor is used. The 
algorithm allows also the tilt of the shaft in the bearing. For example, one can write 
the average film height with a misaligned shaft in the pure squeeze rotating 
coordinates ([26]): 
 

ℎ =   1 + 𝑒1𝑦 cos(2𝜋𝑥) + 𝑒2(1 − 𝑦)cos (2𝜋𝑥) 
 
where 𝑒1 and 𝑒2 are the eccentricity of the two bearing edges.  

 

 
Figure 1 – Homogenized pressure profile with sinusoidal longitudinal 

pattern with 𝒉𝒓 = 𝟎. 𝟒 𝑪𝒓 with the bearing parameter of table 2 with tilted 

shaft the relative eccentricity 𝒆𝟏 = 𝟎. 𝟒, 𝒆𝟐 = 𝟎. 𝟏 

A polynomial approximation of 𝐴11(ℎ) at the order 3 is taken: 𝐴11(ℎ) = ∑ 𝛼𝑛ℎ𝑛3
𝑛=0  and 

𝐴22(ℎ) = ∑ 𝛽𝑛ℎ𝑛3
𝑛=0 . 

From the trinomial expansion we obtain: 
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Thus if we note 
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We have then  
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As the 10 matrices 𝑏𝑝𝑞  and 𝑑𝑝𝑞  are computed at the program initialization the 

assembly of the matrix ℍ𝑖𝑗 is efficient. The same idea is easily applied to assemble 

𝐟f.  
 

 
Figure 2 - Polynomial interpolation of flow factors for transverse texturing 
pattern 

3 A MONOLITHIC PROBLEM 

3.1 A Rotordynamic system of a shaft on two bearings 

The journal is modelled by a Timoshenko beam. A viscoelastic constitutive equation 
is taken ([27]): 
 𝜎 =  𝐸(𝜖 +  𝜂𝜖̇) (7) 
 
Where 𝜎 and 𝜖 are the main component of the stress tensor and the strain tensor in 

the beam neutral axis direction, respectively. Only the viscous damping is 
modelled, the hysteretic damping is taken equal to zero. The dynamic equation of a 
rotor with internal damping at constant rotating velocity is: 
 
 𝕄�̈� + [𝕂𝑏 + Ω𝔾]�̇� + [𝕂 + Ω𝕂𝑐]𝐱 =  𝐟d(Ω) + 𝐟s + 𝐟b (8) 
 
where 𝕄, 𝔾, 𝕂, 𝕂𝑏, 𝕂𝑐, 𝐟s, and 𝐟d, are the mass matrix, gyroscopic matrix, stiffness 

matrix, structural damping matrix, circulatory matrix, static load force vector, and 
unbalance force vector, respectively. The gyroscopic matrix 𝔾  arises from the 

rotating movement of the Timoshenko beam. The circulatory matrix comes from 
the elastic deformation of the rotating beam with the viscoelastic law ([27]). With 
the constitutive law (7) the damping matrix is directly related to the stiffness 
matrix: 𝕂𝑏 = 𝜂𝕂  . The discretised displacement vector 𝐱 is made of 4 degrees of 

freedom per node  ([27]). In order to project the fluid pressure on the structure 
one can express the virtual work of the bearings pressure on the shaft: 
 
 

𝛿𝑊 =  ∫ ∫ (cos(𝜃) 𝛿𝑢 + sin(𝜃) 𝛿𝑤)
2 𝜋

0

𝑝 𝑅 𝑑𝜃 
𝐿

0

𝑑𝑦 
(9) 

As the inertia forces are neglected in Reynolds equation the choice of the pressure 
grid can be made in the rotating frame ([26]).  



After discretization: 
 𝛿𝑊 = 𝛿𝐱Tℙ𝐩 (10) 
 
The matrix ℙ is constructed directly from the fluid interpolation functions and the 

structure test functions. 
 

