The transport and settling of platinum-group-metal particles in glass melts
G. Barbarossa, E. Sauvage

To cite this version:
G. Barbarossa, E. Sauvage. The transport and settling of platinum-group-metal particles in glass melts. SGT Centenary Conference and ESG 2016, Sep 2016, Sheffield, United Kingdom. cea-02438709

HAL Id: cea-02438709
https://hal-cea.archives-ouvertes.fr/cea-02438709
Submitted on 27 Feb 2020
THE TRANSPORT AND SETTLING OF PLATINUM-GROUP-METAL PARTICLES IN GLASS MELTS

PRESENTATION BY GUILLAUME BARBA ROSSA

G. BARBA ROSSA, E. SAUVAGE
CEA, DEN, DTCD, SCDV, LDPV
BP 17171, F-30207 BAGNOLS-SUR-CEZE, FRANCE
Short overview of the High-Level-Waste confinement process

- Ensure long-time confinement of High-Level-Waste (HLW) of spent nuclear fuel reprocessing
- Vitrification: atomic-scale incorporation of HLW in a glass melt
- Most recently developed technology used for vitrification
 - Induction-heated cold crucible

Full scale prototype at CEA

Free surface of the melt in the crucible

Glass pouring
Particles encountered in nuclear waste vitrification processes

- Nuclear glass melt
 - Homogeneous borosilicate glass matrix
 - Seeded with small particles (∼10 μm)

- Particles are Platinum-Group-Metals with a much higher density than glass
 - Ruthenium dioxide (RuO₂) needles
 - Palladium (Pd) spheres

 Iso-contours of density from X-ray microtomography (made at ESRF)

SEM

NOVITOM
ADVANCED 3D MICRO-IMAGING
Numerical simulation of the vitrification process in cold crucibles

- Numerical simulation of coupled models
 - Fluid mechanics for stirred glass: Navier-Stokes equations
 - Temperature transport: Energy equation
 - Electromagnetics for induction: Maxwell equations

- But PGM particles have significant effects when their local volume fraction increases (because of settling)
 - Viscosity increase
 - Electrical conductivity increase
 - …

- Need for a supplementary model to compute particles local volume fraction in the melt $C(x, y, z, t)$

Full thermo-hydraulic numerical simulation of the cold crucible
Transport model for particles

- Transport phenomena included in a **one-fluid model**
 - Advection by the flowing suspending fluid

- Hindered settling with Stokes velocity $\tau(C,T)$
 (Michaels & Bolger formula)

- Hydrodynamic diffusion $\kappa(T)$

- Resulting in a single unsteady evolution equation for the particles volume fraction C

\[
\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C + \nabla \cdot (\tau \mathbf{g} C) = \nabla \cdot (\kappa \nabla C)
\]
Accounting for temperature-dependent transport properties

- **4 transport parameters**, 2 of them strongly depend on glass viscosity η

- Maximum packing fraction C_a evaluated from particles’ shape
- Hindering exponent $\beta = 4.65$ computed by Richardson & Zaki
- Settling velocity τ evaluated from Stokes formula
- Diffusivity κ fitted in laboratory experiments

Glass melting processes are non-isothermal and glass viscosity depends on temperature $\eta(T)$

Temperature stratification T \(\alpha \frac{1}{\eta(T)} \) Change in glass viscosity $\eta(T)$ (VFT)
Laboratory settling experiments with a nuclear waste simulant (1)

- Initially homogeneous nuclear waste simulant seeded with PGM particles
- Heat-treated during prescribed settling time without any stirring ($\mathbf{u} = 0$)

- Crucible vertically sliced after cooling
- Laser Induced Breakdown Spectroscopy (LIBS) to measure vertical concentration profiles $C(z, t)$

Comparison to the transport model (solved numerically)

$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C + \nabla \cdot (\tau \hat{g} C) = \nabla \cdot (\kappa \nabla C)$$

Sliced glass sample in the LIBS apparatus
Laboratory settling experiments with a nuclear waste simulant (2)

- **Exp. 1**: isothermal case
 - Sample height 2.6cm
 - Uniform temperature 1300°C
 - Ruthenium dioxide particles 0.53%vol (1.5%w)
 - Heating time 16h

- **Exp. 2**: non-isothermal case
 - Sample height 4.5cm
 - Imposed temperature gradient 592°C-1215°C
 - Palladium particles 0.19%vol (0.9%w)
 - Heating time 65h

Transport parameters used in simulations (at 1300°C)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Particles</th>
<th>τ (10^{-7} m/s)</th>
<th>κ (10^{-10} m2/s)</th>
<th>C_a</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RuO_2</td>
<td>1.3</td>
<td>1.5</td>
<td>8%</td>
<td>4.65</td>
</tr>
<tr>
<td>2</td>
<td>Pd</td>
<td>2.9</td>
<td>18</td>
<td>60%</td>
<td>4.65</td>
</tr>
</tbody>
</table>
Structure of the sludge

- Exp. 3: sludge obtained from long-term settling
 - Sample height 4.9cm
 - Uniform temperature 1200°C
 - Both ruthenium dioxide and palladium particles 0.7%vol
 - Heating time 211h

- Intricate percolated network
- Relatively low volume fraction 3.5%vol

\[\text{RuO}_2 \text{ volume fraction} \]
Conclusion

- Accurate transport model with low computational cost
- Able to account for PGM settling in glass melts, with temperature stratification
- Precise 3d imaging gives an insight into the sludge structure

- Transport model included in 3d simulations of waste vitrification in cold crucibles along with:
 - “Cloud settling” through Rayleigh-Taylor instabilities
 - Percolation model for the electrical conductivity of PGM-laden glass
THANK YOU FOR YOUR ATTENTION
Detailed transport model

\[
\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C + \nabla \cdot \left(\frac{\tau_0}{f_\eta} \hat{g} C \left(1 - \frac{C}{C_a} \right)^\beta \right) = \nabla \cdot \left(\frac{\kappa_0}{f_\eta} \nabla C \right)
\]

Hindering function

Stokes terminal velocity \(\tau_0 = \frac{d_p^2 (\rho_p - \rho_f) g}{18 \eta_0} \)

Diffusivity \(\kappa_0 = \frac{d_p^2 \alpha}{18 \eta_0} \)

Vogel-Fulcher-Tamman viscosity law \(f_\eta \propto \exp \left(\frac{B}{R(T-T_v)} \right) \)