A. G. Ngounou-wetie, Investigation of stable and transient protein-protein interactions: Past, present, and future, Proteomics, vol.13, pp.538-57, 2013.

M. Glotzer and A. A. Hyman, Cell Polarity: The importance of being polar, Curr. Biol, vol.5, pp.1102-1105, 1995.

G. M. Cooper, The Cell: A Molecular Approach, pp.253-255, 2000.

P. L. Graumann, Dynamics of bacterial cytoskeletal elements, Cell Motility and the Cytoskeleton 909-914, 2009.

J. W. Lichtman, J. Conchello, and . Fluorescence, Nat. Methods, vol.2, pp.910-919, 2005.

B. Turkowyd, D. Virant, and U. Endesfelder, From single molecules to life: microscopy at the nanoscale, Anal. Bioanal. Chem, vol.408, pp.6885-6911, 2016.

S. J. Sahl, S. W. Hell, and S. Jakobs, Fluorescence nanoscopy in cell biology, Nat. Rev. Mol. Cell Biol, vol.18, pp.685-701, 2017.

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, Evaluating image resolution in stimulated emission depletion microscopy, Optica, vol.5, p.32, 2018.

G. Vicidomini, P. Bianchini, and A. Diaspro, STED super-resolved microscopy, Nat. Methods, vol.15, pp.173-182, 2018.

A. G. Godin, B. Lounis, and L. Cognet, Super-resolution microscopy approaches for live cell imaging, Biophys. J, vol.107, pp.1777-1784, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080729

B. Huang, H. Babcock, and X. Zhuang, Breaking the diffraction barrier: Super-resolution imaging of cells, Cell, vol.143, pp.1047-1058, 2010.

P. R. Selvin, The renaissance of fluorescence resonance energy transfer, Nat. Struct. Biol, vol.7, pp.730-734, 2000.

Y. Sun, R. N. Day, and A. Periasamy, Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy, Nat. Protoc, vol.6, pp.1324-1340, 2011.

C. Tardif, Fluorescence lifetime imaging nanoscopy for measuring Förster resonance energy transfer in cellular nanodomains, Neurophotonics, vol.6, p.1, 2019.

S. Deng, Effects of donor and acceptor's fluorescence lifetimes on the method of applying Förster resonance energy transfer in STED microscopy, J. Microsc, vol.269, pp.59-65, 2018.

M. Loidolt-krüger and . Maria, STED Microscopy of FRET Pairs, 2018.

P. C. Jennings, G. C. Cox, L. G. Monahan, and E. J. Harry, Super-resolution imaging of the bacterial cytokinetic protein FtsZ, Micron, vol.42, pp.336-341, 2011.

J. Willemse, J. W. Borst, E. De-waal, T. Bisseling, and G. P. Van-wezel, Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces, Genes Dev, vol.25, pp.89-99, 2011.

N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, 1993.

A. Körnig, Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria, Nano Lett, vol.14, pp.4653-4659, 2014.

R. Uebe and D. Schüler, Magnetosome biogenesis in magnetotactic bacteria, Nat. Rev. Microbiol, vol.14, pp.621-637, 2016.

D. Faivre and T. U. Godec, From Bacteria to Mollusks: The Principles Underlying the Biomineralization of Iron Oxide Materials, Angew. Chem. Int. Ed Engl, vol.54, pp.4728-4747, 2015.

D. Faivre, Formation of magnetic nanoparticle chains in bacterial systems, MRS Bull, vol.40, pp.509-515, 2015.

A. Komeili, Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes are cell membrane imaginations organized by the actin-like protein MamK, Science, vol.311, pp.242-245, 2006.

A. Scheffel, An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, vol.440, pp.110-114, 2006.

J. M. Ferrer, Measuring molecular rupture forces between single actin filaments and actin-binding proteins, Proc. Natl. Acad. Sci. 105, pp.9221-9226, 2008.

A. Scheffel and D. Schüler, The acidic repetitive domain of the magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly, J. Bacteriol, vol.189, pp.6437-6446, 2007.

M. A. Carillo, M. Bennet, and D. Faivre, Interaction of Proteins Associated with the Magnetosome Assembly in Magnetotactic Bacteria As Revealed by Two-Hybrid Two-Photon Excitation Fluorescence Lifetime Imaging Microscopy Förster Resonance Energy Transfer, J. Phys. Chem. B, vol.117, pp.14642-14648, 2013.

M. Bennet, Biologically controlled synthesis and assembly of magnetite nanoparticles, Faraday Discuss, vol.181, pp.71-83, 2015.

E. Katzmann, A. Scheffel, M. Gruska, J. M. Plitzko, and D. Schüler, Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense, Mol. Microbiol, vol.77, pp.208-224, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552637

M. Toro-nahuelpan, Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament, BMC Biol, vol.14, p.88, 2016.

K. S. Morozova, Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy, Biophys. J, vol.99, pp.13-18, 2010.

S. J. An and W. Almers, Tracking SNARE complex formation in live endocrine cells, Science, vol.306, pp.1042-1046, 2004.

H. Blom and J. Widengren, Stimulated Emission Depletion Microscopy, Chemical Reviews, vol.117, pp.7377-7427, 2017.

N. Vogt, Biophysics: Unraveling magnetogenetics, Nat. Methods, vol.13, pp.900-901, 2016.

M. Meister, Physical limits to magnetogenetics, Elife, vol.5, p.17210, 2016.

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer, Live-cell imaging of dendritic spines by STED microscopy, Proc. Natl. Acad. Sci. USA 105, pp.18982-18989, 2008.

U. Heyen and D. Schüler, Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor, Appl. Microbiol. Biotechnol, vol.61, pp.536-580, 2003.

D. Schüler, R. Uhl, and E. Bäuerlein, A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense, FEMS Microbiol. Lett, vol.132, pp.139-145, 1995.

N. Hildebrandt, FRET -Förster Resonance Energy Transfer 105-163, 2013.

M. Bennet, D. Gur, J. Yoon, Y. Park, and D. Faivre, A Bacteria-Based Remotely Tunable Photonic Device, Adv. Opt. Mater, vol.5, p.1600617, 2016.

D. A. Shagin, GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity, Mol. Biol. Evol, vol.21, pp.841-850, 2004.

A. Klauss, F. Conrad, and C. Hille, Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy, Sci. Rep, vol.7, p.15699, 2017.

G. Vicidomini, Sharper low-power STED nanoscopy by time gating, Nat. Methods, vol.8, pp.571-575, 2011.

D. Sage, DeconvolutionLab2: An open-source software for deconvolution microscopy, Methods, vol.115, pp.28-41, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01632774