 
Figure 3 - Rotor - bearing system configuration 

This allows taking into account the tilt of the shaft in the bearing. Hence, the 
dynamic system of equation of the system becomes 
 
 

{

𝕄�̈� + [𝕂𝑏 + Ω𝔾]�̇� + [𝕂 + Ω𝕂𝑐]𝐱 =  𝐟d(Ω) + 𝐟s + ℙ�̅�

ℍ(𝐱) �̅�    +  ℚ �̅� = 𝐟f(𝐱)

�̅�T �̅� = 0   ,    �̅� ≥ 0   ,       �̅� ≥ 0

  
(11) 

 

3.2 Application of the Harmonic Balance Method 

The HBM consists in a search of solution of the form of a truncated Fourier series: 
 
 

𝑥 = 𝑋0 +  ∑ Xnccos(𝑛𝜔𝑡) + 𝑋𝑛𝑠sin (𝑛𝜔𝑡)

𝑁ℎ

𝑛=1

  
(12) 

 
Introducing the following notations 
 
 𝑋 = [𝑋0 Xnc Xnc … Xnc XNhc]

𝑇
 

 
𝑇 = [𝐼 cos(𝜔𝑡) 𝐼  sin(𝜔𝑡) 𝐼  …   cos(𝑛𝜔𝑡) 𝐼    sin(𝑛𝜔𝑡) 𝐼 ]𝑇 

 

∇ = 𝑑𝑖𝑎𝑔(0𝑛×𝑛 ∇1 … ∇Nh
)    with   ∇k=  𝑘 [

0 𝐼
−𝐼 0

] 

(13) 

 
leads to the expression of the displacement, velocity and acceleration with the 
frequency domain unknowns vector: 
 
 𝑥 = 𝑇𝑋          �̇� = 𝜔 𝑇𝛻𝑋        �̈� = 𝜔𝑇𝛻2𝑋 (14) 
 
By replacing these expressions in (11) and after a projection on the trigonometric 
functions basis one obtain a new nonlinear system without any time dependence: 
 
 (𝜔2𝑁𝑀 + 𝜔𝑁𝐶 + 𝑁𝑘)𝑋 = 𝐹 + 𝐹𝑁𝐿(𝑋) (15) 
 
with 𝑁𝑀 = 𝑑𝑖𝑎𝑔(𝑀, … , 𝑀)  a block diagonal matrix of 2𝑁ℎ + 1  blocks,  𝑁𝐶  and 𝑁𝐾  are 

constructed identically with the matrices [𝕂𝑏 + Ω𝔾] and [𝕂 + Ω𝕂𝑐], respectively.  



The force F is composed by the static and dynamics load on their respective 
trigonometric projection.  
The 𝐹𝑁𝐿 represents the non-linear projection in the frequency domain. To compute 

this vector, the Alternate Frequency/Time domain has been used ([21]). From the 
frequency unknown vector 𝑋 , the position and velocity are constructed from 

equation (14). Then the fluid model allows us to compute the resulting force in the 
time domain from solving equation (8) and projecting the pressure with the 
projection matrix in (10). A Discrete Fourier Transform (DFT) of the resulting 
discrete time vector leads to the contribution of the non-linear force on each 
harmonic. This method can be resumed by the following scheme: 
 

                   
𝑋 → (𝑥, �̇�) → 𝑓𝑛𝑙(Ω, 𝑥, �̇�) → 𝐹𝑛𝑙(𝑋)   

 
A basic Newton-Raphson algorithm is used to solve the system (15). Once the 
solution 𝑋  the system (15) is found the velocity and displacement in the time 

domain are reconstructed with equations (14). Then, a stability analysis is 
performed. There are many ways to perform such an analysis with the HBM ([28]). 
In this paper we used the exponentials method to compute the monodromy matrix. 
The Floquet multipliers, i.e. the eigenvalue of the monodromy matrix are then used 
to analyse stability of the synchronous motion. An unstable limit cycle is 
characterized by at one Floquet multiplier with a complex modulus greater than 1 
([29]). 
 

