Investigation of capillary ion chromatography for nuclear prospects
C. Gautier, C. Rey, D. Roussignol, E. Machon, J. Randon, M. Crozet, C. Rivier

To cite this version:

HAL Id: cea-02442314
https://hal-cea.archives-ouvertes.fr/cea-02442314
Submitted on 16 Jan 2020
Investigation of capillary ion chromatography (Cap-IC) for nuclear prospects

C. Gautier, C. Rey, D. Roussignol, E. Machon, J. Randon, M. Crozet, C. Rivier

*Den - Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, Building 459, F-91191, Gif-sur-Yvette, France

ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSMM/Université Montpellier 2, Building 426, Site de Marcoule, F-30207 Bagnols-sur-Ceze, France

CEA, Marcoule Center, DEN/DRCY/SEMA/LAMM, Laboratory L27, ATALANTE Building 166, BP 17171, F-30207 Bagnols-sur-Ceze, France

Institut des Sciences Analytiques, UMR CNRS 5250, Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France

*denis.roussignol@cea.fr

The recent development of commercial capillary ion chromatography (Cap-IC) systems [1-4] provides a major opportunity to increase the reactivity of laboratories and to reduce the amount of radioactive effluents produced from the chromatographic analyses in the nuclear field. As the column replacement in a radioactive environment is tedious, the retention behavior of IC columns was investigated at capillary scale to anticipate this operation.

Evolution of retention behavior of Cap-IC columns

- Linear decrease of retention factors as a function of the operating time of the Cap-IC columns whatever the type of columns and the studied anions
- No decline for cation-exchange Cap-IC columns

Validation of Cap-IC

- Accurate quantification of all anions by using the same calibration curve during 18 days
- No bias observed for the two laboratories using Cap-IC whatever the analyzed anions

Novel aspect

Despite the linear decrease of retention factors observed for anions, the analytical performance of capillary ion chromatography was validated with an interlaboratory comparison exercise, which makes this technology convenient for applications to radioactive samples. This work is of prime interest for nuclear analysts but also for IC users who intend to increase the flexibility and the reactivity of their laboratories.