  

 
Figure 4 - Neimark-Sacker and period-doubling bifurcation of limit cycles 
with shaft rotating speed variation for transverse texturing and period 

doubling bifurcation for longitudinal texturing pattern 𝒉𝒓 = 𝟎. 𝟓 𝑪𝒓  

4 NON-LINEAR RESPONSE TO MASS UNBALANCE 

For a given rotating speed one can consider the stability zone of the unbalance 
response. The parameters of the study are given in table 2. The only static load 
applied to the horizontal rotor is its weight. In that case a study of a perfectly 
balanced shaft leads to highly unstable motions. Van de Vorst et al. showed that for 
lightweight rotors the mass unbalance can achieve stability of the motion ([3]). 
Besides in the case where the cavitation pressure is sub-ambient, the full film 
lubrication can happen when the pressure is not low enough for the fluid to 
vaporize in the bearing. The Sommerfeld pressure profile is thus obtained and leads 
to highly unstable motions. Adding mass unbalance can solve the problem by 
forcing cavitation. Although the mass unbalance distribution stabilizes the system, 
it also increases the amplitude of stable vibration. The aim of this paper is to 
analyse the impact of surface texturing on the minimum mass unbalance to achieve 
stability.  
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Table 2 - Rotor-bearing parameters 

Shaft parameters Hydrodynamic bearings parameters 

Radius 𝑅 = 2.5 𝑚𝑚 Bearing length  𝐿𝑝 = 5 𝑚𝑚 

Young Modulus 𝐸 = 211 𝐺𝑃𝑎 Radial clearance  𝐶𝑟 = 10 𝜇𝑚 

Poisson coefficient 𝜈 = 0.3 Oil viscosity 𝜇 = 0.002 𝑃𝑎. 𝑠 

Density 𝜌𝑠 = 7800 𝑘𝑔/𝑚3 Cavitation pressure 𝑝𝑐𝑎𝑣 = − 1 𝑏𝑎𝑟 

Shaft length 𝐿𝑎 = 130 𝑚𝑚 Disks parameters 

Internal damping coef. 𝜂 = 2.10−7 Density 𝜌𝑑 = 2700 𝑘𝑔/𝑚3 

Coupling radial stiffness 8400 𝑁/𝑚 Radius 𝑅 = 7.5 𝑚𝑚 

Coupling angular stiffness 0.014 𝑁/° Length 𝐿𝐷 = 5 𝑚𝑚 

Rotating velocity range 2.500 − 3.000 𝑟𝑎𝑑/𝑠 ~23.900 − 28.600 𝑟𝑝𝑚 

 
We also focus on the minimum stable vibration amplitude that can be obtained with 
a certain texturing pattern. Numerical integration shows that the Neimark-Sacker 
and the flip bifurcation point seem to be subcritical. The minimum mass unbalance 

to achieve stability for a certain shaft rotating velocity is plotted on the figure 5. 
For computational time purpose, the Reynolds cavitation hypothesis has been used 
to solve Reynolds equation in that example. A straightforward dichotomy method 
has been used to find the Neimark-Sacker bifurcation point.  
The computation of Floquet multipliers shows that varying the mass unbalance 
parameter give rise to a generalized Hopf bifurcation or Neimark-Sacker bifurcation 
(figure 4) in the case of sinusoidal transverse texturing. In the case of sinusoidal 
longitudinal texturing as well as for plain bearings the parameters of the study give 
rise to a flip bifurcation. 

  
 

Figure 5 - Minimum mass unbalance for stable motion and vibration 
amplitude of the corresponding boundary stable system 𝒉𝒓 = 𝟎. 𝟓 𝑪𝒓 for each 

rotating speed 

For both systems the minimum unbalance decreases while the rotating speed 
increases. This means that the system can be unstable during the start-up and 
stabilise himself after a certain threshold speed. On the diagram we can notice that 
the minimum unbalance mass is slightly lower for transverse texturing. For 
example at 2500 rad/s the mass unbalance needed to stabilize the system with 
sinusoidal transverse texturing (hr = 0.5) is 10% lower than with the sinusoidal 

longitudinal texturing (hr = 0.5). However, if we pay attention to the vibration 
amplitude obtained with the boundary stable system we notice that the amplitude 
value with transverse texturing is 30% higher than with longitudinal texturing.   
Figure 6 shows the vibration amplitude with the limit unbalance for stable motion, 
for different amplitude of sinusoidal texturing patterns. The shaft rotating speed is 
2500 rad/s for all the simulation points. The diagram clearly shows the decrease of 
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vibration amplitude with longitudinal texturing patterns, while with transverse 
texturing patterns it significantly increases for ℎ𝑟 ≥ 0.1 𝐶𝑟  . Below this value we 

notice a significant variation of the minimum unbalance.  For transverse sinusoidal 
texturing pattern with ℎ𝑟 ≈ 0.1 𝐶𝑟 , both the decrease of the minimum unbalance and 

the vibration amplitude are achieved.   
 

 
 

Figure 6 – Vibration amplitude as a function of texturing pattern amplitude 
for transverse and longitudinal sinusoidal texturing at 2500 rad/s 

5 CONCLUSIONS 

This study is focused on the impact of textured bearing on small rotating shafts 
vibration. We have presented a powerful method to study the stability of the 
unbalance response on the system based on multi-scale homogenization of 
Reynolds equation. The monolithic resolution of the coupled system of equation is 
performed. The harmonic balance method gives fast and accurate results to study 
unbalance response and stability of limit cycles.  
We noticed that transverse texturing patterns lower the minimum mass unbalance 
needed for stability although it increases the vibration amplitude. On the opposite 
the longitudinal texturing pattern allows substantial reduction of the vibration 
amplitude. However it increases the minimum unbalance needed for stable motion.  
This study has been performed for one dimensional sinusoidal texturing of finite 
bearing. However, homogenized flow factor for arbitrary textured bearing could be 
computed and approximated by polynomials separately and added to the algorithm. 
Furthermore, the algorithm can be adapted for the averaged flow factors of De 
Kraker ([15]) to take into account recirculation of lubricant in the asperities. 
 
 
BIBLIOGRAPHY 
 
[1] J. W. Lund, “Review of the Concept of Dynamic Coefficients for Fluid Film Journal 

Bearings,” J. Tribol., vol. 109, no. 1, pp. 37–41, Jan. 1987. 

[2] C. J. Myers, “Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings,” 

J. Appl. Mech., vol. 51, no. 2, pp. 244–250, Jun. 1984. 

[3] E. L. B. V. D. Vorst, R. H. B. Fey, A. D. Kraker, and D. H. V. Campen, “Steady-state 

behaviour of flexible rotordynamic systems with oil journal bearings,” Nonlinear Dyn., vol. 

11, no. 3, pp. 295–313, Nov. 1996. 

[4] T. Zheng and N. Hasebe, “Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing 

System,” J. Appl. Mech., vol. 67, no. 3, pp. 485–495, Nov. 1999. 

[5] M. Giacopini, M. T. Fowell, D. Dini, and A. Strozzi, “A Mass-Conserving Complementarity 
Formulation to Study Lubricant Films in the Presence of Cavitation,” J. Tribol., vol. 132, 

no. 4, pp. 041702–041702, Sep. 2010. 

[6] I. Etsion, “State of the Art in Laser Surface Texturing,” J. Tribol., vol. 127, no. 1, p. 248, 

2005. 

Unstable 

Stable 



[7] D. B. Hamilton, J. A. Walowit, and C. M. Allen, “A Theory of Lubrication by 

Microirregularities,” J. Basic Eng., vol. 88, no. 1, pp. 177–185, Mar. 1966. 

[8] S. T. Tzeng and E. Saibel, “Surface Roughness Effect on Slider Bearing Lubrication,” E 

Trans., vol. 10, no. 3, pp. 334–348, Jan. 1967. 
[9] N. Patir and H. S. Cheng, “An Average Flow Model for Determining Effects of Three-

Dimensional Roughness on Partial Hydrodynamic Lubrication,” J. Tribol., vol. 100, no. 1, 

pp. 12–17, Jan. 1978. 

[10] H. G. Elrod, “A General Theory for Laminar Lubrication With Reynolds Roughness,” J. 

Tribol., vol. 101, no. 1, pp. 8–14, Jan. 1979. 

[11] G. Bayada and J. B. Faure, “A Double Scale Analysis Approach of the Reynolds Roughness 

Comments and Application to the Journal Bearing,” J. Tribol., vol. 111, no. 2, pp. 323–

330, Apr. 1989. 

[12] G. Bayada, S. Martin, and C. Vázquez, “An Average Flow Model of the Reynolds 

Roughness Including a Mass-Flow Preserving Cavitation Model,” J. Tribol., vol. 127, no. 4, 
pp. 793–802, May 2005. 

[13] A. Almqvist, E. K. Essel, L.-E. Persson, and P. Wall, “Homogenization of the unstationary 

incompressible Reynolds equation,” Tribol. Int., vol. 40, no. 9, pp. 1344–1350, Sep. 2007. 

[14] A. Almqvist, J. Fabricius, and P. Wall, “Homogenization of a Reynolds equation describing 

compressible flow,” J. Math. Anal. Appl., vol. 390, no. 2, pp. 456–471, 2012. 

[15] A. de Kraker, R. A. J. van Ostayen, and D. J. Rixen, “Development of a texture averaged 

Reynolds equation,” Tribol. Int., vol. 43, no. 11, pp. 2100–2109, Nov. 2010. 

[16] N. Tala-Ighil, M. Fillon, and P. Maspeyrot, “Effect of textured area on the performances of 

a hydrodynamic journal bearing,” Tribol. Int., vol. 44, no. 3, pp. 211–219, Mar. 2011. 
[17] V. Brizmer and Y. Kligerman, “A Laser Surface Textured Journal Bearing,” J. Tribol., vol. 

134, no. 3, pp. 031702–031702, Jun. 2012. 

[18] J. Ramesh and B. C. Majumdar, “Stability of Rough Journal Bearings Using Nonlinear 

Transient Method,” J. Tribol., vol. 117, no. 4, pp. 691–695, Oct. 1995. 

[19] R. Turaga, A. S. Sekhar, and B. C. Majumdar, “Non-Linear Transient Stability Analysis of a 

Rigid Rotor Supported on Hydrodynamic Journal Bearings with Rough Surfaces,” Tribol. 

Trans., vol. 43, no. 3, pp. 447–452, Jan. 2000. 

[20] J.-R. Lin, “Application of the Hopf bifurcation theory to limit cycle prediction of short 

journal bearings with isotropic roughness effects,” Proc. Inst. Mech. Eng. Part J J. Eng. 

Tribol., vol. 221, no. 8, pp. 869–879, 2007. 
[21] T. M. Cameron and J. H. Griffin, “An Alternating Frequency/Time Domain Method for 

Calculating the Steady-State Response of Nonlinear Dynamic Systems,” J. Appl. Mech., 

vol. 56, no. 1, pp. 149–154, Mar. 1989. 

[22] E. Sarrouy and F. Thouverez, “Global search of non-linear systems periodic solutions: A 

rotordynamics application,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1799–1813, 

Aug. 2010. 

[23] A. Grolet and F. Thouverez, “Computing multiple periodic solutions of nonlinear vibration 

problems using the harmonic balance method and Groebner bases,” Mech. Syst. Signal 

Process., vol. 52–53, pp. 529–547, Feb. 2015. 
[24] S. Nacivet, C. Pierre, F. Thouverez, and L. Jezequel, “A dynamic Lagrangian frequency–

time method for the vibration of dry-friction-damped systems,” J. Sound Vib., vol. 265, 

no. 1, pp. 201–219, Jul. 2003. 

[25] H. G. Elrod, “A Cavitation Algorithm,” J. Tribol., vol. 103, no. 3, pp. 350–354, Jul. 1981. 

[26] D. Childs, H. Moes, and H. van Leeuwen, “Journal Bearing Impedance Descriptions for 

Rotordynamic Applications,” J. Lubr. Technol., vol. 99, no. 2, pp. 198–210, Apr. 1977. 

[27] E. S. Zorzi and H. D. Nelson, “Finite Element Simulation of Rotor-Bearing Systems With 

Internal Damping,” J. Eng. Power, vol. 99, no. 1, pp. 71–76, Jan. 1977. 

[28] L. Peletan, S. Baguet, M. Torkhani, and G. Jacquet-Richardet, “A comparison of stability 

computational methods for periodic solution of nonlinear problems with application to 
rotordynamics,” Nonlinear Dyn., vol. 72, no. 3, pp. 671–682, Jan. 2013. 

[29] A. H. Nayfeh, Applied nonlinear dynamics: analytical, computational, and experimental 

methods. New York: Wiley, 1995. 

 


